The Complex Relationship Between MITF and the Immune System: a Melanoma Immunotherapy (Response) Factor? Robert Ballotti, Yann Cheli, Corine Bertolotto
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer
Published OnlineFirst October 26, 2016; DOI: 10.1158/2159-8290.CD-15-1263 RESEARCH ARTICLE The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer Jennifer L. Bishop1, Daksh Thaper1,2, Sepideh Vahid1,2, Alastair Davies1, Kirsi Ketola1, Hidetoshi Kuruma1, Randy Jama1, Ka Mun Nip1,2, Arkhjamil Angeles1, Fraser Johnson1, Alexander W. Wyatt1,2, Ladan Fazli1,2, Martin E. Gleave1,2, Dong Lin1, Mark A. Rubin3, Colin C. Collins1,2, Yuzhuo Wang1,2, Himisha Beltran3, and Amina Zoubeidi1,2 ABSTRACT Mechanisms controlling the emergence of lethal neuroendocrine prostate cancer (NEPC), especially those that are consequences of treatment-induced suppression of the androgen receptor (AR), remain elusive. Using a unique model of AR pathway inhibitor–resistant prostate cancer, we identified AR-dependent control of the neural transcription factor BRN2 (encoded by POU3F2) as a major driver of NEPC and aggressive tumor growth, both in vitro and in vivo. Mecha- nistic studies showed that AR directly suppresses BRN2 transcription, which is required for NEPC, and BRN2-dependent regulation of the NEPC marker SOX2. Underscoring its inverse correlation with clas- sic AR activity in clinical samples, BRN2 expression was highest in NEPC tumors and was significantly increased in castration-resistant prostate cancer compared with adenocarcinoma, especially in patients with low serum PSA. These data reveal a novel mechanism of AR-dependent control of NEPC and suggest that targeting BRN2 is a strategy to treat or prevent neuroendocrine differentiation in prostate tumors. SIGNIFICANCE: Understanding the contribution of the AR to the emergence of highly lethal, drug- resistant NEPC is critical for better implementation of current standard-of-care therapies and novel drug design. -
Dog Coat Colour Genetics: a Review Date Published Online: 31/08/2020; 1,2 1 1 3 Rashid Saif *, Ali Iftekhar , Fatima Asif , Mohammad Suliman Alghanem
www.als-journal.com/ ISSN 2310-5380/ August 2020 Review Article Advancements in Life Sciences – International Quarterly Journal of Biological Sciences ARTICLE INFO Open Access Date Received: 02/05/2020; Date Revised: 20/08/2020; Dog Coat Colour Genetics: A Review Date Published Online: 31/08/2020; 1,2 1 1 3 Rashid Saif *, Ali Iftekhar , Fatima Asif , Mohammad Suliman Alghanem Authors’ Affiliation: 1. Institute of Abstract Biotechnology, Gulab Devi Educational anis lupus familiaris is one of the most beloved pet species with hundreds of world-wide recognized Complex, Lahore - Pakistan breeds, which can be differentiated from each other by specific morphological, behavioral and adoptive 2. Decode Genomics, traits. Morphological characteristics of dog breeds get more attention which can be defined mostly by 323-D, Town II, coat color and its texture, and considered to be incredibly lucrative traits in this valued species. Although Punjab University C Employees Housing the genetic foundation of coat color has been well stated in the literature, but still very little is known about the Scheme, Lahore - growth pattern, hair length and curly coat trait genes. Skin pigmentation is determined by eumelanin and Pakistan 3. Department of pheomelanin switching phenomenon which is under the control of Melanocortin 1 Receptor and Agouti Signaling Biology, Tabuk Protein genes. Genetic variations in the genes involved in pigmentation pathway provide basic understanding of University - Kingdom melanocortin physiology and evolutionary adaptation of this trait. So in this review, we highlighted, gathered and of Saudi Arabia comprehend the genetic mutations, associated and likely to be associated variants in the genes involved in the coat color and texture trait along with their phenotypes. -
Quantitative Modelling Explains Distinct STAT1 and STAT3
bioRxiv preprint doi: https://doi.org/10.1101/425868; this version posted September 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title Quantitative modelling explains distinct STAT1 and STAT3 activation dynamics in response to both IFNγ and IL-10 stimuli and predicts emergence of reciprocal signalling at the level of single cells. 1,2, 3 1 1 1 1 1 2 Sarma U , Maitreye M , Bhadange S , Nair A , Srivastava A , Saha B , Mukherjee D . 1: National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India. 2 : Corresponding author. [email protected] , [email protected] 3: Present address. Labs, Persistent Systems Limited, Pingala – Aryabhata, Erandwane, Pune, 411004 India. bioRxiv preprint doi: https://doi.org/10.1101/425868; this version posted September 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Cells use IFNγ-STAT1 and IL-10-STAT3 pathways primarily to elicit pro and anti-inflammatory responses, respectively. However, activation of STAT1 by IL-10 and STAT3 by IFNγ is also observed. The regulatory mechanisms controlling the amplitude and dynamics of both the STATs in response to these functionally opposing stimuli remains less understood. Here, our experiments at cell population level show distinct early signalling dynamics of both STAT1 and STAT3(S/1/3) in responses to IFNγ and IL-10 stimulation. -
IRF8 Regulates Gram-Negative Bacteria–Mediated NLRP3 Inflammasome Activation and Cell Death
IRF8 Regulates Gram-Negative Bacteria− Mediated NLRP3 Inflammasome Activation and Cell Death This information is current as Rajendra Karki, Ein Lee, Bhesh R. Sharma, Balaji Banoth of September 25, 2021. and Thirumala-Devi Kanneganti J Immunol published online 23 March 2020 http://www.jimmunol.org/content/early/2020/03/20/jimmun ol.1901508 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/03/20/jimmunol.190150 Material 8.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published March 23, 2020, doi:10.4049/jimmunol.1901508 The Journal of Immunology IRF8 Regulates Gram-Negative Bacteria–Mediated NLRP3 Inflammasome Activation and Cell Death Rajendra Karki,*,1 Ein Lee,*,†,1 Bhesh R. Sharma,*,1 Balaji Banoth,* and Thirumala-Devi Kanneganti* Inflammasomes are intracellular signaling complexes that are assembled in response to a variety of pathogenic or physiologic stimuli to initiate inflammatory responses. -
Reduced Expression of IL-12 Receptor B2 and IL-18 Receptor a Genes in Natural Killer Cells and Macrophages Derived from B6-Mi/Mi Mice
Laboratory Investigation (2005) 85, 146–153 & 2005 USCAP, Inc All rights reserved 0023-6837/05 $30.00 www.laboratoryinvestigation.org Reduced expression of IL-12 receptor b2 and IL-18 receptor a genes in natural killer cells and macrophages derived from B6-mi/mi mice Tatsuki R Kataoka1,2, Nobuyasu Komazawa3, Keisuke Oboki1, Eiichi Morii1 and Toru Nakano1,4 1Department of Pathology, Medical School/Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan; 2Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan; 3Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan and 4Department of Molecular Cell Biology, Research Institute for Microbial Disease, Osaka University, Osaka, Japan The mi transcriptional factor (MITF) is a basic helix–loop–helix leucine zipper-type transcriptional factor. The mi mutant allele encodes an abnormal MITF, in which one out of four consecutive arginines is deleted in the basic domain. The VGA-9-tg (tg) allele is another mutant allele and considered to be a null mutant allele. C57BL/6 (B6)- mi/mi mice showed abnormal phenotypes of natural killer (NK) cells and macrophages, whereas B6-tg/tg mice did not. The expression levels of the genes for the interleukin-12 receptor (IL-12R) b2 and IL-18Ra were reduced in both the NK cells and macrophages of B6-mi/mi mice, while the expression levels of the corresponding genes in B6-tg/tg mice were unaffected. The B6-mi/mi NK cells and B6-mi/mi macrophages showed impaired responses to stimulation with IL-12, IL-18, and IL-12 plus IL-18 stimulation. -
STAT1 Signalling Predicts Response to Chemotherapy in Oestrogen Receptor-Negative Breast Cancer
FULL PAPER British Journal of Cancer (2016) 114, 177–187 | doi: 10.1038/bjc.2015.398 Keywords: STAT1; ER-negative breast cancer; IFN; chemotherapy; predictive signature Activation of IFN/STAT1 signalling predicts response to chemotherapy in oestrogen receptor-negative breast cancer Marie-Emmanuelle Legrier1, Ivan Bie` che2, Julie Gaston1, Arnaud Beurdeley1, Vanessa Yvonnet1, Olivier De´as1, Aure´ lie Thuleau3, Sophie Chaˆ teau-Joubert4, Jean-Luc Servely4,5, Sophie Vacher2, Myriam Lassalle1, Ste´ phane Depil6, Gordon C Tucker6, Jean-Jacques Fontaine4, Marie-France Poupon1, Sergio Roman-Roman3, Jean-Gabriel Judde1, Didier Decaudin3,7, Stefano Cairo*,1,8,9 and Elisabetta Marangoni*,3,9 1XenTech, 4 rue Pierre Fontaine, Evry 91000, France; 2Genetics Department, Hospital, Institut Curie, 26 rue d’Ulm, Paris 75005, France; 3Translational Research Department, Institut Curie, 26 rue d’Ulm, Paris 75005, France; 4Department of Pathology, Veterinary School of Alfort, Maisons-Alfort 94704, France; 5INRA, Phase Department, Nouzilly, France; 6Institut de Recherches Servier, PIT Oncology, Croissy-sur-Seine 78290, France; 7Medical Oncology Department, Institut Curie, 26 rue d’Ulm, Paris 75005, France and 8University of Ferrara, LTTA Centre, Department of Morphology, Surgery and Experimental Medicine, Ferrara, Italy Background: Oestrogen receptor-negative (ER À ) breast cancer is intrinsically sensitive to chemotherapy. However, tumour response is often incomplete, and relapse occurs with high frequency. The aim of this work was to analyse the molecular characteristics of residual tumours and early response to chemotherapy in patient-derived xenografts (PDXs) of breast cancer. Methods: Gene and protein expression profiles were analysed in a panel of ER À breast cancer PDXs before and after chemotherapy treatment. -
Gpnmb in Inflammatory and Metabolic Diseases
Functional characterization of Gpnmb in inflammatory and metabolic diseases Dissertation zur Erlangung des akademischen Grades D octor rerum naturalium (Dr. rer. nat.) eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M.Sc., Bernadette Nickl Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät Prof. Dr. Bernhard Grimm Gutachter: Prof. Dr. Michael Bader Prof. Dr. Karl Stangl Prof. Dr. Thomas Sommer Tag der mündlichen Prüfung: 28. Februar 2020 For Sayeeda Summary Summary In 2018, the World Health Organization reported for the first time that “Overweight and obesity are linked to more deaths worldwide than underweight”A. Obesity increases the risk for the development of diabetes, atherosclerosis and cardiovascular diseases. Those metabolic diseases are associated with inflammation and the expression of glycoprotein nonmetastatic melanoma protein b (Gpnmb), a transmembrane protein that is expressed by macrophages and dendritic cells. We studied the role of Gpnmb in genetically- and diet-induced atherosclerosis as well as diet-induced obesity in Gpnmb-knockout and respective wildtype control mice. To this purpose, a mouse deficient in Gpnmb was created using Crispr-Cas9 technology. Body weight and blood lipid parameters remained unaltered in both diseases. Gpnmb was strongly expressed in atherosclerotic lesion-associated macrophages. Nevertheless, the absence of Gpnmb did not affect the development of aortic lesion size. However, macrophage and inflammation markers in epididymal fat tissue were increased in Gpnmb-deficient mice. In comparison to atherosclerosis, the absence of Gpnmb elicited stronger effects in obesity. For the first time, we observed a positive influence of Gpnmb on insulin and glucose plasma levels. -
BACE1 Inhibitor Drugs in Clinical Trials for Alzheimer's Disease
Vassar Alzheimer's Research & Therapy (2014) 6:89 DOI 10.1186/s13195-014-0089-7 REVIEW BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease Robert Vassar Abstract β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the β-secretase enzyme required for the production of the neurotoxic β-amyloid (Aβ) peptide that is widely considered to have a crucial early role in the etiology of Alzheimer’s disease (AD). As a result, BACE1 has emerged as a prime drug target for reducing the levels of Aβ in the AD brain, and the development of BACE1 inhibitors as therapeutic agents is being vigorously pursued. It has proven difficult for the pharmaceutical industry to design BACE1 inhibitor drugs that pass the blood–brain barrier, however this challenge has recently been met and BACE1 inhibitors are now in human clinical trials to test for safety and efficacy in AD patients and individuals with pre-symptomatic AD. Initial results suggest that some of these BACE1 inhibitor drugs are well tolerated, although others have dropped out because of toxicity and it is still too early to know whether any will be effective for the prevention or treatment of AD. Additionally, based on newly identified BACE1 substrates and phenotypes of mice that lack BACE1, concerns have emerged about potential mechanism-based side effects of BACE1 inhibitor drugs with chronic administration. It is hoped that a therapeutic window can be achieved that balances safety and efficacy. This review summarizes the current state of progress in the development of BACE1 inhibitor drugs and the evaluation of their therapeutic potential for AD. -
Estrogen Receptors and Ubiquitin Proteasome System: Mutual Regulation
biomolecules Review Estrogen Receptors and Ubiquitin Proteasome System: Mutual Regulation Irina V. Kondakova 1 , Elena E. Shashova 1, Evgenia A. Sidenko 1, Tatiana M. Astakhova 2, Liudmila A. Zakharova 2 and Natalia P. Sharova 2,* 1 Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, 634009 Tomsk, Russia; [email protected] (I.V.K.); [email protected] (E.E.S.); [email protected] (E.A.S.) 2 Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; [email protected] (T.M.A.); [email protected] (L.A.Z.) * Correspondence: [email protected]; Tel.: +7-499-135-7674; Fax: +7-499-135-3322 Received: 16 February 2020; Accepted: 25 March 2020; Published: 26 March 2020 Abstract: This review provides information on the structure of estrogen receptors (ERs), their localization and functions in mammalian cells. Additionally, the structure of proteasomes and mechanisms of protein ubiquitination and cleavage are described. According to the modern concept, the ubiquitin proteasome system (UPS) is involved in the regulation of the activity of ERs in several ways. First, UPS performs the ubiquitination of ERs with a change in their functional activity. Second, UPS degrades ERs and their transcriptional regulators. Third, UPS affects the expression of ER genes. In addition, the opportunity of the regulation of proteasome functioning by ERs—in particular, the expression of immune proteasomes—is discussed. Understanding the complex mechanisms underlying the regulation of ERs and proteasomes has great prospects for the development of new therapeutic agents that can make a significant contribution to the treatment of diseases associated with the impaired function of these biomolecules. -
A Dual Cis-Regulatory Code Links IRF8 to Constitutive and Inducible Gene Expression in Macrophages
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages Alessandra Mancino,1,3 Alberto Termanini,1,3 Iros Barozzi,1 Serena Ghisletti,1 Renato Ostuni,1 Elena Prosperini,1 Keiko Ozato,2 and Gioacchino Natoli1 1Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy; 2Laboratory of Molecular Growth Regulation, Genomics of Differentiation Program, National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland 20892, USA The transcription factor (TF) interferon regulatory factor 8 (IRF8) controls both developmental and inflammatory stimulus-inducible genes in macrophages, but the mechanisms underlying these two different functions are largely unknown. One possibility is that these different roles are linked to the ability of IRF8 to bind alternative DNA sequences. We found that IRF8 is recruited to distinct sets of DNA consensus sequences before and after lipopolysaccharide (LPS) stimulation. In resting cells, IRF8 was mainly bound to composite sites together with the master regulator of myeloid development PU.1. Basal IRF8–PU.1 binding maintained the expression of a broad panel of genes essential for macrophage functions (such as microbial recognition and response to purines) and contributed to basal expression of many LPS-inducible genes. After LPS stimulation, increased expression of IRF8, other IRFs, and AP-1 family TFs enabled IRF8 binding to thousands of additional regions containing low-affinity multimerized IRF sites and composite IRF–AP-1 sites, which were not premarked by PU.1 and did not contribute to the basal IRF8 cistrome. -
Amyloid Aggregates Accumulate in Melanoma Metastasis Driving YAP
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941906; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Amyloid aggregates accumulate in melanoma metastasis driving YAP mediated tumor progression Vittoria Matafora1, Francesco Farris1, Umberto Restuccia1, 4, Simone Tamburri1,5, Giuseppe Martano1, Clara Bernardelli1,6, Federica Pisati1,2, Francesca Casagrande1, Luca Lazzari1, Silvia Marsoni1, Emanuela Bonoldi 3 and Angela Bachi1* 1IFOM- FIRC Institute of Molecular Oncology, 20139 Milan, Italy. 2 Cogentech SRL Benefit Corporation, 20139 Milan, Italy. 3 Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy. 4 present address: ADIENNE Pharma & Biotech, 20867 Caponago (MB) – Italy. 5 present address: IEO-European Institute of Oncology IRCCS, Department of Experimental Oncology, 20139 Milan, Italy. 6 present address: Fondazione Politecnico di Milano, 20133 Milan, Italy. * Corresponding author: Angela Bachi IFOM- FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy Phone: +3902574303873 Mail: [email protected] Running Title: Amyloids activate YAP in melanoma Keywords: amyloid; BACE; drug sensitivity; mechanosignalling; metastasis. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941906; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Melanoma progression is generally associated to increased Yes-associated protein (YAP) mediated transcription. Actually, mechanical signals from the extracellular matrix are sensed by YAP, which activates proliferative genes expression, promoting melanoma progression and drug resistance. -
Microarray Analysis of Novel Genes Involved in HSV- 2 Infection
Microarray analysis of novel genes involved in HSV- 2 infection Hao Zhang Nanjing University of Chinese Medicine Tao Liu ( [email protected] ) Nanjing University of Chinese Medicine https://orcid.org/0000-0002-7654-2995 Research Article Keywords: HSV-2 infection,Microarray analysis,Histospecic gene expression Posted Date: May 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-517057/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Herpes simplex virus type 2 infects the body and becomes an incurable and recurring disease. The pathogenesis of HSV-2 infection is not completely clear. Methods: We analyze the GSE18527 dataset in the GEO database in this paper to obtain distinctively displayed genes(DDGs)in the total sequential RNA of the biopsies of normal and lesioned skin groups, healed skin and lesioned skin groups of genital herpes patients, respectively.The related data of 3 cases of normal skin group, 4 cases of lesioned group and 6 cases of healed group were analyzed.The histospecic gene analysis , functional enrichment and protein interaction network analysis of the differential genes were also performed, and the critical components were selected. Results: 40 up-regulated genes and 43 down-regulated genes were isolated by differential performance assay. Histospecic gene analysis of DDGs suggested that the most abundant system for gene expression was the skin, immune system and the nervous system.Through the construction of core gene combinations, protein interaction network analysis and selection of histospecic distribution genes, 17 associated genes were selected CXCL10,MX1,ISG15,IFIT1,IFIT3,IFIT2,OASL,ISG20,RSAD2,GBP1,IFI44L,DDX58,USP18,CXCL11,GBP5,GBP4 and CXCL9.The above genes are mainly located in the skin, immune system, nervous system and reproductive system.