2010 Veblen Prize
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2006 Annual Report
Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson. -
June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings for MATHEMATICS 2014 and Events Following a Very Generous Tions Open in Late 2014
LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 437 June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings FOR MATHEMATICS 2014 and Events Following a very generous tions open in late 2014. The prize Monday 16 June donation made by Professor may be awarded to either a single Midlands Regional Meeting, Loughborough Geoffrey Shephard, the London winner or jointly to collaborators. page 11 Mathematical Society will, in 2015, The mathematical contribution Friday 4 July introduce a new prize. The prize, to which an award will be made Graduate Student to be known as the Shephard must be published, though there Meeting, Prize will be awarded bienni- is no requirement that the pub- London ally. The award will be made to lication be in an LMS-published page 8 a mathematician (or mathemati- journal. Friday 4 July cians) based in the UK in recog- Professor Shephard himself is 1 Society Meeting nition of a specific contribution Professor of Mathematics at the Hardy Lecture to mathematics with a strong University of East Anglia whose London intuitive component which can be main fields of interest are in page 9 explained to those with little or convex geometry and tessella- Wednesday 9 July no knowledge of university math- tions. Professor Shephard is one LMS Popular Lectures ematics, though the work itself of the longest-standing members London may involve more advanced ideas. of the LMS, having given more page 17 The Society now actively en- than sixty years of membership. Tuesday 19 August courages members to consider The Society wishes to place on LMS Meeting and Reception nominees who could be put record its thanks for his support ICM 2014, Seoul forward for the award of a in the establishment of the new page 11 Shephard Prize when nomina- prize. -
I. Overview of Activities, April, 2005-March, 2006 …
MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights -
Floer Homology, Gauge Theory, and Low-Dimensional Topology
Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. -
Committee to Select the Winner of the Veblen Prize
Committee to Select the Winner of the Veblen Prize General Description · Committee is standing · Number of members is three · A new committee is appointed for each award Principal Activities The award is made every three years at the Annual (January) Meeting, in a cycle including the years 2001, 2004, and so forth. The award is made for a notable research work in geometry or topology that has appeared in the last six years. The work must be published in a recognized, peer-reviewed venue. The committee recommends a winner and communicates this recommendation to the Secretary for approval by the Executive Committee of the Council. Past winners are listed in the November issue of the Notices in odd-numbered years. About this Prize This prize was established in 1961 in memory of Professor Oswald Veblen through a fund contributed by former students and colleagues. The fund was later doubled by a gift from Elizabeth Veblen, widow of Professor Veblen. In honor of her late father, John L. Synge, who knew and admired Oswald Veblen, Cathleen Synge Morawetz and her husband, Herbert, substantially increased the endowed fund in 2013. The award is supplemented by a Steele Prize from the AMS under the name of the Veblen Prize. The current prize amount is $5,000. Miscellaneous Information The business of this committee can be done by mail, electronic mail, or telephone, expenses which may be reimbursed by the Society. Note to the Chair Work done by committees on recurring problems may have value as precedent or work done may have historical interest. -
Manifold Destiny: the New Yorker
Annals of Mathematics: Manifold Destiny: The New Yorker http://www.newyorker.com/archive/2006/08/28/060828fa_fact2?pr... ANNALS OF MATHEMATICS MANIFOLD DESTINY A legendary problem and the battle over who solved it. by Sylvia Nasar and David Gruber AUGUST 28, 2006 n the evening of June 20th, several hundred physicists, including a O Nobel laureate, assembled in an auditorium at the Friendship Hotel in Beijing for a lecture by the Chinese mathematician Shing-Tung Yau. In the late nineteen-seventies, when Yau was in his twenties, he had made a series of breakthroughs that helped launch the string-theory revolution in physics and earned him, in addition to a Fields Medal—the most coveted award in mathematics—a reputation in both disciplines as a thinker of unrivalled technical power. Yau had since become a professor of mathematics at Harvard and the director of mathematics institutes in Beijing and Hong Kong, dividing his time between the United States and China. His lecture at the Friendship Hotel was part of an international conference on string theory, which he had organized with the support of the Chinese government, in part to promote the country’s recent advances in theoretical physics. (More than six thousand students attended the keynote address, which was delivered by Yau’s close friend Stephen Hawking, in the Great Hall of the People.) The subject of Yau’s talk was something that few in his audience knew much about: the Poincaré conjecture, a century-old conundrum about the characteristics of three-dimensional spheres, which, because it has important implications for mathematics and cosmology and because it has eluded all attempts at solution, is regarded by mathematicians as a holy grail. -
From Stein to Weinstein and Back. Symplectic Geometry of Affine
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 3, July 2015, Pages 521–530 S 0273-0979(2015)01487-4 Article electronically published on February 19, 2015 From Stein to Weinstein and back. Symplectic geometry of affine complex manifolds, by Kai Cieliebak and Yakov Eliashberg, AMS Colloquium Publications, vol. 59, American Mathematical Society, Providence, RI, 2012, xii+364 pp., ISBN 978- 0-8218-8533-8, hardcover, US $78. The book under review [5] is a landmark piece of work that establishes a fun- damental bridge between complex geometry and symplectic geometry. It is both a research monograph of the deepest kind and a panoramic companion to the two fields. The main characters are, respectively, Stein manifolds on the complex side and Weinstein manifolds on the symplectic side. The connection between the two is established by studying the corresponding geometric structures up to homotopy, or deformation, a context in which the h-principle plays a fundamental role. Stein manifolds are fundamental objects in complex analysis of several variables and in complex geometry. There are several equivalent definitions, but the most intuitive one is the following: they are the complex manifolds that admit a proper holomorphic embedding in some Cn (they are in particular noncompact). Stein manifolds can be thought of as being a far-reaching generalization of domains of holomorphy in Cn. Other important classes of examples are noncompact Riemann surfaces and complements of hyperplane sections of smooth algebraic manifolds. The latter are actually examples of affine (algebraic) manifolds, meaning that they are described by polynomial equations in Cn. -
On the Contact Mapping Class Group of the Contactization of the Am-Milnor
On the contact mapping class group of the contactization of the Am-Milnor fiber Sergei Lanzat and Frol Zapolsky Abstract We construct an embedding of the full braid group on m+1 strands Bm+1, m ≥ 1, into the contact mapping class group of the contacti- 1 zation Q × S of the Am-Milnor fiber Q. The construction uses the embedding of Bm+1 into the symplectic mapping class group of Q due to Khovanov and Seidel, and a natural lifting homomorphism. In order to show that the composed homomorphism is still injective, we use a partially linearized variant of the Chekanov–Eliashberg dga for Leg- endrians which lie above one another in Q × R, reducing the proof to Floer homology. As corollaries we obtain a contribution to the contact isotopy problem for Q×S1, as well as the fact that in dimension 4, the lifting homomorphism embeds the symplectic mapping class group of Q into the contact mapping class group of Q × S1. 1 Introduction and main result Let (V,ξ) be a contact manifold with a cooriented contact structure, let Cont(V,ξ) be its group of coorientation-preserving compactly supported contactomorphisms, and let Cont0(V,ξ) ⊂ Cont(V,ξ) be the identity com- ponent. In this note we study the contact mapping class group arXiv:1511.00879v2 [math.SG] 24 Aug 2016 π0 Cont(V,ξ) = Cont(V,ξ)/ Cont0(V,ξ) when V is the contactization of the Am-Milnor fiber. For m,n ∈ N with n ≥ 2 the 2n-dimensional Milnor fiber is defined as the complex hypersurface 2 2 m+1 Cn+1 Q ≡ Qm = {w = (w0, . -
Chekanov-Eliashberg Dg-Algebras and Partially Wrapped Floer Cohomology
UPPSALA DISSERTATIONS IN MATHEMATICS 120 Chekanov-Eliashberg dg-algebras and partially wrapped Floer cohomology Johan Asplund Department of Mathematics Uppsala University UPPSALA 2021 Dissertation presented at Uppsala University to be publicly examined in Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 4 June 2021 at 14:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Dr, HDR Baptiste Chantraine (Département de Mathématiques, Universite de Nantes, France). Abstract Asplund, J. 2021. Chekanov-Eliashberg dg-algebras and partially wrapped Floer cohomology. Uppsala Dissertations in Mathematics 120. 42 pp. Uppsala: Department of Mathematics. ISBN 978-91-506-2872-2. This thesis consists of an introduction and two research papers in the fields of symplectic and contact geometry. The focus of the thesis is on Floer theory and symplectic field theory. In Paper I we show that the partially wrapped Floer cohomology of a cotangent fiber stopped by the unit conormal of a submanifold, is equivalent to chains of based loops on the complement of the submanifold in the base. For codimension two knots in the n-sphere we show that there is a relationship between the wrapped Floer cohomology algebra of the fiber and the Alexander invariant of the knot. This allows us to exhibit codimension two knots with infinite cyclic knot group such that the union of the unit conormal of the knot and the boundary of a cotangent fiber is not Legendrian isotopic to the union of the unit conormal of the unknot union the boundary and the same cotangent fiber. In Paper II we study the Chekanov-Eliashberg dg-algebra which is a holomorphic curve invariant associated to a smooth Legendrian submanifold. -
IAS Letter Spring 2004
THE I NSTITUTE L E T T E R INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY · SPRING 2004 J. ROBERT OPPENHEIMER CENTENNIAL (1904–1967) uch has been written about J. Robert Oppen- tions. His younger brother, Frank, would also become a Hans Bethe, who would Mheimer. The substance of his life, his intellect, his physicist. later work with Oppen- patrician manner, his leadership of the Los Alamos In 1921, Oppenheimer graduated from the Ethical heimer at Los Alamos: National Laboratory, his political affiliations and post- Culture School of New York at the top of his class. At “In addition to a superb war military/security entanglements, and his early death Harvard, Oppenheimer studied mathematics and sci- literary style, he brought from cancer, are all components of his compelling story. ence, philosophy and Eastern religion, French and Eng- to them a degree of lish literature. He graduated summa cum laude in 1925 sophistication in physics and afterwards went to Cambridge University’s previously unknown in Cavendish Laboratory as research assistant to J. J. the United States. Here Thomson. Bored with routine laboratory work, he went was a man who obviously to the University of Göttingen, in Germany. understood all the deep Göttingen was the place for quantum physics. Oppen- secrets of quantum heimer met and studied with some of the day’s most mechanics, and yet made prominent figures, Max Born and Niels Bohr among it clear that the most them. In 1927, Oppenheimer received his doctorate. In important questions were the same year, he worked with Born on the structure of unanswered. -
January 2001 Prizes and Awards
January 2001 Prizes and Awards 4:25 p.m., Thursday, January 11, 2001 PROGRAM OPENING REMARKS Thomas F. Banchoff, President Mathematical Association of America LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION American Mathematical Society DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY TEACHING OF MATHEMATICS Mathematical Association of America RUTH LYTTLE SATTER PRIZE American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY AN UNDERGRADUATE STUDENT American Mathematical Society Mathematical Association of America Society for Industrial and Applied Mathematics CHAUVENET PRIZE Mathematical Association of America LEVI L. CONANT PRIZE American Mathematical Society ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN Association for Women in Mathematics LEROY P. S TEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH American Mathematical Society LEONARD M. AND ELEANOR B. BLUMENTHAL AWARD FOR THE ADVANCEMENT OF RESEARCH IN PURE MATHEMATICS Leonard M. and Eleanor B. Blumenthal Trust for the Advancement of Mathematics COMMUNICATIONS AWARD Joint Policy Board for Mathematics ALBERT LEON WHITEMAN MEMORIAL PRIZE American Mathematical Society CERTIFICATES OF MERITORIOUS SERVICE Mathematical Association of America LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION Association for Women in Mathematics OSWALD VEBLEN PRIZE IN GEOMETRY American Mathematical Society YUEH-GIN GUNG AND DR. CHARLES Y. H U AWARD FOR DISTINGUISHED SERVICE TO MATHEMATICS Mathematical Association of America LEROY P. S TEELE PRIZE FOR LIFETIME ACHIEVEMENT American Mathematical Society CLOSING REMARKS Felix E. Browder, President American Mathematical Society M THE ATI A CA M L ΤΡΗΤΟΣ ΜΗ N ΕΙΣΙΤΩ S A O C C I I R E E T ΑΓΕΩΜΕ Y M A F O 8 U 88 AMERICAN MATHEMATICAL SOCIETY NDED 1 LEROY P. -
THE UNIVERSITY of CALIFORNIA, IRVINE on Singularities and Weak
THE UNIVERSITY OF CALIFORNIA, IRVINE On Singularities and Weak Solutions of Mean Curvature Flow DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in mathematics by Alexander Everest Mramor Dissertation Committee: Professor Richard Schoen, Chair Associate Professor Li-Sheng Tseng Assistant Professor Xiangwen Zhang 2019 • Portions of chapter 4 of this thesis were originally published in Entropy and the generic mean curvature flow in curved ambient spaces, Proc. Amer. Math. Soc. 146, 2663-2677, American Mathematical Society, Providence, RI, 2018. • Portions of chapter 6 of this thesis were originally published in A finiteness the- orem via the mean curvature flow with surgery, Journal of geometric analysis, December 2018, Volume 28, Issue 4, pp 3348{3372, Springer Nature Switzer- land AG. • Portions of chapter 7 of this thesis are to appear in Regularity and stability results for the level set flow via the mean curvature flow with surgery in Com- munications in Analysis and Geometry, International Press of Boston, Boston, Mass • Portions of chapter 8 of this thesis are to appear in On the topological rigidity of self shrinkers in R3 in Int. Math. Res. Not., Oxford univerisity press, Oxford, UK, 2019. All other materials c 2019 Alexander Mramor ii Table of contents List of Figures . vi Acknowledgements . vii Curriculum Vitae . ix Abstract of the dissertation . .x Preface 1 1 Introduction to the mean curvature flow 4 1.1 Classical formulation of the mean curvature flow . .5 1.2 Mean curvature flow with surgery for compact 2-convex hypersurfaces 11 1.2.1 Mean curvature flow with surgery according to Huisken and Sinestrari .