(Sandfly Fever Naples Virus Species) In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generic Amplification and Next Generation Sequencing Reveal
Dinçer et al. Parasites & Vectors (2017) 10:335 DOI 10.1186/s13071-017-2279-1 RESEARCH Open Access Generic amplification and next generation sequencing reveal Crimean-Congo hemorrhagic fever virus AP92-like strain and distinct tick phleboviruses in Anatolia, Turkey Ender Dinçer1†, Annika Brinkmann2†, Olcay Hekimoğlu3, Sabri Hacıoğlu4, Katalin Földes4, Zeynep Karapınar5, Pelin Fatoş Polat6, Bekir Oğuz5, Özlem Orunç Kılınç7, Peter Hagedorn2, Nurdan Özer3, Aykut Özkul4, Andreas Nitsche2 and Koray Ergünay2,8* Abstract Background: Ticks are involved with the transmission of several viruses with significant health impact. As incidences of tick-borne viral infections are rising, several novel and divergent tick- associated viruses have recently been documented to exist and circulate worldwide. This study was performed as a cross-sectional screening for all major tick-borne viruses in several regions in Turkey. Next generation sequencing (NGS) was employed for virus genome characterization. Ticks were collected at 43 locations in 14 provinces across the Aegean, Thrace, Mediterranean, Black Sea, central, southern and eastern regions of Anatolia during 2014–2016. Following morphological identification, ticks were pooled and analysed via generic nucleic acid amplification of the viruses belonging to the genera Flavivirus, Nairovirus and Phlebovirus of the families Flaviviridae and Bunyaviridae, followed by sequencing and NGS in selected specimens. Results: A total of 814 specimens, comprising 13 tick species, were collected and evaluated in 187 pools. Nairovirus and phlebovirus assays were positive in 6 (3.2%) and 48 (25.6%) pools. All nairovirus sequences were closely-related to the Crimean-Congo hemorrhagic fever virus (CCHFV) strain AP92 and formed a phylogenetically distinct cluster among related strains. -
ODLUKU O Izboru Pravnih Lica Za Poslove Iz Programa Mera Zdravstvene Zaštite Životinja Za Period 2014–2016
Na osnovu člana 53. stav 5. Zakona o veterinarstvu („Službeni glasnik RS”, br. 91/05, 30/10, 93/12), Ministar poljoprivrede, šumarstva i vodoprivrede donosi ODLUKU o izboru pravnih lica za poslove iz Programa mera zdravstvene zaštite životinja za period 2014–2016. godine Poslovi iz Programa mera za period 2014–2016. godine, koji su utvrđeni kao poslovi od javnog interesa, ustupaju se sledećim pravnim licima: Grad Beograd 1. VS „Tika Vet” Mladenovac Rabrovac, Jagnjilo, Markovac Amerić, Beljevac, Velika Ivanča, Velika Krsna, Vlaška, Granice, Dubona, Kovačevac, Koraćica, Mala Vrbica, 2. VS „Mladenovac” Mladenovac Međulužje, Mladenovac, selo Mladenovac, Pružatovac, Rajkovac, Senaja, Crkvine, Šepšin Baljevac, Brović, Vukićevica, Grabovac, Draževac, VS „Aćimović– 3. Obrenovac Zabrežje, Jasenak, Konatica, LJubinić, Mislođin, Piroman, Obrenovac” Poljane, Stubline, Trstenica Belo Polje, Brgulice, Veliko Polje, Dren, Zvečka, Krtinska, 4. VS „Dr Kostić” Obrenovac Orašac, Ratari, Rvati, Skela, Ušće, Urovci 5. VS „Simbiosis Vet” Obrenovac Obrenovac, Barič, Mala Moštanica 6. VS „Nutrivet” Grocka Begaljica, Pudarci, Dražanj Umčari, Boleč, Brestovik, Vinča, Grocka, Živkovac, 7. VS „Grocka” Grocka Zaklopača, Kaluđerica, Kamendo, Leštane, Pudraci, Ritopek Baroševac, Prkosava, Rudovci, Strmovo, Mali Crljeni, 8. VS „Arnika Veterina” Lazarevac Kruševica, Trbušnica, Bistrica, Dren Vrbovno, Stepojevac, Leskovac, Sokolovo, Cvetovac, 9. VS „Artmedika Vet” Lazarevac Vreoci, Veliki Crljeni, Junkovac, Arapovac, Sakulja Lazarevac, Šopić, Barzilovica, Brajkovac, Čibutkovica, VS „Alfa Vet CO 10. Lazarevac Dudovica, Lukovica, Medoševac, Mirosaljci, Zeoke, Petka, 2007” Stubica, Šušnjar, Županjac, Burovo 11. VS „Ardis Vet” Sopot Slatina, Dučina, Rogača, Sibnica, Drlupa 12. VS „Uniprim Vet” Barajevo Arnajevo, Rožanci, Beljina, Boždarevac, Manić 13. VS „Vidra-Vet” Surčin Bečmen, Petrovčić, Novi Beograd, Bežanija Surčin Surčin, Dobanovci, Boljevci, Jakovo, Progar 14. -
STSM Report Enkelejda Dikolli (Velo)
Street “Alexander Mojsiu”, No. 80, Tirana, Albania, Pr. IPH, Tel +3554682069698; 0674072701 COST Action TD1303 : European Network for Neglected Vectors and Vector-Borne Infections (EurNegVec). STSM Report “Evaluation and harmonization of adult sand fly and mosquito sampling methods”. Kosovo-Serbia 22/06/2014 to 29/06/2014 Enkelejda Dikolli (Velo) Tirana, on 17 July 2014 1 Street “Alexander Mojsiu”, No. 80, Tirana, Albania, Pr. IPH, Tel +3554682069698; 0674072701 1. Purpose of the STSM Short Term Scientific Missions (STSM) “Evaluation and harmonization of adult sand fly and mosquito sampling methods.” (Host institution: UNIVERSITY OF NOVI SAD; Period: 22/06/2014 to 29/06/2014; Reference code: COST-STSM-ECOST-STSM- TD1303-17007; Approved amount: EUR 600) in collaboration with Prof. Dušan Petrić and according to the Work Plan previously provided. Short Term Scientific Missions was aimed at strengthening the existing networks between laboratories and fostering and standardizing the collaboration on state-of-art entomological methods relation with vector phlebotomine sand fly species in the field conditions. Research done contributed to the TD1303 COST Action objectives of “One Health” concept in the ecology of vector-borne diseases (WG1) and investigating rare and emerging vector-borne pathogens (WG5). It also allowed participants to exchange experience in laboratory and field research methods, learn new techniques and gain access to specific environmental/epidemiological conditions concerning parasite and vectors, not available in their own countries. During the study, every participant exchanged its experience in the field of insect vectors. In particular, one new entomologist and one MSc students has been trained on the study of sandflies and mosquitoes sampling techniques and identification. -
Rift Valley Fever: a Review
In Focus Rift Valley fever: a review John Bingham Petrus Jansen van Vuren CSIRO Australian Animal Health Laboratory (AAHL) CSIRO Health and Biosecurity 5 Portarlington Road Australian Animal Health Geelong, Vic. 3220, Australia Laboratory (AAHL) Tel: + 61 3 52275000 5 Portarlington Road Email: [email protected] Geelong, Vic. 3220, Australia fi fi Rift Valley fever (RVF) is a mosquito-borne viral disease, Originally con ned to continental Africa since its rst isolation in principally of ruminants, that is endemic to Africa. The Kenya in 1930, RVFV has since spread to the Arabian Peninsula, 5,6 causative Phlebovirus, Rift Valley fever virus (RVFV), has a Madagascar and islands in the Indian Ocean . Molecular epide- broad host range and, as such, also infects humans to cause miological studies further highlight the ability of the virus to be primarily a self-limiting febrile illness. A small number of spread to distant geographical locations, with genetically related 4 human cases will also develop severe complications, includ- viruses found from distant regions of Africa . Serological evidence ing haemorrhagic fever, encephalitis and visual im- of RVFV circulation in Turkey is concerning and serves as a warning 7 pairment. In parts of Africa, it is a major disease of for possible incursion into Europe . However, serological surveys 8,9 domestic ruminants, causing epidemics of abortion and in Europe suggest absence of the virus and modelling indicates 10 mortality. It infects and can be transmitted by a broad range that the risk of introduction and large scale spread is low . Recent of mosquitos, with those of the genus Aedes and Culex importations of human RVF cases into Europe and Asia from thought to be the major vectors. -
Pathogenicity of Severe Fever with Thrombocytopenia Syndrome Virus
Park et al. Laboratory Animal Research (2020) 36:38 Laboratory Animal Research https://doi.org/10.1186/s42826-020-00070-0 RESEARCH Open Access Pathogenicity of severe fever with thrombocytopenia syndrome virus in mice regulated in type I interferon signaling Severe fever with thrombocytopenia and type I interferon Seok-Chan Park1, Jun Young Park1,2, Jin Young Choi1, Sung-Geun Lee2, Seong Kug Eo1,2, Jae-Ku Oem1, Dong-Seob Tark2, Myungjo You1, Do-Hyeon Yu3, Joon-Seok Chae4 and Bumseok Kim1,2* Abstract Severe fever with thrombocytopenia syndrome (SFTS) is an emerging zoonotic disease, which causes high fever, thrombocytopenia, and death in humans and animals in East Asian countries. The pathogenicity of SFTS virus (SFTS V) remains unclear. We intraperitoneally infected three groups of mice: wild-type (WT), mice treated with blocking anti-type I interferon (IFN)-α receptor antibody (IFNAR Ab), and IFNAR knockout (IFNAR−/−) mice, with four doses of 5 2 SFTSV (KH1, 5 × 10 to 5 × 10 FAID50). The WT mice survived all SFTSV infective doses. The IFNAR Ab mice died 2 within 7 days post-infection (dpi) with all doses of SFTSV except that the mice were infected with 5 × 10 FAID50 SFTSV. The IFNAR−/− mice died after infection with all doses of SFTSV within four dpi. No SFTSV infection caused hyperthermia in any mice, whereas all the dead mice showed hypothermia and weight loss. In the WT mice, SFTSV RNA was detected in the eyes, oral swabs, urine, and feces at 5 dpi. Similar patterns were observed in the IFNAR Ab and IFNAR−/− mice after 3 dpi, but not in feces. -
Experimental Infection of Dogs with Toscana Virus and Sandfly
microorganisms Article Experimental Infection of Dogs with Toscana Virus and Sandfly Fever Sicilian Virus to Determine Their Potential as Possible Vertebrate Hosts Clara Muñoz 1, Nazli Ayhan 2,3 , Maria Ortuño 1, Juana Ortiz 1, Ernest A. Gould 2, Carla Maia 4, Eduardo Berriatua 1 and Remi N. Charrel 2,* 1 Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; [email protected] (C.M.); [email protected] (M.O.); [email protected] (J.O.); [email protected] (E.B.) 2 Unite des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM U1207, IHU Mediterranee Infection), 13005 Marseille, France; [email protected] (N.A.); [email protected] (E.A.G.) 3 EA7310, Laboratoire de Virologie, Université de Corse-Inserm, 20250 Corte, France 4 Global Health and Tropical Medicine, GHMT, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; [email protected] * Correspondence: [email protected] Received: 2 April 2020; Accepted: 19 April 2020; Published: 20 April 2020 Abstract: The sandfly-borne Toscana phlebovirus (TOSV), a close relative of the sandfly fever Sicilian phlebovirus (SFSV), is one of the most common causes of acute meningitis or meningoencephalitis in humans in the Mediterranean Basin. However, most of human phlebovirus infections in endemic areas either are asymptomatic or cause mild influenza-like illness. To date, a vertebrate reservoir for sandfly-borne phleboviruses has not been identified. Dogs are a prime target for blood-feeding phlebotomines and are the primary reservoir of human sandfly-borne Leishmania infantum. -
Punique Virus, a Novel Phlebovirus, Related to Sandfly Fever Naples Virus, Isolated from Sandflies Collected in Tunisia
Journal of General Virology (2010), 91, 1275–1283 DOI 10.1099/vir.0.019240-0 Punique virus, a novel phlebovirus, related to sandfly fever Naples virus, isolated from sandflies collected in Tunisia Elyes Zhioua,13 Gre´gory Moureau,23 Ifhem Chelbi,1 Laetitia Ninove,2,3 Laurence Bichaud,2 Mohamed Derbali,1 Myle`ne Champs,2 Saifeddine Cherni,1 Nicolas Salez,2 Shelley Cook,4 Xavier de Lamballerie2,3 and Remi N. Charrel2,3 Correspondence 1Laboratory of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia Remi N. Charrel 2Unite´ des Virus Emergents UMR190 ‘Emergence des Pathologies Virales’, Universite´ de la [email protected] Me´diterrane´e & Institut de Recherche pour le De´veloppement, Marseille, France 3AP-HM Timone, Marseille, France 4The Natural History Museum, Cromwell Road, London, UK Sandflies are widely distributed around the Mediterranean Basin. Therefore, human populations in this area are potentially exposed to sandfly-transmitted diseases, including those caused by phleboviruses. Whilst there are substantial data in countries located in the northern part of the Mediterranean basin, few data are available for North Africa. In this study, a total of 1489 sandflies were collected in 2008 in Tunisia from two sites, bioclimatically distinct, located 235 km apart, and identified morphologically. Sandfly species comprised Phlebotomus perniciosus (52.2 %), Phlebotomus longicuspis (30.1 %), Phlebotomus papatasi (12 .0%), Phlebotomus perfiliewi (4.6 %), Phlebotomus langeroni (0.4 %) and Sergentomyia minuta (0.5 %). PCR screening, using generic primers for the genus Phlebovirus, resulted in the detection of ten positive pools. Sequence analysis revealed that two pools contained viral RNA corresponding to a novel virus closely related to sandfly fever Naples virus. -
A Look Into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins
viruses Review A Look into Bunyavirales Genomes: Functions of Non-Structural (NS) Proteins Shanna S. Leventhal, Drew Wilson, Heinz Feldmann and David W. Hawman * Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; [email protected] (S.S.L.); [email protected] (D.W.); [email protected] (H.F.) * Correspondence: [email protected]; Tel.: +1-406-802-6120 Abstract: In 2016, the Bunyavirales order was established by the International Committee on Taxon- omy of Viruses (ICTV) to incorporate the increasing number of related viruses across 13 viral families. While diverse, four of the families (Peribunyaviridae, Nairoviridae, Hantaviridae, and Phenuiviridae) contain known human pathogens and share a similar tri-segmented, negative-sense RNA genomic organization. In addition to the nucleoprotein and envelope glycoproteins encoded by the small and medium segments, respectively, many of the viruses in these families also encode for non-structural (NS) NSs and NSm proteins. The NSs of Phenuiviridae is the most extensively studied as a host interferon antagonist, functioning through a variety of mechanisms seen throughout the other three families. In addition, functions impacting cellular apoptosis, chromatin organization, and transcrip- tional activities, to name a few, are possessed by NSs across the families. Peribunyaviridae, Nairoviridae, and Phenuiviridae also encode an NSm, although less extensively studied than NSs, that has roles in antagonizing immune responses, promoting viral assembly and infectivity, and even maintenance of infection in host mosquito vectors. Overall, the similar and divergent roles of NS proteins of these Citation: Leventhal, S.S.; Wilson, D.; human pathogenic Bunyavirales are of particular interest in understanding disease progression, viral Feldmann, H.; Hawman, D.W. -
Characterization of Eight New Phlebotomus Fever Serogroup Arboviruses (Buny Aviridae: Phlebovirus) from the Amazon Region of Brazil*
Am. J. Trap. Med. Hyg., 32(5), 1983,pp. 1164-1171 Copyright @ 1983 by The American Society oí Tropical Medicine and Hygiene CHARACTERIZATION OF EIGHT NEW PHLEBOTOMUS FEVER SEROGROUP ARBOVIRUSES (BUNY AVIRIDAE: PHLEBOVIRUS) FROM THE AMAZON REGION OF BRAZIL* AMELIA P. A. TRAVASSOSDA ROSA,t ROBERT B. TESH,:I: FRANCISCOP. PINHEIRO,t JORGEF. S. TRAV ASSOS DA ROSA,t ANDNORMAN E. PETERSON§ tlnstituto Evandro Chagas,Fundação Servicos de Saúde Pública, Ministerio da Saúde, CP 621, 66.000 Belém, Pará, Brazil, :l:YaleArbovirus Research Unit, Department of Epidemiology and Public H8I!lth, Vale University School of Medicine, P. O. Box 3333, New Haven, Connecticut 06510, and §U.S. Army Medical Research Unit, Belém, Pará, Brazil Abstract. Eight new members of the phlebotomus rever arbovirus serogroup(family Bun- yaviridae; genus Phlebovirus) from the Amazon region of Brazil are described. One serotype was recovered from a febrile patient, three from smaII wild animais and falir from sand mes. A smaII serum survey carried out with the human isolare, Alenquer virus, suggeststhat it rarely infects mano Complement-fixation and plaque reduction neutraIization testswere don~ comparing the eight new viruses with other members of the phlebotomus rever serogroup. A close antigenic relationship was demonstrated between one of the new agents (Belterra) and Rift VaIley rever virus. This finding is of considerable interest and deservesfurther investi- gation. Addition of these eight new viroses to the genus Phlebovirus brings to 14the number of serotypes known to occur in the Amazon region and to 36 the total number reportedworld- wide. More detailed clinicaI and epidemiologicaI studies should be conducted in Amazonia in arder to define the public heaIth impact caused by phleboviruses. -
Electronic Case Report Form (Ecrf)
BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open Supplementary Material 3 Electronic case report form (eCRF) Study: Validation and optimization of the utility of routine data for improving the quality of sepsis management in hospitals (Validierung und Optimierung der Nutzbarkeit von Routinedaten zur Qualitätsverbesserung des Sepsis-Managements im Krankenhaus) Study acronym: OPTIMISE Case-ID: |_________________________________| Explanations: - italic text: Gives explanation, is not presented in the eCRF - blue text: multiple answers possible - italic red text: condition for presentation of item or query rule 1 Schwarzkopf D, et al. BMJ Open 2020; 10:e035763. doi: 10.1136/bmjopen-2019-035763 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open Supplementary Material 3 A. Identification of patients with sepsis 1000 random cases per study centre need to be documented by trained study physicians 0. Admission and discharge dates a. Where several stays 0 no merged to one case for billing 1 yes reasons? If a = yes, ____ how many stays/cases have Query rule: N >= 2 been merged? b. Admission and discharge Admission date: |__|__|____ Discharge date: |__|__|____ dates Admission date: |__|__|____ Discharge date: |__|__|____ Admission date: |__|__|____ Discharge date: |__|__|____ Admission date: |__|__|____ Discharge date: |__|__|____ Query rule: discharge date after admission date c. -
Postal Code Post Office Name Post Office Address 11000
POSTAL POST OFFICE POST OFFICE POSTAL POST OFFICE POST OFFICE CODE NAME ADDRESS CODE NAME ADDRESS 11000 BEOGRAD 6 SAVSKA 2 11161 BEOGRAD 16 MIJE KOVACEVICA 7B (STUD.DOM) 11010 BEOGRAD 48 KUMODRASKA 153 11162 BEOGRAD 18 VISNJICKA 110V 11011 BEOGRAD 145 ZAPLANJSKA 32 (STADION SHOPING CENTAR) 11163 BEOGRAD 107 BACVANSKA 21 11050 BEOGRAD 22 USTANICKA 182 11164 BEOGRAD 106 SALVADORA ALJENDEA 18 11051 BEOGRAD 130 VELJKA DUGOSEVICA 19 11166 BEOGRAD 112 KRALJA MILANA 14 11052 BEOGRAD 141 BULEVAR KRALJA ALEKSANDRA 516/Z 11167 BEOGRAD 113 NJEGOSEVA 7 11060 BEOGRAD 38 PATRISA LUMUMBE 50 11168 BEOGRAD 114 KNEZA MILOSA 24 11061 BEOGRAD 139 TAKOVSKA 2 11169 BEOGRAD 115 KNEZA MILOSA 81 11101 BEOGRAD 1 TAKOVSKA 2 11210 BEOGRAD 26 ZRENJANINSKI PUT BB (KRNJACA) 11102 BEOGRAD 3 ZMAJ JOVINA 17 11211 BORCA VALJEVSKOG ODREDA 15 11103 BEOGRAD 4 NUSICEVA 16 11212 OVCA MIHAJA EMINESKUA 80 11104 BEOGRAD 5 BEOGRADSKA 8 11213 PADINSKA SKELA PADINSKA SKELA BB 11106 BEOGRAD 10 CARA DUSANA 14-16 11214 BORCA RATKA MILJICA 81 11107 BEOGRAD 11 USTANICKA 79 11215 SLANCI MARSALA TITA 50 11108 BEOGRAD 12 BULEVAR DESPOTA STEFANA 68/A 11224 VRCIN SAVE KOVACEVICA 2 11109 BEOGRAD 14 BULEVAR KRALJA ALEKSANDRA 121 11306 GROCKA BULEVAR OSLOBODJENJA 24 11110 BEOGRAD 15 MAKSIMA GORKOG 2 11307 BOLEC SMEDEREVSKI PUT BB 11111 BEOGRAD 17 BULEVAR KRALJA ALEKSANDRA 84 11308 BEGALJICA BORISA KIDRICA 211 11112 BEOGRAD 19 LOMINA 7 11309 LESTANE MARSALA TITA 60 11113 BEOGRAD 20 SAVSKA 17/A 11350 BEOGRAD 120 KATICEVA 14-18 11114 BEOGRAD 21 UCITELJSKA 60 11351 VINCA PROFESORA VASICA 172 11115 BEOGRAD 23 BULEVAR OSLOBODJENJA 51 11430 UMCARI TRG REPUBLIKE 1 11116 BEOGRAD 28 RUZVELTOVA 21 11030 BEOGRAD 8 SUMADIJSKI TRG 2/A 11117 BEOGRAD 29 GOSPODAR JEVREMOVA 17 11031 BEOGRAD 131 BULEVAR VOJVODE MISICA 12 (EUROSALON) 11118 BEOGRAD 32 MAKSIMA GORKOG 89 11040 BEOGRAD 33 NEZNANOG JUNAKA 2/A 11119 BEOGRAD 34 MILESEVSKA 66 11090 BEOGRAD 75 PILOTA MIHAJLA PETROVICA 8-12 11120 BEOGRAD 35 KRALJICE MARIJE 5 11091 BEOGRAD 109 17. -
Sandfly Fever
& My gy co lo lo ro g i y V Tufan and Tasyaran, Virol Mycol 2013, 2:1 Virology & Mycology DOI: 10.4172/2161-0517.1000109 ISSN: 2161-0517 Short Communication Open Access Sandfly Fever: A Mini Review Zeliha Kocak Tufan*, Mehmet A Tasyaran and Tumer Guven Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ataturk Training and Research Hospital, Yildirim Beyazit University, Ankara, Turkey Introduction TOSV differs from others with its neurotropism and being an etiologic agent of central nervous system infection [24]. Although Sandfly fever, also known as Pappataci fever or phlebotomus fever the SFSV usually causes a self limited benign disease, there are some is an interesting disease mimicking other conditions which causes evidences that SFTV may lead to more severe disease, prolonged fever fever, myalgia and malaise along with abnormalities in liver enzymes and laboratory abnormalities even with neurological involvement and hematological test results [1]. Without suspicion of the disease [1,25]. itself or a presence of an epidemic, it is very hard to diagnose this disease in a non-endemic area, particularly if it is travel associated and The Mediterranean basin is the main area for sandfly fever. Reports if the anamnesis is not clear [1-5]. The differential diagnosis consists are increasingly published every day related with the presence of the of a very board spectrum list of diseases such as viral, parasitic and vector, the virus or the infection itself, from Spain to Croatia, from bacterial infections. Even hematologic malignancies and bone marrow Morocco to Iran, Italy, Portugal and Turkey [7-13,26,27].