The International Space Science Institute

Total Page:16

File Type:pdf, Size:1020Kb

The International Space Science Institute — E— Glossaries and Acronyms E.1 Glossary of Metrology This section is intended to provide the readers with the definitions of certain terms often used in the calibration of instruments. The definitions were taken from the Swedish National Testing and Research Institute (http://www.sp.se/metrology/eng/ terminology.htm), the Guide to the Measurement of Pressure and Vacuum, National Physics Laboratory and Institute of Measurement & Control, London, 1998 and VIM, International Vocabulary of Basic and General Terms in Metrology, 2nd Ed., ISO, Geneva, 1993. Accuracy The closeness of the agreement between a test result and the accepted reference value [ISO 5725]. See also precision and trueness. Adjustment Operation of bringing a measuring instrument into a state of performance suitable for its use. Bias The difference between the expectation of the test results and an accepted reference value [ISO 5725]. Calibration A set of operations that establish, under specified conditions, the relationship between values of quantities indicated by a measuring instrument (or values repre- sented by a material measure) and the corresponding values realized by standards. The result of a calibration may be recorded in a document, e.g. a calibration certifi- cate. The result can be expressed as corrections with respect to the indications of the instrument. Calibration in itself does not necessarily mean that an instrument is performing in accordance with its specification. Certification A process performed by a third party that confirms that a defined product, process or service conforms with, for example, a standard. Confirmation Metrological confirmation is a set of operations required to ensure that an item of measuring equipment is in a state of compliance with requirements for its intended use. Metrological confirmation normally includes, for example, calibra- tion, any necessary adjustment or repair and subsequent recalibration, as well as any required sealing and labeling. Corrected result Result of a measurement after correction for systematic error. Correction The value which, added algebraically to the uncorrected result of a measure- ment, compensates for an assumed systematic error. The correction is equal to the assumed systematic error, but of the opposite sign. Since the systematic error can not be known exactly, the correction is subject to uncertainty. 519 520 E. GLOSSARIES AND ACRONYMS Dead band Maximum interval through which a stimulus may be changed in both direc- tions without producing a change in response of a measuring instrument [VIM 5.13]. Detector Device or substance that indicates the presence of a phenomenon, body, or sub- stance when a threshold value of an associated quantity is exceeded. NOTES: 1) In some fields the term ”detector” is used for the concept of sensor. 2) In chemistry the term ”indicator” is frequently used for this concept. Device Any artifactual object designed to perform an action or process, with or without an operator in attendance. Drift A slow change of a metrological characteristic of a measuring instrument. Error ((of indication) of a measuring instrument) The indication of a measuring instru- ment minus a ’true’ value of the corresponding input quantity, i.e. it has a sign. Expectation (of the measurable quantity) The mean of a specified population of mea- surements. Fiducial error (of a measuring instrument) Error of a measuring instrument divided by a (fiducial) value specified for the instrument [VIM 5.28]. Fiducial value Can be the span or upper limit of nominal range of measuring instrument. Group standard A set of standards of chosen values that, individually or in combination, provides a series of values of quantities of the same kind. Inspection Involves measurement, investigation or testing of one or more characteristics of a product, and includes a comparison of the results with specified requirements in order to determine whether the requirements have been fulfilled. Instrument constant Coefficient by which the direct indication of a measuring instru- ment must be multiplied to give the indicated value of the measurand or of a quantity to be used to calculate the value of the measurand [VIM 5.8]. Kind, quantities of the same Quantities that can be placed in order of magnitude relative to one another [VIM 1.1]. Laboratory bias The difference between the expectation of the test results from a partic- ular laboratory and an accepted reference value [ISO 5725]. Limiting conditions Extreme conditions that a measuring instrument is required to with- stand without damage, and without degradation of specified metrological character- istics when it is subsequently operated under its rated operating conditions [VIM 5.6]. (Measurable) quantity Attribute of a phenomenon, body or substance that may be dis- tinguished qualitatively and determined quantitatively [VIM 1.1]. Measurand Particular quantity subject to measurement [VIM 2.6]. Measurement Set of operations having the object of determining a value of a quantity [VIM 2.1]. E.1. Glossary of Metrology 521 Measurement procedure Set of operations, described specifically, used in the perfor- mance of particular measurements according to a given method [VIM 2.5]. Measurement signal Quantity that represents the measurand and which is functionally related to it [VIM 2.8]. Measurement standard, Etalon Material measure, measuring instrument, reference mate- rial or measuring system intended to define, realize, conserve or reproduce a unit or one or more values of a quantity to serve as a reference [VIM 6.1]. Measuring chain Series of elements of a measuring instrument or system that constitutes the path of the measurement signal from the input to the output [VIM 4.4]. Measuring range Set of values of measurands for which the error of a measuring instru- ment in intended to lie within specified limits [VIM 5.4]. Measuring system Set of measuring instruments and other devices or substances assem- bled and adapted to the measurement of quantities of specified kinds within specified intervals of values. Measuring instrument A device or combination of devices designed for measurement of quantities. Measuring transducer Device that provides at its output a quantity having a determined relation to the quantity at its input. Metrology The science of measurement. National (measurement) standard Standard recognized by a national decision to serve, in a country, as the basis for assigning values to other standards of the quantity concerned. Nominal range Range of indications obtainable with a particular setting of the controls of a measuring instrument [VIM 5.1]. Nominal value Rounded or approximate value of a characteristic of a measuring instru- ment that provides a guide to its use [VIM 5.3]. Precision The closeness of agreement between independent test results obtained under stipulated conditions [ISO 5725]. Quality Relates to all the characteristics that meet an expressed or implied need. Reference Accepted value that serves as an agreed-on reference for comparison, and which is derived from a theoretical or established value, based upon scientific princi- ples, or from an assigned or certified value, based upon experimental work of some national or international organization, or from a consensus or certified value based upon collaborative experimental work under the auspices of a scientific or engi- neering group. When these are not available, the reference value is taken to be the expectation of the measurable quantity. Reference conditions Conditions of use prescribed for testing the performance of a mea- suring instrument or for intercomparison of results of measurements [VIM 5.6]. 522 E. GLOSSARIES AND ACRONYMS Relative error Error of measurement divided by a true value of the measurand [VIM 3.12]. Repeatability Precision under repeatability conditions. Repeatability conditions Conditions where independent test results are obtained with the same method on identical test items in the same laboratory by the same operator using the same equipment within short intervals of time [ISO 5725]. Reproducibility Precision under reproducibility conditions. Reproducibility conditions Conditions where test results are obtained with the same method on identical test items in different laboratories with different operators using different equipment. Resolution Smallest change of measured quantity which changes the indication of an measuring instrument. Result of a measurement Value attributed to a measurand, obtained by measurement [VIM 3.1]. Response characteristic Relationship between a stimulus and the corresponding response, for defined conditions [VIM 5.9]. Response time Time interval between the instant when a stimulus is subjected to a spec- ified abrupt change and the instant when the response reaches and remains within specified limits around its final steady value [VIM 5.17]. Sensitivity Change in the response of a measuring instrument divided by the correspond- ing change in the stimulus. Sensor Element of a measuring system that is directly affected by the phenomenon, body, or substance carrying the quantity to be measured. Note in some fields the term ’detector is used for this concept. Span Modulus of the difference between the two limits of a nominal range [VIM 5.2]. Stability Refers to the ability of a measuring instrument to maintain constant its metro- logical characteristics with time. Standard, national Standard recognized by a national decision to serve, in a country, as the basis for assigning values to other standards of the quantity concerned (see National standard).
Recommended publications
  • University of Iowa Instruments in Space
    University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar.
    [Show full text]
  • A Comparison Study on Thermal Control Techniques for a Nanosatellite Carrying Infrared Science Instrument
    ICES-2020-15 A comparison study on thermal control techniques for a nanosatellite carrying infrared science instrument Shanmugasundaram Selvadurai1, Amal Chandran2, Sunil C Joshi3 and Teo Hang Tong Edwin 4 Nanyang Technological University, Singapore, 639798 David Valentini5 Thales Alenia Space, Cannes, 06150, France Friedhelm Olschewski6 University of Wuppertal, 42119 Wuppertal, Germany Based on current technological advancements and forecasts, nanosatellites will be used for both scientific and defense applications leveraging advantages on both development cost and development lifecycle. As nanosatellites become more capable, there is an increase in demand for high power applications which makes the missions complex from implementing a proper thermal control system (TCS) to dissipate the huge waste heat generated. One of the applications for nanosatellites is advanced infrared imaging for both scientific and military applications. ARCADE (Atmospheric coupling and Dynamics Explorer), a 27U satellite is being developed by Satellite Research Centre (SaRC) at Nanyang Technological University (NTU) for scientific objectives. The main payload AtmoLITE needs a detector cool down at -30°C and to meet this requirement, an appropriate classical TCS is chosen and described in this paper. Nanosatellites carrying infrared, cryogenic or other scientific instruments that need active cooling, should be equipped with a proper TCS within the highly constrained available volume. Another objective of this study is to compare the existing TCS for nanosatellites and adopt a suitable and efficient TCS for a scientific nanosatellite mission carrying a generic science instrument that needs an active cooling of up to 95K. TCS using Heat pipes (HP), single-phase mechanically pumped fluid loop (SMPFL), and two-phase mechanically pumped fluid loop systems (2ΦMPFL) have been extensively used only by larger satellites.
    [Show full text]
  • Cubesat-Based Science Missions for Geospace and Atmospheric Research
    National Aeronautics and Space Administration NATIONAL SCIENCE FOUNDATION (NSF) CUBESAT-BASED SCIENCE MISSIONS FOR GEOSPACE AND ATMOSPHERIC RESEARCH annual report October 2013 www.nasa.gov www.nsf.gov LETTERS OF SUPPORT 3 CONTACTS 5 NSF PROGRAM OBJECTIVES 6 GSFC WFF OBJECTIVES 8 2013 AND PRIOR PROJECTS 11 Radio Aurora Explorer (RAX) 12 Project Description 12 Scientific Accomplishments 14 Technology 14 Education 14 Publications 15 Contents Colorado Student Space Weather Experiment (CSSWE) 17 Project Description 17 Scientific Accomplishments 17 Technology 18 Education 18 Publications 19 Data Archive 19 Dynamic Ionosphere CubeSat Experiment (DICE) 20 Project Description 20 Scientific Accomplishments 20 Technology 21 Education 22 Publications 23 Data Archive 24 Firefly and FireStation 26 Project Description 26 Scientific Accomplishments 26 Technology 27 Education 28 Student Profiles 30 Publications 31 Cubesat for Ions, Neutrals, Electrons and MAgnetic fields (CINEMA) 32 Project Description 32 Scientific Accomplishments 32 Technology 33 Education 33 Focused Investigations of Relativistic Electron Burst, Intensity, Range, and Dynamics (FIREBIRD) 34 Project Description 34 Scientific Accomplishments 34 Education 34 2014 PROJECTS 35 Oxygen Photometry of the Atmospheric Limb (OPAL) 36 Project Description 36 Planned Scientific Accomplishments 36 Planned Technology 36 Planned Education 37 (NSF) CUBESAT-BASED SCIENCE MISSIONS FOR GEOSPACE AND ATMOSPHERIC RESEARCH [ 1 QB50/QBUS 38 Project Description 38 Planned Scientific Accomplishments 38 Planned
    [Show full text]
  • Notice Should the Sun Become Unusually Exciting Plasma Instabilities by the Motion of the Active
    N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE _4^ M SOLAR TERREST RIA L PROGRAMS A. Five-Year Plan (NASA -TM- 82351) SOLAR TERRESTRIAL PROGRA MS; N81 -23992 A FIVE YEAR PLAN (NASA) 99 P HC A05/MF A01 CSCL 03B Unclas G3/92 24081 August 1978 ANN I ^ ^ Solar Terl &;;rraf Prugram5 Qtfic;e ~ `\^ Oft/ce of e Selanco,5 \ National A prcnautres and Space Administration ^• p;^f1 SOLAR TERRESTRIAL PROGRAMS A Five-Year Plan Prepared by 13,1-vd P. Stern Laboratory for Extraterrestrial Physiscs Goddard Space Flight Center, Greenbelt, Md. Solar Terrestrial Division Office of Space Sciences National Aeronautics and Space Administration "Perhaps the strongest area that we face now is the area of solar terrestrial interaction research, where we are still investigating it in a basic science sense: Clow doe the Sun work? What are all these cycles about? What do they have to .Jo with the Sun's magnetic field? Is the Sun a dynamo? What is happening to drive it in an energetic way? Why is it a, variable star to the extent to which it is variable, which is not very much, but enough to be troublesome to us? And what does all that mean in terms of structure? How does the Sun's radiation, either in a photon sense or a particle sense, the solar wind, affect the environment of the Earth, and does it have anything to do with the dynamics of the atmosphere? We have conic at that over centuries, in a sense, as a scientific problem, and we are working it as part of space science, and thinking of a sequence of missions in terms of space science.
    [Show full text]
  • Initial Survey of the Wave Distribution Functions for Plasmaspheric Hiss
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 96, NO. All, PAGES 19,469-19,489, NOVEMBER 1, 1991 InitialSurvey of the Wave Distribution Functions for PlasmasphericHiss Observedby ISEE I L. R. O. S•o•s¾, • F . Lsrsvvgs, 2 M . PARROT,2 L . CAm6, • AND R. R. ANDERSON4 MulticomponentELF/VLF wavedata from the ISEE 1 satellitehave been analyzed with the aim of identifying the generationmechanism of plasmaspherichiss, and especiallyof determining whether it involveswave propagationon cyclictrajectories. The data were taken from four passes of the satellite, of which two were close to the geomagneticequatorial plane and two were farther from it; all four occurred during magnetically quiet periods. The principal method of analysis was calculation of the wave distribution functions. The waves appear to have been generated over a wide range of altitudes within the plasmasphere,and most, though not all, of them were propagating obliquely with respect to the Earth's magnetic field. On one of the passes near the equator, some wave energy was observed at small wave normal angles, and these waves may have been propagating on cyclic trajectories. Even here, however, obliquely propagating waves werepredominant, a finding that is difficultto reconcilewith the classicalquasi-linear generation mech•sm or its variants. The conclusion is that another mechanism, probably nonlinear, must have been generating most of the hiss observedon these four passes. 1. INTRODUCTION mals parallelto the field on the average[Smith et al., 1960; Plasmaspheric hiss is a broad-band and
    [Show full text]
  • An Overview of the Space Physics Data Facility (SPDF) in the Context of “Big Data”
    An Overview of the Space Physics Data Facility (SPDF) in the Context of “Big Data” Bob McGuire, SPDF Project Scientist Heliophysics Science Division (Code 670) NASA Goddard Space Flight Center Presented to the Big Data Task Force, June 29, 2016 Topics • As an active Final Archive, what is SPDF? – Scope, Responsibilities and Major Elements • Current Data • Future Plans and BDTF Questions REFERENCE URL: http://spdf.gsfc.nasa.gov 8/3/16 2:33 PM 2 SPDF in the Heliophysics Science Data Management Policy • One of two (active) Final Archives in Heliophysics – Ensure the long-term preservation and ongoing (online) access to NASA heliophysics science data • Serve and preserve data with metadata / software • Understand past / present / future mission data status • NSSDC is continuing limited recovery of older but useful legacy data from media – Data served via FTP/HTTP, via user web i/f, via webservices – SPDF focus is non-solar missions and data • Heliophysics Data Environment (HpDE) critical infrastructure – Heliophysics-wide dataset inventory (VSPO->HDP) – APIs (e.g. webservices) into SPDF system capabilities and data • Center of Excellence for science-enabling data standards and for science-enabling data services 8/3/16 2:33 PM 3 SPDF Services • Emphasis on multi-instrument, multi-mission science (1) Specific mission/instrument data in context of other missions/data (2) Specific mission/instrument data as enriching context for other data (3) Ancillary services & software (orbits, data standards, special products) • Specific services include
    [Show full text]
  • THEMIS ESA First Science Results and Performance Issues
    Space Sci Rev DOI 10.1007/s11214-008-9433-1 THEMIS ESA First Science Results and Performance Issues J.P. McFadden · C.W. Carlson · D. Larson · J. Bonnell · F. Mozer · V. Angelopoulos · K.-H. Glassmeier · U. Auster Received: 5 April 2008 / Accepted: 25 August 2008 © Springer Science+Business Media B.V. 2008 Abstract Early observations by the THEMIS ESA plasma instrument have revealed new details of the dayside magnetosphere. As an introduction to THEMIS plasma data, this pa- per presents observations of plasmaspheric plumes, ionospheric ion outflows, field line reso- nances, structure at the low latitude boundary layer, flux transfer events at the magnetopause, and wave and particle interactions at the bow shock. These observations demonstrate the ca- pabilities of the plasma sensors and the synergy of its measurements with the other THEMIS experiments. In addition, the paper includes discussions of various performance issues with the ESA instrument such as sources of sensor background, measurement limitations, and data formatting problems. These initial results demonstrate successful achievement of all measurement objectives for the plasma instrument. Keywords THEMIS · Magnetosphere · Magnetopause · Bow shock · Instrument performance PACS 94.80.+g · 06.20.Fb · 94.30.C- · 94.05.-a · 07.87.+v 1 Introduction The THEMIS mission provides the first multi-satellite measurements of the dayside mag- netosphere, magnetopause and bow shock utilizing a string of pearls orbit near the ecliptic plane (Angelopoulos 2008). During a 7 month coast phase, the instruments were commis- sioned and cross-calibrated while spacecraft separations were adjusted from a few hundred J.P. McFadden () · C.W. Carlson · D.
    [Show full text]
  • ESA Space Weather STUDY Alcatel Consortium
    ESA Space Weather STUDY Alcatel Consortium SPACE Weather Parameters WP 2100 Version V2.2 1 Aout 2001 C. Lathuillere, J. Lilensten, M. Menvielle With the contributions of T. Amari, A. Aylward, D. Boscher, P. Cargill and S.M. Radicella 1 2 1 INTRODUCTION........................................................................................................................................ 5 2 THE MODELS............................................................................................................................................. 6 2.1 THE SUN 6 2.1.1 Reconstruction and study of the active region static structures 7 2.1.2 Evolution of the magnetic configurations 9 2.2 THE INTERPLANETARY MEDIUM 11 2.3 THE MAGNETOSPHERE 13 2.3.1 Global magnetosphere modelling 14 2.3.2 Specific models 16 2.4 THE IONOSPHERE-THERMOSPHERE SYSTEM 20 2.4.1 Empirical and semi-empirical Models 21 2.4.2 Physics-based models 23 2.4.3 Ionospheric profilers 23 2.4.4 Convection electric field and auroral precipitation models 25 2.4.5 EUV/UV models for aeronomy 26 2.5 METEOROIDS AND SPACE DEBRIS 27 2.5.1 Space debris models 27 2.5.2 Meteoroids models 29 3 THE PARAMETERS ................................................................................................................................ 31 3.1 THE SUN 35 3.2 THE INTERPLANETARY MEDIUM 35 3.3 THE MAGNETOSPHERE 35 3.3.1 The radiation belts 36 3.4 THE IONOSPHERE-THERMOSPHERE SYSTEM 36 4 THE OBSERVATIONS ...........................................................................................................................
    [Show full text]
  • For Low Earth Orbit Missions N
    A Wide Field Auroral Imager (WFAI) for low Earth orbit missions N. P. Bannister, E. J. Bunce, S. W. H. Cowley, R. Fairbend, G. W. Fraser, F. J. Hamilton, J. S. Lapington, J. E. Lees, M. Lester, S. E. Milan, et al. To cite this version: N. P. Bannister, E. J. Bunce, S. W. H. Cowley, R. Fairbend, G. W. Fraser, et al.. A Wide Field Auroral Imager (WFAI) for low Earth orbit missions. Annales Geophysicae, European Geosciences Union, 2007, 25 (2), pp.519-532. hal-00330118 HAL Id: hal-00330118 https://hal.archives-ouvertes.fr/hal-00330118 Submitted on 8 Mar 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. Geophys., 25, 519–532, 2007 www.ann-geophys.net/25/519/2007/ Annales © European Geosciences Union 2007 Geophysicae A Wide Field Auroral Imager (WFAI) for low Earth orbit missions N. P. Bannister1, E. J. Bunce1, S. W. H. Cowley1, R. Fairbend2, G. W. Fraser1, F. J. Hamilton1, J. S. Lapington1, J. E. Lees1, M. Lester1, S. E. Milan1, J. F. Pearson1, G. J. Price1, and R. Willingale1 1Department of Physics & Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK 2Photonis SAS, Avenue Roger Roncier, Brive, 19410 Cedex, France Received: 6 January 2006 – Revised: 12 December 2006 – Accepted: 22 January 2007 – Published: 8 March 2007 Abstract.
    [Show full text]
  • Ionospheric Simulation Compared with Dynamics Explorer Obselvations for November 22, 1981
    JOUR NAL OF GEOPHYSICAL RESEARCH . VOL. 97, NO. A2 PAGES 1245- 1256 FEBRUARY 1, 1992 Ionospheric Simulation Compared With Dynamics Explorer ObselVations for November 22, 1981 J. I. SOJKA,) M. BOWLINE,) R. W. SCHUNK,) J. D. CRAVEN,2 L. A. FRANK,2 J. R. SHARBER/ J. D. WINNINGHAM,l AND L. H. BRACE· Dynamics Explorer (DE) 2 electric field and particle data have been used to constrain the inputs of a tirne­ dependent ionospheric model (TDIM) for a simulation of the ionosphere on November 22, 1981. The simulated densities have then been critically compared with the DE 2 electron density observations. This comparison uncovers a model-data disagreement in the morning sector trough, generally good agreement of the background density in the polar cap and evening sector trough, and a difficulty in modelling the observed polar F layer patches. From this comparison, the consequences of structure in the electric field and precipitation inputs can be seen. This is further highlighted during a substonn period for which DE 1 auroral images were available. Using these images, a revised dynamic particle precipitation pattem was used in the ionospheric model; the resulting densities were different from the original simulation. With this revised dynamic precipitation model. improved density agreement is obtained in the auroral/polar regions where the plasma convection is not stagnanL However, the dynamic study also reveals a difficulty of matching dynamic auroral patterns with static empirical convection patterns. In this case, the matching of the models produced intense auroral precipitation in a stagnation region, which, in tum,led to exceedingly large '!DIM densities.
    [Show full text]
  • Neutral Winds in the Lower Thermosphere from Dynamics Explorer 2
    GEOPHYSICALRESEARCH LETTERS, VOL. 19, NO. 11, PAGES1093-1096, JUNE 2, 1992 NEUTRAL WINDS IN THE LOWER THERMOSPHERE FROM DYNAMICS EXPLORER 2 T.L.Killeenlj, T.. B.Fuller-RowellNardi 1, P.•I. o, andPurcell D. Re,1,esR•G. Roble 2, Abstract. Doppler line profile measurementsof the OI severalground-based optical measurements of winds using the •557.7nm "greenline" emission,made by the Fabry-Perot lower greenline •,557.7 nm emissionat ~97 km [Coggeret interferometeron DynamicsExplorer 2, haveprovided altitude a!., 1985; Wiens et al., 1988; Lloyd et al., 1990] and profilesof the meridionalcomponent of the lower- individual OH emission lines at-86 km [Hernandez and thermosphericneutral wind. The windinversion technique of Smith, 1984; Rees et al., 1990]. The ground-based Nardi[1991] has been used to extractthe neutral wind profiles measurements made at auroral latitudes have indicated that the fromthe line-of-sight measurements.Individual •.557.7 nm dynamicalstructure is controlledby upward-propagatingfides Dopplerline profiles and inverted volume-emission-rate and and gravity waves [e.g., Manson et al., 1988], and that neutral-wind profiles are presented. Neutral wind magnetosphericeffects are alsosignificant at times[Cogget et measurementsfrom the-120 km altitude level, obtained on al., 1985]. There have been no lower-thermosphericwind multipleorbital passes over the summerhemisphere polar measurementsfrom deepwithin the geomagneticpolar cap. region,have been merged to producea synthesizedaveraged The DE-2 Fabry-Perot interferometer,FPI [Hays et al., "vector"wind field in geomagneticcoordinates. The wind 1981], was designedto measureprimarily the meridional patternexhibits a regionof anticyclonicvorticity in thedaytime componentof theupper-thermospheric neutral wind usingthe sectorof the magneticpolar cap. Averagedwinds of-300 OI 3•630.0nm emission,peaIcing at -240 km.
    [Show full text]
  • Artificial Earth Satellites Designed and Fabricated by the Johns Hopkins University Applied Physics Laboratory
    SDO-1600 lCL 7 (Revised) tQ SARTIFICIAL EARTH SATELLITES DESIGNED AND FABRICATED 9 by I THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY I __CD C-:) PREPARED i LJJby THE SPACE DEPARTMENT -ow w - THE JOHNS HOPKINS UNIVERSITY 0 APPLIED PHYSICS LABORATORY Johns Hopkins Road, Laurel, Maryland 20810 Operating under Contract N00024 78-C-5384 with the Department of the Navv Approved for public release; distributiort uni mited. 7 9 0 3 2 2, 0 74 Unclassified PLEASE FOLD BACK IF NOT NEEDED : FOR BIBLIOGRAPHIC PURPOSES SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE ER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER 4._ TITLE (and, TYR- ,E, . COVERED / Artificial Earth Satellites Designed and Fabricated / Status Xept* L959 to date by The Johns Hopkins University Applied Physics Laboratory. U*. t APL/JHU SDO-1600 7. AUTHOR(s) 8. CONTRACTOR GRANT NUMBER($) Space Department N00024-=78-C-5384 9. PERFORMING ORGANIZATION NAME & ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK AREA & WORK UNIT NUMBERS The Johns Hopkins University Applied Physics Laboratory Task Y22 Johns Hopkins Road Laurel, Maryland 20810 11.CONTROLLING OFFICE NAME & ADDRESS 12.R Naval Plant Representative Office Julp 078 Johns Hopkins Road 13. NUMBER OF PAGES MyLaurel,rland 20810 235 14. MONITORING AGENCY NAME & ADDRESS , -. 15. SECURITY CLASS. (of this report) Naval Plant Representative Office j Unclassified - Johns Hopkins Road f" . Laurel, Maryland 20810 r ' 15a. SCHEDULEDECLASSIFICATION/DOWNGRADING 16 DISTRIBUTION STATEMENT (of th,s Report) Approved for public release; distribution N/A unlimited 17. DISTRIBUTION STATEMENT (of the abstrat entered in Block 20. of tifferent from Report) N/A 18.
    [Show full text]