Bioinformatics Analyses and Biological Function of Lncrna ZFPM2‑AS1 and ZFPM2 Gene in Hepatocellular Carcinoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fog2 Is Critical for Cardiac Function and Maintenance of Coronary Vasculature in the Adult Mouse Heart
Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart Bin Zhou, … , Sergei G. Tevosian, William T. Pu J Clin Invest. 2009;119(6):1462-1476. https://doi.org/10.1172/JCI38723. Research Article Cardiology Aberrant transcriptional regulation contributes to the pathogenesis of both congenital and adult forms of heart disease. While the transcriptional regulator friend of Gata 2 (FOG2) is known to be essential for heart morphogenesis and coronary development, its tissue-specific function has not been previously investigated. Additionally, little is known about the role of FOG2 in the adult heart. Here we used spatiotemporally regulated inactivation of Fog2 to delineate its function in both the embryonic and adult mouse heart. Early cardiomyocyte-restricted loss of Fog2 recapitulated the cardiac and coronary defects of the Fog2 germline murine knockouts. Later cardiomyocyte-restricted loss ofF og2 (Fog2MC) did not result in defects in cardiac structure or coronary vessel formation. However, Fog2MC adult mice had severely depressed ventricular function and died at 8–14 weeks. Fog2MC adult hearts displayed a paucity of coronary vessels, associated with myocardial hypoxia, increased cardiomyocyte apoptosis, and cardiac fibrosis. Induced inactivation of Fog2 in the adult mouse heart resulted in similar phenotypes, as did ablation of the FOG2 interaction with the transcription factor GATA4. Loss of the FOG2 or FOG2-GATA4 interaction altered the expression of a panel of angiogenesis-related genes. Collectively, our data indicate that FOG2 regulates adult heart function and coronary angiogenesis. Find the latest version: https://jci.me/38723/pdf Research article Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart Bin Zhou,1,2 Qing Ma,1 Sek Won Kong,1 Yongwu Hu,1,3 Patrick H. -
Functional Characterization of Alternative Splice Variants of The
Functional characterization of alternative splice variants of the Drosophila GATA transcription factor serpent containing either one or two zinc finger domains Douaa Moussalem To cite this version: Douaa Moussalem. Functional characterization of alternative splice variants of the Drosophila GATA transcription factor serpent containing either one or two zinc finger domains. Genetics. Université Paul Sabatier - Toulouse III, 2020. English. NNT : 2020TOU30138. tel-03162582 HAL Id: tel-03162582 https://tel.archives-ouvertes.fr/tel-03162582 Submitted on 8 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Université Toulouse 3 - Paul Sabatier Présentée et soutenue par Douaa MOUSSALEM Le 12 octobre 2020 Titre : Functional characterization of alternative splice variants of the Drosophila GATA transcription factor Serpent containing either one or two zinc finger domains. Ecole doctorale : BSB - Biologie, Santé, Biotechnologies Spécialité : GENETIQUE MOLECULAIRE Unité de recherche : CBD - Centre de Biologie du Développement Thèse dirigée par Marc HAENLIN et Dani OSMAN Jury M. David CRIBBS, Président Mme Annarita MICCIO, Rapporteure Mme Kyra CAMPBELL, Rapporteure M. Samir MERABET, Rapporteur M. Marc HAENLIN, Directeur de thèse M. -
Variants of STAR, AMH and ZFPM2 /FOG2 May Contribute Towards the Broad Phenotype Observed in 46,XY DSD Patients with Heterozygou
International Journal of Molecular Sciences Article Variants of STAR, AMH and ZFPM2/FOG2 May Contribute towards the Broad Phenotype Observed in 46,XY DSD Patients with Heterozygous Variants of NR5A1 Idoia Martínez de LaPiscina 1 , Rana AA Mahmoud 2 , Kay-Sara Sauter 3 , Isabel Esteva 4, Milagros Alonso 5, Ines Costa 6, Jose Manuel Rial-Rodriguez 7, Amaia Rodríguez-Estévez 1,8, Amaia Vela 1,8, Luis Castano 1,8 and Christa E. Flück 3,* 1 Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, ENDO-ERN. Plaza de Cruces 12, 48903 Barakaldo, Spain; [email protected] (I.M.d.L.); [email protected] (A.R.-E.); [email protected] (A.V.); [email protected] (L.C.) 2 Department of Pediatrics, Endocrinology Section, Ain Shams University, 38 Abbasia, Nour Mosque, El-Mohamady, Al Waili, Cairo 11591, Egypt; [email protected] 3 Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland; [email protected] 4 Endocrinology Section, Gender Identity Unit, Regional University Hospital of Malaga, Av. de Carlos Haya, s/n, 29010 Málaga, Spain; [email protected] 5 Pediatric Endocrinology Department, Ramon y Cajal University Hospital, Ctra. de Colmenar Viejo km. 9, 100, 28034 Madrid, Spain; [email protected] 6 Pediatric Department, Manises -
GATA Transcription Factors and Their Co-Regulators Guide the Development Of
GATA transcription factors and their co-regulators guide the development of GABAergic and serotonergic neurons in the anterior brainstem Laura Tikker Molecular and Integrative Biosciences Research Programme Faculty of Biological and Environmental Sciences Doctoral Programme Integrative Life Science University of Helsinki ACADEMIC DISSERTATION Doctoral thesis, to be presented for public examination, with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki, in Raisio Hall (LS B2) in Forest Sciences building, Latokartanonkaari 7, Helsinki, on the 3rd of April, 2020 at 12 noon. Supervisor Professor Juha Partanen University of Helsinki (Finland) Thesis Committee members Docent Mikko Airavaara University of Helsinki (Finland) Professor Timo Otonkoski University of Helsinki (Finland) Pre-examinators Docent Satu Kuure University of Helsinki (Finland) Research Scientist Siew-Lan Ang, PhD The Francis Crick Institute (United Kingdom) Opponent Research Scientist Johan Holmberg, PhD Karolinska Institutet (Sweden) Custos Professor Juha Partanen University of Helsinki (Finland) The Faculty of Biological and Environmental Sciences, University of Helsinki, uses the Urkund system for plagiarism recognition to examine all doctoral dissertations. ISBN: 978-951-51-5930-4 (paperback) ISBN: 978-951-51-5931-1 (PDF) ISSN: 2342-3161 (paperback) ISSN: 2342-317X (PDF) Printing house: Painosalama Oy Printing location: Turku, Finland Printed on: 03.2020 Cover artwork: Serotonergic neurons in adult dorsal raphe (mouse). -
Blueprint Genetics Congenital Structural Heart Disease Panel
Congenital Structural Heart Disease Panel Test code: CA1501 Is a 114 gene panel that includes assessment of non-coding variants. Is ideal for patients with congenital heart disease, particularly those with features of hereditary disorders. Is not ideal for patients suspected to have a ciliopathy or a rasopathy. For those patients, please consider our Primary Ciliary Dyskinesia Panel and our Noonan Syndrome Panel, respectively. About Congenital Structural Heart Disease There are many types of congenital heart disease (CHD) ranging from simple asymptomatic defects to complex defects with severe, life-threatening symptoms. CHDs are the most common type of birth defect and affect at least 8 out of every 1,000 newborns. Annually, more than 35,000 babies in the United States are born with CHDs. Many of these CHDs are simple conditions and need no treatment or are easily repaired. Some babies are born with complex CHD requiring special medical care. The diagnosis and treatment of complex CHDs has greatly improved over the past few decades. As a result, almost all children who have complex heart defects survive to adulthood and can live active, productive lives. However, many patients who have complex CHDs continue to need special heart care throughout their lives. In the United States, more than 1 million adults are living with congenital heart disease. Availability 4 weeks Gene Set Description Genes in the Congenital Structural Heart Disease Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ABL1 Congenital -
The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem. -
Transcriptome Analysis Identifies Doublesex and Mab-3 Related Transcription Factor (DMRT3) in Nasal Polyp Epithelial Cells of Pa
biomolecules Article Transcriptome Analysis Identifies Doublesex and Mab-3 Related Transcription Factor (DMRT3) in Nasal Polyp Epithelial Cells of Patients Suffering from Non-Steroidal Anti-Inflammatory Drug-Exacerbated Respiratory Disease (AERD) V.S. Priyadharshini 1 , Marcos Alejandro Jiménez-Chobillon 1, Jos de Graaf 2, Raúl Porras Gutiérrez de Velasco 3, Christina Gratziou 4, Fernando Ramírez-Jiménez 1 and Luis M. Teran 1,3,* 1 Instituto Nacional de EnfermedadesRespiratorias Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Mexico City 14080, Mexico; [email protected] (V.S.P.); [email protected] (M.A.J.-C.); [email protected] (F.R.-J.) 2 Translational Oncology at Johannes Gutenberg-University Medical Center gGmbH, D-55131 Mainz, Germany; [email protected] 3 School of Medicine, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N. Delegación Coyoacán, Mexico City 04510, Mexico; [email protected] 4 Smoking Cessation Centre Pulmonary Department, Evgenidio Hospital, Athens University, 20 Papadiamantopoulou Street, 11528 Athens, Greece; [email protected] * Correspondence: [email protected] Citation: Priyadharshini, V.S.; Jiménez-Chobillon, M.A.; de Graaf, J.; Abstract: Background: Aspirin-exacerbated respiratory disease (AERD) is a syndrome characterised Porras Gutiérrez de Velasco, R.; by chronic rhinosinusitis, nasal polyps, asthma and aspirin intolerance. An imbalance of eicosanoid Gratziou, C.; Ramírez-Jiménez, F.; metabolism with anover-production of cysteinyl leukotrienes (CysLTs) has been associated with Teran, L.M. Transcriptome Analysis AERD. However, the precise mechanisms underlying AERD are unknown. Objective: To establish Identifies Doublesex and Mab-3 the transcriptome of the nasal polyp airway epithelial cells derived from AERD patients to discover Related Transcription Factor (DMRT3) gene expression patterns in this disease. -
Novel Genetic Mechanisms of Congenital Diaphragmatic Hernia
3/8/2019 Congenital diaphragmatic hernia • 1 in 3000 births Novel genetic mechanisms of congenital • 8% of all birth defects diaphragmatic hernia • Annual US cost is $158 million • 20%-40% mortality • 40% -50% Non-isolated Wendy Chung, MD PhD Kennedy Family Professor of Pediatrics and Medicine - Up to 25% with CHD Columbia University - Developmental delay/ID common DHREAMS protocol • Birth cohort L CDH • Neonates affected with diaphragm defects • Samples from affected case and both biological parents (Trio collection) • Developmental assessments at 2 and 5 years • Retrospective cohort • Children and adults with a personal history of a diaphragm defect • Samples from affected case and both biological parents (Trio collection) • Genetic analysis Chongqing Three Gorges • Natural history studies Central Hospital 1 3/8/2019 Study protocol Genetic Evidence for CDH • Eligible subjects • Children and fetuses • Familial aggregation • Protocol • Higher rate of concordance in monozygotic v.s. dizygotic twins • Collection of blood from proband and biological parents • Mouse studies elucidated the role of several genes in • Over 100 data points on prenatal history, NICU stay, surgical report, and family history diaphragm development • Prospective cohort • Coup-TFII, Slit3, Gata4, Fog2, Wt1 • Collection of skin and diaphragm at time of surgery • Pulmonary Hypertension assessment at 1 and 3 months • Chromosome anomalies (10-30%) • 2 year developmental assessment • T21, T18, T13, tetrasomy12p, 15q26, 8p23.1, 1q41-q42 • Vineland Adaptive Behavior Scale -
Inactivation of the GATA Cofactor ZFPM1 Results in Abnormal
Research Articles: Development/Plasticity/Repair Inactivation of the GATA cofactor ZFPM1 results in abnormal development of dorsal raphe serotonergic neuron subtypes and increased anxiety-like behaviour https://doi.org/10.1523/JNEUROSCI.2252-19.2020 Cite as: J. Neurosci 2020; 10.1523/JNEUROSCI.2252-19.2020 Received: 20 September 2019 Revised: 17 September 2020 Accepted: 25 September 2020 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2020 the authors 1 Inactivation of the GATA cofactor ZFPM1 results in abnormal development of dorsal raphe 2 serotonergic neuron subtypes and increased anxiety-like behaviour 3 Laura Tikker1, Plinio Casarotto2, Parul Singh1, Caroline Biojone2, Petteri Piepponen3, Nuri Estartús1, 4 Anna Seelbach1, Ravindran Sridharan1, Liina Laukkanen2, Eero Castrén2, Juha Partanen1* 5 1Molecular and Integrative Biosciences Research Programme, P.O. Box 56, Viikinkaari 9, FIN-00014, 6 University of Helsinki, Helsinki, Finland 7 2Neuroscience Center, P.O.Box 63, Haartmaninkatu 8, FIN-00014, University of Helsinki, Helsinki, 8 Finland 9 3Division of Pharmacology and Pharmacotherapy, P.O. Box 56, Viikinkaari 5, FIN-00014, University 10 of Helsinki, Helsinki, Finland 11 *Corresponding author: Juha Partanen, [email protected] 12 Abbreviated title: ZFPM1 and serotonergic neuron development 13 Number of pages: 40 14 Number of figures: 7 15 Number of tables: 1 16 Number of words for abstract: 206 17 Number of words for introduction: 635 18 Number of words for discussion: 1258 19 Conflict of Interest: The authors declare no competing financial interests 20 Acknowledgments: 21 This work has been supported by Jane and Aatos Erkko Foundation, Sigrid Juselius Foundation and the 22 Academy of Finland. -
Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns
Journal of Personalized Medicine Review Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns Olga María Diz 1,2,† , Rocio Toro 3,† , Sergi Cesar 4, Olga Gomez 5,6, Georgia Sarquella-Brugada 4,7,*,‡ and Oscar Campuzano 2,7,8,*,‡ 1 UGC Laboratorios, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain; [email protected] 2 Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain 3 Medicine Department, School of Medicine, Cádiz University, 11519 Cadiz, Spain; [email protected] 4 Arrhythmia, Inherited Cardiac Diseases and Sudden Death Unit, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; [email protected] 5 Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08950 Barcelona, Spain; [email protected] 6 Centre for Biomedical Research on Rare Diseases (CIBER-ER), 28029 Madrid, Spain 7 Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain 8 Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain * Correspondence: [email protected] (G.S.-B.); [email protected] (O.C.) † Equally as co-first authors. ‡ Contributed equally as co-senior authors. Citation: Diz, O.M.; Toro, R.; Cesar, Abstract: Congenital heart disease is a group of pathologies characterized by structural malforma- S.; Gomez, O.; Sarquella-Brugada, G.; tions of the heart or great vessels. -
GATA5 Mutation Homozygosity Linked to a Double Outlet Right Ventricle Phenotype in a Lebanese Patient
GATA5 mutation homozygosity linked to a double outlet right ventricle phenotype in a Lebanese patient The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kassab, Kameel, Hadla Hariri, Lara Gharibeh, Akl C. Fahed, Manal Zein, Inaam El#Rassy, Mona Nemer, Issam El#Rassi, Fadi Bitar, and Georges Nemer. 2015. “GATA5 mutation homozygosity linked to a double outlet right ventricle phenotype in a Lebanese patient.” Molecular Genetics & Genomic Medicine 4 (2): 160-171. doi:10.1002/ mgg3.190. http://dx.doi.org/10.1002/mgg3.190. Published Version doi:10.1002/mgg3.190 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:26860270 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ORIGINAL ARTICLE GATA5 mutation homozygosity linked to a double outlet right ventricle phenotype in a Lebanese patient Kameel Kassab1,a, Hadla Hariri1,a, Lara Gharibeh2, Akl C. Fahed3, Manal Zein1, Inaam El-Rassy1, Mona Nemer2, Issam El-Rassi5, Fadi Bitar1,4 & Georges Nemer1 1Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon 2Department of Biochemistry, University of Ottawa, Ottawa, Ontario, Canada 3Department of Genetics, Harvard Medical School and Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts 4Department of Surgery, American University of Beirut, Beirut, Lebanon 5Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon Keywords Abstract Congenital, GATA5, heart, homozygous, recessive, transcription Background GATA transcription factors are evolutionary conserved zinc finger proteins with Correspondence multiple roles in cell differentiation/proliferation and organogenesis. -
ISL1 Loss-Of-Function Mutation Contributes to Congenital Heart Defects
Heart and Vessels (2019) 34:658–668 https://doi.org/10.1007/s00380-018-1289-z ORIGINAL ARTICLE ISL1 loss‑of‑function mutation contributes to congenital heart defects Lan Ma1,2 · Juan Wang3 · Li Li4 · Qi Qiao5 · Ruo‑Min Di5 · Xiu‑Mei Li5 · Ying‑Jia Xu5 · Min Zhang6 · Ruo‑Gu Li6 · Xing‑Biao Qiu6 · Xun Li1 · Yi‑Qing Yang5,7,8 Received: 1 July 2018 / Accepted: 26 October 2018 / Published online: 2 November 2018 © Springer Japan KK, part of Springer Nature 2018 Abstract Congenital heart defect (CHD) is the most common form of birth deformity and is responsible for substantial morbidity and mortality in humans. Increasing evidence has convincingly demonstrated that genetic defects play a pivotal role in the patho- genesis of CHD. However, CHD is a genetically heterogeneous disorder and the genetic basis underpinning CHD in the vast majority of cases remains elusive. This study was sought to identify the pathogenic mutation in the ISL1 gene contributing to CHD. A cohort of 210 unrelated patients with CHD and a total of 256 unrelated healthy individuals used as controls were registered. The coding exons and splicing boundaries of ISL1 were sequenced in all study subjects. The functional efect of an identifed ISL1 mutation was evaluated using a dual-luciferase reporter assay system. A novel heterozygous ISL1 mutation, c.409G > T or p.E137X, was identifed in an index patient with congenital patent ductus arteriosus and ventricular septal defect. Analysis of the proband’s pedigree revealed that the mutation co-segregated with CHD, which was transmitted in the family in an autosomal dominant pattern with complete penetrance.