Examining the Geometry, Age and Genesis of Buried Quaternary Valley Systems in the Midland Valley of Scotland, UK
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sulphate Balance of Lakes and Shallow Groundwater in the Vasavere Buried Valley, Northeast Estonia
SULPHATE BALANCE OF LAKES AND SHALLOW GROUNDWATER IN THE VASAVERE BURIED VALLEY, NORTHEAST ESTONIA K. ERG Department of Mining Tallinn Technical University 82 Kopli St., 10412 Tallinn Estonia Phone: 620 38 53 Fax: 620 36 96 E-mail:[email protected] Groundwater constitutes an important component of many water resource systems, supplying water for domestic use, for industry, and for agriculture. Management of a groundwater system, an aquifer, means making such decisions as to the total quantity of water to be withdrawn annually, the location of wells for pumping and for artificial recharge and their rates, and control conditions at aquifer boundaries. Not less important are decisions related to groundwater quality. In fact, the quantity and quality problems cannot be separated. In many parts of country, with the increased withdrawal of groundwater, the quality of groundwater has been continuously deteriorating. In recent years the attention has been focused on groundwater contamination by mine water. A most important part of modelling procedure is a thorough understanding of the system, and the processes that take place in it. It is important to identify those parts of the system’s behaviour that are relevant to the considered problem, while other parts may be neglected. On the basis of this understanding, summarised as a conceptual model of the given problem, a numerical model is constructed. A groundwater flow model of the Quaternary aquifer, in eastern part of oil shale deposit area, in Vasavere buried valley, was constructed by using the conceptual model. The infiltration of contaminants grows and the Quaternary aquifer is polluted by sulphate in a large area of Vasavere buried valley. -
On the Breccia Gashes of the Durham Coast. Lebour.G.A
Durham E-Theses Some aspects of the geomorphology of the Durham coast Westgate, W. A. How to cite: Westgate, W. A. (1957) Some aspects of the geomorphology of the Durham coast, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8519/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. SOME ASPECTS OF THE G-EOMQRPHOLO GY OP THE DUHHAM COAST W.A. Westgate, B.Sc. Submitted for the Degree of Ph.D. in the University of Durham. February, 1957. Itmm?, not ** > \ i3i (i) This research was carried out whilst I was in receipt of a Nature Conservancy Research Studentship "between July 1953 and July 1955. -
Bedrock Valleys of the New England Coast As Related to Fluctuations of Sea Level
Bedrock Valleys of the New England Coast as Related to Fluctuations of Sea Level By JOSEPH E. UPSON and CHARLES W. SPENCER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 454-M Depths to bedrock in coastal valleys of New England, and nature of sedimentary Jill resulting from sea-level fluctuations in Pleistocene and Recent time UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication, as follows: Upson, Joseph Edwin, 1910- Bedrock valleys of the New England coast as related to fluctuations of sea level, by Joseph E. Upson and Charles W. Spencer. Washington, U.S. Govt. Print. Off., 1964. iv, 42 p. illus., maps, diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 454-M) Shorter contributions to general geology. Bibliography: p. 39-41. (Continued on next card) Upson, Joseph Edwin, 1910- Bedrock valleys of the New England coast as related to fluctuations of sea level. 1964. (Card 2) l.Geology, Stratigraphic Pleistocene. 2.Geology, Stratigraphic Recent. S.Geology New England. I.Spencer, Charles Winthrop, 1930-joint author. ILTitle. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Configuration and depth of bedrock valleys, etc. Con. Page Abstract.__________________________________________ Ml Buried valleys of the Boston area. _ _______________ -
Glacial Geomorphology Recording Glacier Recession Since the Little Ice Age.', Journal of Maps., 13 (2)
Durham Research Online Deposited in DRO: 02 May 2017 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Evans, David J. A. and Ewertowski, Marek and Orton, Chris (2017) 'Skaftafellsj¤okull,Iceland : glacial geomorphology recording glacier recession since the Little Ice Age.', Journal of maps., 13 (2). pp. 358-368. Further information on publisher's website: https://doi.org/10.1080/17445647.2017.1310676 Publisher's copyright statement: c 2017 The Author(s). Published by Informa UK Limited, trading as Taylor Francis Group on behalf of Journal of Maps This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Journal of Maps ISSN: (Print) 1744-5647 (Online) Journal homepage: http://www.tandfonline.com/loi/tjom20 Skaftafellsjökull, Iceland: glacial geomorphology recording glacier recession since the Little Ice Age David J. -
Analysis of Groundwater Flow Beneath Ice Sheets
SE0100146 Technical Report TR-01-06 Analysis of groundwater flow beneath ice sheets Boulton G S, Zatsepin S, Maillot B University of Edinburgh Department of Geology and Geophysics March 2001 Svensk Karnbranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 32/ 23 PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK Analysis of groundwater flow beneath ice sheets Boulton G S, Zatsepin S, Maillot B University of Edinburgh Department of Geology and Geophysics March 2001 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. Summary The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report /Boulton and others, 1999/. It was based on a two- dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is develop- ed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. -
Lithostratigraphic Characterization of a Buried Bedrock Valley Using Airborne and Surface Geophysics
Lithostratigraphic Characterization of a Buried Bedrock Valley Using Airborne and Surface Geophysics by Oliver Conway-White A Thesis presented to The University of Guelph In partial fulfilment of the requirements for the degree of Master of Applied Science in Engineering Guelph, Ontario, Canada © Oliver R. Conway-White, May, 2020 ABSTRACT LITHOSTRATIGRAPHIC CHARACTERIZATION OF A BURIED BEDROCK VALLEY USING AIRBORNE AND SURFACE GEOPHYSICS Oliver Conway-White Advisor: University of Guelph, 2020 Dr. Beth Parker A helicopter-borne frequency-domain electromagnetic instrument was used to investigate the lithostratigraphic architecture of a buried bedrock valley near Elora, Ontario. The resulting airborne electrical resistivity model was evaluated against co-located high-resolution ground- based electrical resistivity, seismic refraction, and gravity surveys across two sections of the valley. Results were interpreted using published geological datasets including continuous core, geophysical logs, and an existing regional Quaternary geologic model. A comparison between the local geophysically-based model and the regional Quaternary model shows that an airborne electromagnetic survey can markedly improve characterization of bedrock valley morphology and Quaternary architecture. These results provide confidence in regional-scale interpretations of airborne electromagnetic data for the purpose of delineating lithostratigraphic boundaries. Such data would provide valuable insight into the placement of boreholes for additional and complementary characterization at the borehole scale, leading to delineation of hydrostratigraphic boundaries. In combination, these data will inform 3-D groundwater flow models. iii ACKNOWLEDGEMENTS First, I would like to thank Dr. Colby Steelman who was the lead on assisting me with this thesis. While paperwork may have prevented him from being officially on my committee, we all know he went above and beyond as my ‘scientific’ advisor. -
Evidence for Multiple Glacial Advances and Ice Loading from a Buried Valley in Southern Manhattan INTRODUCTION DRILLING PROCEDUR
Evidence for Multiple Glacial Advances and Ice Loading From a Buried Valley in Southern Manhattan Cheryl J. Moss, Mueser Rutledge Consulting Engineers, 14 Penn Plaza, New York, NY 10122 ([email protected]) Charles Merguerian, Geology Department, 114 Hofstra University, Hempstead, NY 11549 ([email protected]; [email protected]) INTRODUCTION Our field and subsurface studies of glacial strata from construction sites and borings indicate that the glacial history of the New York City area is complex. The Ronkonkoma and Harbor Hill terminal moraines are evidence that the area has experienced more than one glacial advance. There is more to the story, however, than simply ice advance, retreat, repeat. Many locations in New York City display seemingly simple stratigraphy, such as thick layers of till over bedrock or 100’ of outwash sands. Most sites aren’t as obviously complex as one offering multiple tills intercalated with outwash and varved strata. When characteristics other than soil type are taken into consideration, however, stratigraphic differences sometimes appear. A change in color or mineralogy, for instance, might indicate ice coming from another direction. A change in engineering properties can also contribute to the art of unraveling glacial history. A site in lower Manhattan near the Brooklyn Bridge occupies a bedrock valley filled with a variety of interlayered glacial drift. These varied strata mandate that multiple waves of ice have passed over the area. Changes in the compactness of the soil with depth, as measured by the Standard Penetration Test, provide additional evidence of ice loading. This paper will demonstrate that patterns in strata and SPT values can be used to determine which layers at a site have been ice loaded. -
Morphological Analysis and Evolution of Buried Tunnel Valleys in Northeast Alberta, Canada
Quaternary Science Reviews 65 (2013) 53e72 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Morphological analysis and evolution of buried tunnel valleys in northeast Alberta, Canada N. Atkinson*, L.D. Andriashek, S.R. Slattery Alberta Geological Survey, Energy Resources Conservation Board, Twin Atria Building, 4th Floor, 4999-98 Ave. Edmonton, Alberta T6B 2X3, Canada article info abstract Article history: Tunnel valleys are large elongated depressions eroded into unconsolidated sediments and bedrock. Received 9 August 2012 Tunnel valleys are believed to have been efficient drainage pathways for large volumes of subglacial Received in revised form meltwater, and reflect the interplay between groundwater flow and variations in the hydraulic con- 26 November 2012 ductivity of the substrate, and basal meltwater production and associated water pressure variations at Accepted 28 November 2012 the ice-bed interface. Tunnel valleys are therefore an important component of the subglacial hydrological Available online 12 February 2013 system. Three-dimensional modelling of geophysical and lithological data has revealed numerous buried Keywords: Tunnel valleys valleys eroded into the bedrock unconformity in northeast Alberta, many of which are interpreted to be Subglacial drainage tunnel valleys. Due to the very high data density used in this modelling, the morphology, orientation and Sedimentary architecture internal architecture of several of these tunnel valleys have been determined. The northeast Alberta buried tunnel valleys are similar to the open tunnel valleys described along the former margins of the southern Laurentide Ice Sheet. They have high depth to width ratios, with un- dulating, low gradient longitudinal profiles. Many valleys start and end abruptly, and occur as solitary, straight to slightly sinuous incisions, or form widespread anastomosing networks. -
Port Jefferson Geomorphology by Danielle Mulch, Gilbert N
Port Jefferson Geomorphology By Danielle Mulch, Gilbert N. Hanson Figure 1 (Above)A DEM of Long Island with a close-up of the Port Jefferson Valley and Outwash Plain. Adapted from Gilbert Hanson's DEM. Abstract Research was conducted in the Port Jefferson region to determine the origin of the har- bor itself as well as the gentle sloping plain that begins in Port Jefferson Station and slopes southward past the LIE. Surficial analysis and corroborating evidence (including past re- search, mapping projects and well logs) strongly indicate that Port Jefferson was formed during the late Wisconsinan, specifically, that the Port Jefferson valley, including the harbor, is the remnant of a tunnel valley fed by a subglacial lake and that Port Jefferson Station and south is the resulting outwash fan from a catastrophic subglacial discharge. The research strongly supports the initial hypothesis that the origin of Port Jefferson Harbor was incise- ment by a tunnel valley into the Harbor Hill moraine. Research also strongly supports the catastrophic deposition of the outwash fan. However, the research does raise significant questions that require further study. Two important questions are: What is the stratigraphy and depositional history within the harbor, which is a buried tunnel valley? and What is the nature of Grim's Trench (if it exists) just north of the harbor and how does it interact with the buried tunnel valley? 1 Introduction In this paper, we propose that Port Jefferson valley is a tunnel valley created during the Wisconsinan. This valley cuts the Harbor Hill moraine. We also propose that the fan shaped feature immediately south of the valley is in fact a related alluvial fan that was deposited catastrophically when the sediment-rich water left the tunnel valley and lost energy abruptly. -
Glacial Geology of the Stony Brook-Setauket-Port Jefferson Area1 Gilbert N
Glacial Geology of the Stony Brook-Setauket-Port Jefferson Area1 Gilbert N. Hanson Department of Geosciences Stony Brook University Stony Brook, NY 11794-2100 Fig. 1 Digital elevation model of Long Island High resolution digital elevation models are available for the State of New York including Long Island. These have a horizontal resolution of 10 meters and are based on 7.5' topographic maps. For those quadrangles with 10' contour intervals, interpolation results in elevations with an uncertainty of about 4'. The appearance is as if one were viewing color-enhanced images of a barren terrain, for example Mars (see Fig. 1). This allows one to see much greater detail than is possible on a standard topographic map. The images shown on this web site have a much lower resolution than are obtainable from the files directly. Digital Elevation Models for Long Island and surrounding area can be downloaded as self extracting zip files at http://www.geo.sunysb.edu/reports/dem_2/dems/ A ca. five foot long version (jpg) of the DEM of Long Island (see above except with scale and north arrow) for printing can be downloaded at this link. A DEM of Long Island (shown above in Fig. 1) in PowerPoint can be downloaded at this link. The geomorphology of Long Island has been evaluated earlier based on US Geological Survey topographic maps (see for example, Fuller, 1914; and Sirkin, 1983). Most of the observations presented here are consistent with previous interpretations. Reference to earlier work is made mainly where there is a significant disagree- ment based on the higher quality of the information obtainable from the DEM's. -
Landform and Sedimentary Evidence of Subglacial Reservoir
Geophysical Research Abstracts, Vol. 9, 05999, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-05999 © European Geosciences Union 2007 Landform and sedimentary evidence of subglacial reservoir development and drainage along the southern margin of the Cordilleran Ice Sheet in British Columbia, Canada and northern Washington State, USA. J.-E. Lesemann, T. A. Brennand Department of Geography, Simon Fraser University, Burnaby, British Columbia, Canada ([email protected]) The southern margin of the former Cordilleran Ice Sheet (CIS) in British Columbia, Canada and northern Washington State, USA, contains a number of deep (100s m) and long (100s km) structurally-controlled bedrock valleys. Valley fill characteristics in one such valley (Okanagan Valley, British Columbia) suggest abundant erosion and deposition by subglacial meltwater during the Late Wisconsin glaciation. Thus, this valley (and possibly others) can be considered a mega-scale tunnel valley. Bedrock and sediment drumlins occur on the walls of this mega-scale tunnel valley and on sur- rounding plateaus. These drumlin swarms are traversed by smaller bedrock/sediment tunnel valleys. This creates a regionally-continuous network of drumlin swarms and tunnel valleys linked together by mega-scale bedrock tunnel valleys along a distinct landform track. Based on individual drumlin morphological and sedimentological characteristics, and on landscape continuity arguments, drumlins are demonstrably erosional features. Drumlin morphological characteristics and sediment flux continuity arguments sug- gest that both drumlins and tunnel valleys are best explained by regional-scale sub- glacial meltwater erosion. Recurring rejections of meltwater underbursts as valid drumlin-forming processes often cite the lack of an identified meltwater source for the inferred voluminous discharges. -
Hydrogeologic Setting and Ground-Water Flow Simulations of the Great Miami River Basin Regional Study Area, Ohio
Hydrogeologic Setting and Ground-Water Flow Simulations of the Great Miami River Basin Regional Study Area, Ohio By Rodney A. Sheets Section 7 of Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells—Studies Begun in 2001 Edited by Suzanne S. Paschke Professional Paper 1737–A U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, SECRETARY U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Sheets, R.A., 2007, Hydrogeologic setting and ground-water flow simulations of the Great Miami Basin Regional Study Area, Ohio, section 7 of Paschke, S.S., ed., THydrogeologic settings and ground-water flow simulations for regional studies of the transport of anthropogenic and natural contaminants to public-supply wells—studies begun in 2001: Reston, Va., U.S. Geological Survey Professional Paper 1737–A, pp.