Bacterial Microbiome of the Chigger Mite Leptotrombidium Imphalum Varies by Life Stage and Infection with the Scrub Typhus Pathogen Orientia Tsutsugamushi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zoology Addition to the Mite Fauna in Human Habitation from South
Volume : 5 | Issue : 7 | July 2016 • ISSN No 2277 - 8179 | IF : 3.508 | IC Value : 69.48 Original Research Paper Original Research Paper Volume : 5 | Issue : 7 | July 2016 • ISSN No 2277 - 8179 | IF : 3.508 | IC Value : 69.48 Zoology Addition To The Mite Fauna in Human KEYWORDS : Human habitation, Prostigmata, Mesostigmata, Astigmata, Habitation From South Bengal South Bengal Post Graduate Department of Zoology, Vidyasagar College, Salt Lake City, CL Ananya Das Block, Kolkata 700 091 Post Graduate Department of Zoology, Vidyasagar College, Salt Lake City, CL S.K. Gupta Block, Kolkata 700 091 Post Graduate Department of Zoology, Vidyasagar College, Salt Lake City, CL N. Debnath Block, Kolkata 700 091 ABSTRACT The present paper reports the occurrence of 111 species of mites belonging to 69 genera,27 families under 3 orders collected from a total of 40 samples representing 5 different habitats viz. stored products, house dust, bird nests, cattle sheds and roof gardens from 5 districts of South Bengal. Among the 5 habitats, cattle shed provided richest diversity both in respect of species and genera followed by stored product habitat and the minimum was bird nest which represented only 11 species. The family level diversity was also highest in case of cattle sheds followed by stored products and the minimum was in roof garden. There was not a single species which could be collected from all the 5 habitats though; of course, there was 1 species which represented 4 out of 5 habitats. Therefore, cattle sheds proved to be habitat showing highest diversity. The order Prostigmata represented highest number of species followed by Astigmata. -
What's Eating You? Chiggers
CLOSE ENCOUNTERS WITH THE ENVIRONMENT What’s Eating You? Chiggers Dirk M. Elston, MD higger is the common name for the 6-legged larval form of a trombiculid mite. The larvae C suck blood and tissue fluid and may feed on a variety of animal hosts including birds, reptiles, and small mammals. The mite is fairly indiscrimi- nate; human hosts will suffice when the usual host is unavailable. Chiggers also may be referred to as harvest bugs, harvest lice, harvest mites, jiggers, and redbugs (Figure 1). The term jigger also is used for the burrowing chigoe flea, Tunga penetrans. Chiggers belong to the family Trombiculidae, order Acari, class Arachnida; many species exist. Trombiculid mites are oviparous; they deposit their eggs on leaves, blades of grass, or the open ground. After several days, the egg case opens, but the mite remains in a quiescent prelarval stage. Figure 1. Chigger mite. After this prelarval stage, the small 6-legged larvae become active and search for a host. During this larval 6-legged stage, the mite typically is found attaches at sites of constriction caused by clothing, attached to the host. After a prolonged meal, the where its forward progress has been impeded. Penile larvae drop off. Then they mature through the and scrotal lesions are not uncommon and may be 8-legged free-living nymph and adult stages. mistaken for scabies infestation. Seasonal penile Chiggers can be found throughout the world. In swelling, pruritus, and dysuria in children is referred the United States, they are particularly abundant in to as summer penile syndrome. -
Leptotrombidium Deliense
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 56, No. 4: 313-324, August 2018 ▣ MINI REVIEW https://doi.org/10.3347/kjp.2018.56.4.313 Research Progress on Leptotrombidium deliense 1,2 1,2 1 Yan Lv , Xian-Guo Guo *, Dao-Chao Jin 1Institute of Entomology, Guizhou University, and the Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, P. R. China; 2Vector Laboratory, Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan Province 671000, P. R. China Abstract: This article reviews Leptotrombidium deliense, including its discovery and nomenclature, morphological features and identification, life cycle, ecology, relationship with diseases, chromosomes and artificial cultivation. The first record of L. deliense was early in 1922 by Walch. Under the genus Leptotrombidium, there are many sibling species similar to L. de- liense, which makes it difficult to differentiate L. deliense from another sibling chigger mites, for example, L. rubellum. The life cycle of the mite (L. deliense) includes 7 stages: egg, deutovum (or prelarva), larva, nymphochrysalis, nymph, ima- gochrysalis and adult. The mite has a wide geographical distribution with low host specificity, and it often appears in differ- ent regions and habitats and on many species of hosts. As a vector species of chigger mite, L. deliense is of great impor- tance in transmitting scrub typhus (tsutsugamushi disease) in many parts of the world, especially in tropical regions of Southeast Asia. The seasonal fluctuation of the mite population varies in different geographical regions. The mite has been successfully cultured in the laboratory, facilitating research on its chromosomes, biochemistry and molecular biology. -
Trobicúlidos Y Trombiculiasis En La Rioja
TESIS DOCTORAL Título Trobicúlidos y trombiculiasis en La Rioja Autor/es Paula Santibáñez Sáenz Director/es José Antonio Oteo Revuelta y Aránzazu Portillo Barrio Facultad Facultad de Ciencias, Estudios Agroalimentarios e Informática Titulación Departamento Agricultura y Alimentación Curso Académico 2014-2015 Trobicúlidos y trombiculiasis en La Rioja, tesis doctoral de Paula Santibáñez Sáenz, dirigida por José Antonio Oteo Revuelta y Aránzazu Portillo Barrio (publicada por la Universidad de La Rioja), se difunde bajo una Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Unported. Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los titulares del copyright. © El autor © Universidad de La Rioja, Servicio de Publicaciones, 2015 publicaciones.unirioja.es E-mail: [email protected] TESIS DOCTORAL Trombicúlidos y trombiculiasis en La Rioja Trombiculid mites and trombiculiasis in La Rioja Memoria presentada para aspirar al título de Doctor con la Mención de “Doctor Internacional” por la Universidad de La Rioja Paula Santibáñez Sáenz 2015 Don José Antonio Oteo Revuelta, Doctor en Medicina y Cirugía, y Jefe del Departamento de Enfermedades Infecciosas del Hospital San Pedro - Centro de Investigación Biomédica de La Rioja (CIBIR). Doña Aránzazu Portillo Barrio, Doctora en Ciencias Biológicas, y Responsable del Laboratorio de Patógenos Especiales del Departamento de Enfermedades Infecciosas del Centro de Investigación Biomédica de La Rioja (CIBIR). Por la presente declaran que: La memoria titulada “Trombicúlidos y Trombiculiasis en La Rioja”, que presenta Dña. Paula Santibáñez Sáenz, Licenciada en Ciencias Biológicas y en Bioquímica, ha sido realizada en el Centro de Investigación Biomédica de La Rioja (CIBIR) bajo su dirección y reúne las condiciones específicas para optar al grado de Doctor con la mención de “Doctor Internacional”. -
Identification of Trombiculid Chigger Mites Collected on Rodents from Southern Vietnam and Molecular Detection of Rickettsiaceae Pathogen
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 58, No. 4: 445-450, August 2020 ▣ ORIGINAL ARTICLE https://doi.org/10.3347/kjp.2020.58.4.445 Identification of Trombiculid Chigger Mites Collected on Rodents from Southern Vietnam and Molecular Detection of Rickettsiaceae Pathogen 1, 2, 1 3 4,5, 4,5, Minh Doan Binh †, Sinh Cao Truong †, Dong Le Thanh , Loi Cao Ba , Nam Le Van * , Binh Do Nhu * 1Ho Chi Minh Institute of Malariology-Parasitology and Entomology, Ho Chi Minh Vietnam; 2Vinh Medical University, Nghe An, Vietnam; 3National Institute of Malariology-Parasitology and Entomology, Ha Noi, Vietnam; 4Military Hospital 103, Ha Noi, Vietnam; 5Vietnam Military Medical University, Ha Noi, Vietnam Abstract: Trombiculid “chigger” mites (Acari) are ectoparasites that feed blood on rodents and another animals. A cross- sectional survey was conducted in 7 ecosystems of southern Vietnam from 2015 to 2016. Chigger mites were identified with morphological characteristics and assayed by polymerase chain reaction for detection of rickettsiaceae. Overall chigger infestation among rodents was 23.38%. The chigger index among infested rodents was 19.37 and a mean abun- dance of 4.61. A total of 2,770 chigger mites were identified belonging to 6 species, 3 genera, and 1 family, and pooled into 141 pools (10-20 chiggers per pool). Two pools (1.4%) of the chiggers were positive for Orientia tsutsugamushi. Rick- etsia spp. was not detected in any pools of chiggers. Further studies are needed including a larger number and diverse hosts, and environmental factors to assess scrub typhus. Key words: Oriental tsutsugamushi, Rickettsia sp., chigger mite, ectoparasite INTRODUCTION Orientia tsutsugamushi is a gram-negative bacteria and caus- ative agent of scrub typhus, is a vector-borne zoonotic disease Trombiculid mites (Acari: Trombiculidae) are ectoparasites with the potential of causing life-threatening febrile infection that are found in grasses and herbaceous vegetation. -
Relative Abundance of a Vector of Scrub Typhus, Leptotrombidium Sialkotense, in Southern Yunnan Province, China
ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 58, No. 2: 153-159, April 2020 ▣ ORIGINAL ARTICLE https://doi.org/10.3347/kjp.2020.58.2.153 Relative Abundance of a Vector of Scrub Typhus, Leptotrombidium sialkotense, in Southern Yunnan Province, China 1,2 1,2,3, 1 2 2 2 2 Yan Lv , Xian-Guo Guo *, Dao-Chao Jin , Wen-Yu Song , Rong Fan , Cheng-Fu Zhao , Zhi-Wei Zhang , Ke-Yu Mao2, Yun-Ji Zou2, Zhi-Hua Yang2 1Institute of Entomology, Guizhou University, and the Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Guiyang 550025, China; 2Vector Laboratory, Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan Province 671000, China; 3Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical Research and Development, Dali University, Dali, Yunnan Province 671000, China Abstract: The chigger mite Leptotrombidium sialkotense is one of the 6 main vectors of scrub typhus in China. Before present study, L. sialkotense was found in some parts of Hunan province, China with a narrow geographical distribution. During field investigation 2016-2017, we found L. sialkotense in Jingha, southern Yunnan, China. Of 15 small mammal host species, L. sialkotense were collected from 6 species of the hosts. Rattus brunneusculus was a dominant host of L. sialko- tense, from which 98.3% of the mites were collected. The chigger mite showed a relatively high infestation prevalence (PM = 11.7%) and mean abundance (MA= 0.5) in comparison with the rest 5 host species. These results reveal a certain host specificity of L. -
Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA
Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state. -
Emtree Terms Added and Changed (May 2019)
Emtree Terms Changed in May 2019 1 Emtree Terms Added and Changed (May 2019) This is an overview of new terms added and changes made in the second Emtree release in 2019. Overall, Emtree has grown by 526 preferred terms (155 drug terms and 371 non-drug terms) compared with the previous version released in January 2019. In total Emtree now counts 82970 preferred terms. Because the terms added include replacements for existing preferred terms (which become synonyms of the new terms) as well as completely new concepts, the number of terms added exceeds the net growth in Emtree. Other changes could include the merging of two or more existing preferred terms into a single concept. The terms added and changed are summarized below and specified in detail on the following pages. Emtree Terms Added in May 2019 567 new terms (including 41 replacement terms and promoted synonyms) have been added to Emtree as preferred terms in version May 2019 (compared to January 2019): ◼ 176 drug terms (terms assigned to the Chemicals and Drugs facet). ◼ 391 non-drug terms (terms not assigned as Chemicals and Drugs). The new terms (including the replacement terms and the promoted synonyms) are listed as Terms Added on the following pages. Note that many of these terms will have been indexed prior to 2019 (typically as candidate terms), sometimes for several years, before they were added to Emtree. Emtree Terms Changed in May 2019 41 terms (21 drug terms and 20 non-drug terms) from Emtree January 2019 have been replaced by 39 different terms in May 2019 (21 drug terms and 18 non-drug terms). -
Genome-Resolved Metagenomic Analyses Reveal the Presence of a Putative Bacterial Endosymbiont in an Avian Nasal Mite (Rhinonyssidae; Mesostigmata)
microorganisms Article Genome-Resolved Metagenomic Analyses Reveal the Presence of a Putative Bacterial Endosymbiont in an Avian Nasal Mite (Rhinonyssidae; Mesostigmata) Carolina Osuna-Mascaró 1,*, Jorge Doña 2,3, Kevin P. Johnson 2 and Manuel de Rojas 4,* 1 Department of Biology, University of Nevada, 1664 N Virginia St., Reno, NV 89557, USA 2 Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; [email protected] (J.D.); [email protected] (K.P.J.) 3 Departamento de Biología Animal, Universitario de Cartuja, Calle Prof. Vicente Callao, 3, 18011 Granada, Spain 4 Department of Microbiology and Parasitology, Faculty of Pharmacy, Universidad de Sevilla, Calle San Fernando, 4, 41004 Sevilla, Spain * Correspondence: [email protected] (C.O.-M.); [email protected] (M.d.R.) Abstract: Rhinonyssidae (Mesostigmata) is a family of nasal mites only found in birds. All species are hematophagous endoparasites, which may damage the nasal cavities of birds, and also could be potential reservoirs or vectors of other infections. However, the role of members of Rhinonyssidae as disease vectors in wild bird populations remains uninvestigated, with studies of the microbiomes of Rhinonyssidae being almost non-existent. In the nasal mite (Tinaminyssus melloi) from rock doves (Columba livia), a previous study found evidence of a highly abundant putatively endosymbiotic bacteria from Class Alphaproteobacteria. Here, we expanded the sample size of this species (two Citation: Osuna-Mascaró, C.; Doña, different hosts- ten nasal mites from two independent samples per host), incorporated contamination J.; Johnson, K.P.; de Rojas, M. Genome-Resolved Metagenomic controls, and increased sequencing depth in shotgun sequencing and genome-resolved metagenomic Analyses Reveal the Presence of a analyses. -
Detection of Multiple Intracellular Bacterial Pathogens in Haemaphysalis Flava Ticks Collected from Hedgehogs in Central China
pathogens Article Detection of Multiple Intracellular Bacterial Pathogens in Haemaphysalis flava Ticks Collected from Hedgehogs in Central China Li-Zhu Fang 1,†, Si-Cong Lei 1,2,†, Zhi-Jian Yan 3, Xiao Xiao 1,4, Jian-Wei Liu 1, Xiao-Qing Gong 1, Hao Yu 1 and Xue-Jie Yu 1,* 1 State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan 430071, China; [email protected] (L.-Z.F.); [email protected] (S.-C.L.); [email protected] (X.X.); [email protected] (J.-W.L.); [email protected] (X.-Q.G.); [email protected] (H.Y.) 2 The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, China 3 Sixth People’s Hospital, Qingdao 266000, China; [email protected] 4 Lab Animal Research Center, Hubei University of Chinese Medicine, Wuhan 430000, China * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Tickborne intracellular bacterial pathogens including Anaplasma, Coxiella burnetti, Ehrlichia, and Rickettsia cause emerging infectious diseases worldwide. PCR was used to amplify the genes of these pathogens in Haemaphysalis flava ticks collected from hedgehogs in Central China. Among 125 samples including 20 egg batches, 24 engorged females, and 81 molted male and female adult ticks, the DNA sequences and phylogenetic analysis showed that the minimum infection rate of the ticks was 4% (5/125) for A. bovis, 3.2% (4/125) for C. burnetti, 9.6%, (12/125) for E. ewingii, and Citation: Fang, L.-Z.; Lei, S.-C.; Yan, 5.6% for Rickettsia including R. japonica (3.2%, 4/125) and R. -
A Dataset of Distribution and Diversity of Blood-Sucking Mites in China
www.nature.com/scientificdata OPEN A dataset of distribution and DATA DESCRIPTOR diversity of blood-sucking mites in China Fan-Fei Meng1,2, Qiang Xu1,2, Jin-Jin Chen1, Yang Ji1, Wen-Hui Zhang 1, Zheng-Wei Fan1, Guo-Ping Zhao1, Bao-Gui Jiang1, Tao-Xing Shi1, Li-Qun Fang 1 ✉ & Wei Liu 1 ✉ Mite-borne diseases, such as scrub typhus and hemorrhagic fever with renal syndrome, present an increasing global public health concern. Most of the mite-borne diseases are caused by the blood- sucking mites. To present a comprehensive understanding of the distributions and diversity of blood- sucking mites in China, we derived information from peer-reviewed journal articles, thesis publications and books related to mites in both Chinese and English between 1978 and 2020. Geographic information of blood-sucking mites’ occurrence and mite species were extracted and georeferenced at the county level. Standard operating procedures were applied to remove duplicates and ensure accuracy of the data. This dataset contains 6,443 records of mite species occurrences at the county level in China. This geographical dataset provides an overview of the species diversity and wide distributions of blood- sucking mites, and can potentially be used in distribution prediction of mite species and risk assessment of mite-borne diseases in China. Background & Summary Vector-borne infections (VBI) are defned as infectious diseases transmitted by the bite or mechanical transfer of arthropod vectors. Tey constitute a signifcant proportion of the global infectious disease burden. Ticks and mosquitoes are recognized as the most important vectors in the transmission of bacterial and viral pathogens to humans and animals worldwide1. -
Ecological Considerations in Scrub Typhus* 2
Bull. Org. mond. Sante 1968, 39, 219-230 Bull. Wid Hlth Org. Ecological Considerations in Scrub Typhus* 2. Vector Species ROBERT TRAUB1 & CHARLES L. WISSEMAN JR2 Certain features, characteristic of outbreaks of scrub typhus, can be explained by the behaviour of the chigger vectors which are remarkably hardy and can survive weeks of freezing or immersion in water. The established vectors are all species of the genus Lepto- trombidium (Leptotrombidium), i.e., L. (L.) akamushi (Brumpt, 1910), L. (L.) deliense (Walch, 1922), L. (L.) pallidum (Nagayo et al., 1919), and L. (L.) scutellare (Nagayo et al., 1921). These chiggers (i.e. larval mites) infest a broad variety of birds and mam- mals, and tend to be found in clusters on certain specific sites on the host. However, the precise site for any species ofmite varies with the host, and it is believed that the grooming habits of the infested animal account for this " site preference ". The degree of infestation cannot validly be ascribed to the size of the host. L. (L.) pavlovskyi (Schluger, 1948), L. (L.) orientale (Schluger, 1948), L. (L.) arenicola Traub, 1960, and L. (L.) tosa (Sasa & Kowashima, 1951) are regarded as probable vectors. Other species, some belonging to other genera, are under suspicion in this regard. L. (L.) subintermedium (Jameson & Toshioka, 1954) and certain other chiggers were found in " ecological islands" in all montane habitats studied in West Pakistan, despite the intervening high mountains, broad rivers and belts ofsemi-desert. The infection- rate of Rickettsia tsutsugamushi in vector spe'cies in nature is believed to be low, and chiggers may be serving as reservoirs of infection and not just as vectors.