The Lateral Growth and Coalesence of Magma Systems Royalsocietypublishing.Org/Journal/Rsta Juliet Biggs1 and Catherine Annen1,2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inflation of the Aira Caldera (Japan) Detected Over
eEarth, 2, 17–25, 2007 www.electronic-earth.net/2/17/2007/ eEarth © Author(s) 2007. This work is licensed under a Creative Commons License. Inflation of the Aira Caldera (Japan) detected over Kokubu urban area using SAR interferometry ERS data D. Remy1,2,*, S. Bonvalot1,2, M. Murakami3, P. Briole2, and S. Okuyama4 1Institut de Recherche pour le Developpement´ (IRD), UR154, France 2Institut de Physique du Globe de Paris, 4 Place Jussieu, 75005 Paris, France 3Geographical Survey Institute, Mizusawa Geodetic Observatory, Japan 4Kyoto University, Dept. of Geophysics, Kyoto, 606-8502, Japan *presently at: Dept. of Geophysics, University of Chile, Santiago, Chile Received: 20 July 2006 – Published in eEarth Discuss.: 8 August 2006 Revised: 26 October 2006 – Accepted: 30 January 2007 – Published: 2 February 2007 Abstract. Nine ERS-1 and ERS-2 descending orbit data ac- 1 Introduction quired over Aira Caldera between June 1995 and November 1998 were used to create 36 differential interferograms. Al- Numerous papers have shown the potential of SAR (Syn- though the interferograms exhibit a relatively low level of thetic Aperture Radar) interferometry data for ground defor- coherence, even for couples sampling short time intervals (6 mation studies on volcanoes (Massonnet and Sigmundsson, months), Synthetique Aperture Radar (SAR) observations re- 2000; Zebker et al., 2000; Pritchard and Simons, 2002). Un- veal a distinct range change pattern over Kokubu urban area der optimal conditions a differential interferogram derived whose amplitude increases with the time separation between from two SAR images may monitor topographic changes in- SAR images. The analysis of the ground deformation time duced by internal volcanic processes with an accuracy of a series relative to the earliest ERS images showed a maxi- few cm over periods of time up to several months or years. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Relative Ages
CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing -
DMAAC – February 1973
LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base. -
An Overview of Analogue Models Compared to Natural Calderas ⁎ Valerio Acocella
Available online at www.sciencedirect.com Earth-Science Reviews 85 (2007) 125–160 www.elsevier.com/locate/earscirev Understanding caldera structure and development: An overview of analogue models compared to natural calderas ⁎ Valerio Acocella Dipartimento Scienze Geologiche Roma Tre, Roma, Italy Received 1 August 2006; accepted 15 August 2007 Available online 28 August 2007 Abstract Understanding the structure and development of calderas is crucial for predicting their behaviour during periods of unrest and to plan geothermal and ore exploitation. Geological data, including that from analysis of deeply eroded examples, allow the overall surface setting of calderas to be defined, whereas deep drillings and geophysical investigations provide insights on their subsurface structure. Collation of this information from calderas worldwide has resulted in the recent literature in five main caldera types (downsag, piston, funnel, piecemeal, trapdoor), being viewed as end-members. Despite its importance, such a classification does not adequately examine: (a) the structure of calderas (particularly the nature of the caldera's bounding faults); and (b) how this is achieved (including the genetic relationships among the five caldera types). Various sets of analogue models, specifically devoted to study caldera architecture and development, have been recently performed, under different conditions (apparatus, materials, scaling parameters, stress conditions). The first part of this study reviews these experiments, which induce collapse as a result of underpressure or overpressure within the chamber analogue. The experiments simulating overpressure display consistent results, but the experimental depressions require an exceptional amount of doming, seldom observed in nature, to form; therefore, these experiments are not appropriate to understand the structure and formation of most natural calderas. -
Tomographic Image of the Crust Beneath the Aira Caldera in Southern Kyushu
IAVCEI 2013 Scientific Assembly - July 20 - 24, Kagoshima, Japan Forecasting Volcanic Activity - Reading and translating the messages of nature for society 4W_1B-P5 Date/Time: July 24 Poster Tomographic image of the crust beneath the Aira caldera in southern Kyushu Hiroki Miyamachi1, Paul Karson Alanis2, Hiroshi Yakiwara1, Takeshi Tameguri3, Masato Iguchi3 1Kagoshima University, Japan, 2Philippine Institute of Volcanology and Seismology, Philippines, 3Kyoto University, Japan E-mail: [email protected] Associated with the Philippine Sea plate subduction, a nearly straight chain of active Quaternary volcanism runs almost parallel to Nankai Trough in the central part of southern Kyushu. In this region, there are four large calderas: the Kakuto, the Aira, the Ata and the Kikai calderas. We applied the tomography method with a fine grid configuration to the P- and S-wave arrival times of 829 local earthquakes well observed at 101 stations in central and southern Kyushu, and revealed the detailed three-dimensional seismic velocity structure of the crust, especially the region beneath the Aira caldera. In a shallow range from 0 to 10 km depth, low velocity zones (LVZs) are found in the eastern part of Kyushu, where basement rocks are made up of uplifted sedimentary marine terraces (Nakada et al., 2002). The LVZs are also distributed along the volcanic front between Kirishima volcano to Kaimon volcano. Meanwhile, the hypocenters occurred in the inland area are obviously concentrated in regions with a relatively higher velocity and a low Poisson’s ratio at a depth of 10 km. At 20 km depth, the most interesting feature is that a distinctly high Poisson’s ratio zone is located exactly beneath the Aira caldera. -
Scientific Instrument Society
Scientific Instrument Society Bulletin of the Scientific Instrument Society No. 46 September 1995 Bulletin of the Scientific Instrument Society LSSN0956-8271 For Table of Contents, see inside back cover President Gerard Turner Honorary Committee Howard Dawes, Chairman Stuart Talbot, Secretary John Didcock, Treasurer Willem Hackmann, Editor Michael Cowham, Ad~wtising Manager Trevor Waterman, Meetings Secretary Gloria Clifton Jane [nsley Arthur Middleton Alan Morton Membership and Administrative Matters The Executive Officer (Wing Cmdr. Geoffnm] Bennett) 31 High Street Stanford in the Vale Faringdon Tel: 01367 710223 Oxon SN7 8LH Fax: 01367 718963 See inside back cover for information on membership Editorial Matters Dr. Willem D. Hackmann Museum of the History of Science Old Ashmolean Building Tel: 01865 277282 (office) Broad Street Fax: 01865 277288 Oxford OXI 3AZ Tel: 01865 54058 (home) Advertising Mr Michael Cowham The Mount "loft Tel: 01223 263532/262684 Cambridge CB3 7RL Fax: 01223 263948 Organization of Meetings Mr Trevor Waterman 75a Jermyn Street Tel: 0171-930 2954 London SWIY 6NP Fax: 0171-321 0212 Typesetting and Printing Lithoflow Lid 26-36 Wharfdale Road Kings Cross Tel: 0171-833 2344 London NI 9RY Fax: 0171-833 8150 Price: £6 per issue, including back numbers where available. (Please enquire 04 Exec. Officer if sets are required.) The Scientific Instrument Society is Registered Charity No. 326733 © The Scientific lnsVument Society 19')5 Editorial X-ray image of a metal grid taken in THE EM)iF.'.; G.A,ZETTL Crookes' laboratory, but not by him as he -. + .__ was in South Africa when Rontgen's discovery was announced. There is also the metal grid and the X-ray tube used in producing this image. -
Volcanic Hazards As Components of Complex Systems: the Case of Japan
Volume 13 | Issue 33 | Number 6 | Article ID 4359 | Aug 17, 2015 The Asia-Pacific Journal | Japan Focus Volcanic Hazards as Components of Complex Systems: The Case of Japan Gregory Smits The past year or so has been a time of the earth’s crust suggested Mt. Fuji is more particularly vigorous volcanic activity in Japan, likely to erupt owing to effects from the 2011 or at least activity that has intruded into public Tōhoku earthquake.3 Well publicized by a press awareness. Perhaps most dramatic was the release on the eve of its publication, mass deadly eruption of Mt. Ontake on September media around the world have reported this 27, 2014, whose 57 fatalities were the first finding, along with speculation regarding volcano-related deaths in Japan since 1991. On possible connections between earthquakes and May 29, 2015, Mt. Shindake, off the southern volcanic eruptions. tip of Kyushu, erupted violently, forcing the evacuation of the island of Kuchinoerabu. That As of June 30, 2015, the Japan Meteorological same day, Sakurajima, located just north in Agency (JMA) designated ten volcanoes in or Kagoshima Bay, erupted more forcefully than near the main Japanese islands as warranting usual. Sakurajima has been erupting in some levels of warning ranging from Mt. Shindake’s fashion almost continuously since 1955, but Level 5 (“Evacuate”), to Level 2 (“Do not since 2006, its activity has become relatively approach the crater”) in seven cases. more vigorous. Indeed, a May 30 Asahi shinbun Sakurajima is at Level 3 (“Do not approach the article characterized these eruptions as “the volcano”), as is Hakoneyama, located near Mt. -
Calderas in Japan
Calderas in Japan ref Main Post-Caldera Volcano Most Recent Caldera Type of Ejecta ref About Period No. About Formation Caldera Name Document No. Name Eruption Period (Symbol) 番号 14 Kishimoto, T., et al. (2009) Tephrostratigraphy and Eruption Mashu f Yamamoto, T., et al. (2010) C ages for the ejecta from Style of Mashu Volcano, During the Last 14,000 years, Eastern Mashu Kamuinupuri, Kamuisshuto 7.6 ka* 1, 5 1 Kutcharo and Mashu calderas, eastern Hokkaido, Japan. Bull. Geol. 5 (Ma-f) Hokkaido, Japan. Bull.Volcanol.Soc.Japan Surv. Japan, 61, 161-170. , 54, 15-37. 14 Hasegawa, T., et al. (2010) The history of caldera-forming Kutcharo 1 Yamamoto, T., et al. (2010) C ages for the ejecta from Kutcharo Atosanupuri, Nakajima 40 ka* 1, 2 1 Kutcharo and Mashu calderas, eastern Hokkaido, Japan. Bull. Geol. 2 eruptions in eastern Hokkaido, Japan. CHIKYU MONTHLY, 33, (Kp I) Surv. Japan, 61, 161-170. 726-734. Hasegawa, T., et al. (2010) The history of caldera-forming Hasegawa, T., et al. (2010) The history of caldera-forming Akan 1 Akan Meakandake, Oakandake 120←→210 ka 2 2 eruptions in eastern Hokkaido, Japan. CHIKYU MONTHLY, 33, 726- 2 eruptions in eastern Hokkaido, Japan. CHIKYU MONTHLY, 33, (Ak1) 734. 726-734. Yamagata, K (1994) Tephrochronological Study on the Shikotsu No. 1 Hiroshi Machida and Fusao Arai (2003) Atlas of tephra in and 3 6 Shikotsu and Kuttara Volcanoes in Southwestern Hokkaido, Shikotsu Eniwadake, Tarumaesan 40←→45 ka* 3, 6 around Japan. Univ. of Tokyo Press, 336p. (Spfl, Spfa-1) Japan. Jour. Geol. Soc. -
Breaking Volcano News
Volcano News & Questions from Students VOLCANIC ERUPTIONS Physical Phenomena Causes – movement at plate boundaries Geography – spatial distribution Forms and eruption styles Magnitude Prediction – looking back & monitoring Hazards – quakes, blasts; release of ash, gas & lava Impacts Fatalities Economic Mitigation & Preparedness Begins with understanding vulnerability Recently, eruption of Icelandic volcano halted air travel Breaking Volcano News http://www.volcanolive.com/news.html …and news of breaking volcanoes History shows that when Eyjafjallajökull erupts, it’s larger neighbour Katla is generally not far behind. Katla is overdue. Katla’s eruption may be 10 or more x the size of the Eyjafjallajökull eruption –significant floods of fresh glacial-melt water into the sea (flow equal to Amazon + Mississippi + Nile + Yangtze occurred following 1755 eruption), a column of ash rising Chaiten, Chile 20km, or more, into the jet stream and spread over N Hemisphere. The Laki eruption in Iceland in 1783 resulted in famine across W Met Office, summer 2010 Europe, and as far S as Egypt, one of the longest and coldest ..as ash entrained in the atmosphere moved from winters on record in N America, and the death of 10,000s of Iceland across the Atlantic. people from gas poisoning and famine. 1 Merapi is at a subduction zone, where the Indo-Australian Plate is sliding NEWS beneath the Eurasian Plate and part of the Pacific Ring of Fire Stratigraphic analysis reveals that eruptions in the Merapi area began about Merapi Eruption 400,000 years ago, and from then until about 10,000 years ago, eruptions were effusive, and outflowing lava emitted was basaltic. -
Apollo 17 Index: 70 Mm, 35 Mm, and 16 Mm Photographs
General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) Preparation, Scanning, Editing, and Conversion to Adobe Portable Document Format (PDF) by: Ronald A. Wells University of California Berkeley, CA 94720 May 2000 A P O L L O 1 7 I N D E X 7 0 m m, 3 5 m m, A N D 1 6 m m P H O T O G R A P H S M a p p i n g S c i e n c e s B r a n c h N a t i o n a l A e r o n a u t i c s a n d S p a c e A d m i n i s t r a t i o n J o h n s o n S p a c e C e n t e r H o u s t o n, T e x a s APPROVED: Michael C . -
Inflation of the Aira Caldera (Japan) Detected Over Kokubu
eEarth, 2, 17–25, 2007 www.electronic-earth.net/2/17/2007/ eEarth © Author(s) 2007. This work is licensed under a Creative Commons License. Inflation of the Aira Caldera (Japan) detected over Kokubu urban area using SAR interferometry ERS data D. Remy1,2,*, S. Bonvalot1,2, M. Murakami3, P. Briole2, and S. Okuyama4 1Institut de Recherche pour le Developpement´ (IRD), UR154, France 2Institut de Physique du Globe de Paris, 4 Place Jussieu, 75005 Paris, France 3Geographical Survey Institute, Mizusawa Geodetic Observatory, Japan 4Kyoto University, Dept. of Geophysics, Kyoto, 606-8502, Japan *presently at: Dept. of Geophysics, University of Chile, Santiago, Chile Received: 20 July 2006 – Published in eEarth Discuss.: 8 August 2006 Revised: 26 October 2006 – Accepted: 30 January 2007 – Published: 2 February 2007 Abstract. Nine ERS-1 and ERS-2 descending orbit data ac- 1 Introduction quired over Aira Caldera between June 1995 and November 1998 were used to create 36 differential interferograms. Al- Numerous papers have shown the potential of SAR (Syn- though the interferograms exhibit a relatively low level of thetic Aperture Radar) interferometry data for ground defor- coherence, even for couples sampling short time intervals (6 mation studies on volcanoes (Massonnet and Sigmundsson, months), Synthetique Aperture Radar (SAR) observations re- 2000; Zebker et al., 2000; Pritchard and Simons, 2002). Un- veal a distinct range change pattern over Kokubu urban area der optimal conditions a differential interferogram derived whose amplitude increases with the time separation between from two SAR images may monitor topographic changes in- SAR images. The analysis of the ground deformation time duced by internal volcanic processes with an accuracy of a series relative to the earliest ERS images showed a maxi- few cm over periods of time up to several months or years.