The Azores Bullfinch

Total Page:16

File Type:pdf, Size:1020Kb

The Azores Bullfinch bs_bs_banner Biological Journal of the Linnean Society, 2013, 108, 677–687. With 4 figures The Azores bullfinch (Pyrrhula murina) has the same unusual and size-variable sperm morphology as the Eurasian bullfinch (Pyrrhula pyrrhula) JAN T. LIFJELD1*, ANTJE HOENEN2, LARS ERIK JOHANNESSEN1, TERJE LASKEMOEN1, RICARDO J. LOPES3, PEDRO RODRIGUES3,4 and MELISSAH ROWE1 1Natural History Museum, University of Oslo, PO Box 1172 Blindern, 0318 Oslo, Norway 2Electron Microscopical Unit for Biological Sciences, Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 Oslo, Norway 3CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal 4CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Polo dos Açores, Universidade dos Açores, 9501-801 Ponta Delgada, Portugal Received 25 July 2012; revised 25 September 2012; accepted for publication 25 September 2012 The Azores bullfinch is endemic to the island of São Miguel in the Azores archipelago and the sister species to the Eurasian bullfinch. Here we show that the spermatozoa of the two species have similar ultrastructure and gross morphology. Thus, the unusual and supposedly neotenous sperm morphology previously described for the Eurasian bullfinch appears to be an ancestral trait that evolved before the two taxa diverged. In addition, the coefficients of variation in total sperm length, both within and among males, were high in both species and exceed any previously published values for free-living passerines. Such high sperm-size variation is typically found in species with relaxed sperm competition. However, the high variance in mean sperm length among Azores bullfinches is surprising, because the trait has high heritability and this small, insular population shows clear signs of reduced genetic diversity at neutral loci. A possible explanation for this apparent contradiction is that the Azores bullfinch has retained more diversity at functional and fitness-related loci than at more neutral parts of the genome. Finally, we also present data on relative testis size and sperm swimming speed for the Eurasian bullfinch, and discuss the hypothesis that the small and putatively neotenous sperm in bullfinches has evolved in response to lack of sperm competition. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 677–687. ADDITIONAL KEYWORDS: Fringillidae – Passeriformes – sperm competition – sperm length – sperm velocity – testis size. INTRODUCTION the order Passeriformes has a unique and highly conserved sperm structure: sperm are filiform, the Sperm cells are extremely variable in shape and size head (i.e. acrosome and nucleus) is corkscrew-shaped, across the animal kingdom (Cohen, 1977; Pitnick, the midpiece is elongated and wrapped around the Hosken & Birkhead, 2009). Phylogeny explains much flagellum, and a helical membrane (microtubule of this variation, which makes sperm morphology an helix) is coiled along the length of the head and informative trait for phylogenetic inference and tax- midpiece (Koehler, 1995). This is in contrast to onomy (Jamieson, Ausió & Justine, 1995). In birds, the non-passeriform orders, in which sperm cells, while also filiform, typically have a smooth and cylin- drical head, a short midpiece, and no helical mem- *Corresponding author. E-mail: [email protected] brane (Jamieson, 2006). There are also a number © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 677–687 677 678 J. T. LIFJELD ET AL. of ultrastructural details visible through scanning (2) the Himalayan clade with the orange bullfinch (SEM) and transmission electron microscopy (TEM) (P. auranthiaca), the red-headed bullfinch (P. erythro- that make the sperm of oscine passerines (Passeri) cephala), and the grey-headed (or Beavan’s) bullfinch unique among birds, including a single, fused mito- (P. erythaca); and (3) the Southeast Asian clade with chondrion, the lack of a proximal centriole (but see the brown bullfinch (P. nipalensis) and the white- Aire & Ozegbe, 2012) and an elongated, pointed acro- cheeked bullfinch (P. leucogenis) (Töpfer et al., 2011). some (Koehler, 1995; Jamieson, 2006). Importantly, The last-named clade is more basal in the bullfinch passerine sperm vary greatly in size and dimensions phylogeny, leaving the Himalayan clade as the sister (Koehler, 1995; Jamieson, 2006; Immler & Birkhead, to the Eurasian clade. To date, sperm morphology 2007; Kleven et al., 2008): the mean total length of has not been described in these species, with the formalin-fixed sperm ranges between 40 and 280 mm exception of one individual of the grey-headed bull- among the more than 200 passerine species screened finch (see Birkhead et al., 2006). In that instance, so far in our lab (Lifjeld et al., 2010; own unpublished sperm were found to have a pointed and spiral- data). Most of this variation is attributable to the shaped head (i.e. the typical passerine head shape length of the midpiece (Immler & Birkhead, 2007), contrasting markedly with that of the Eurasian bull- which contains the fused mitochondria important for finch sperm), although sperm length was equally energy production and sperm movement (Cummins, short with an extremely small midpiece. This finding 2009). would suggest that the neotenous sperm of the Eura- One species stands out as an exception to the sian bullfinch might be an autapomorphy (i.e. con- typical passerine sperm, namely the Eurasian bull- fined to the Eurasian bullfinch only). However, more finch Pyrrhula pyrrhula (Birkhead et al., 2006, 2007). species in this genus need to be analysed before any In this species, spermatozoa are non-filiform and definitive conclusions on the evolution of the unusual have a cylindrical head with a rounded, not pointed sperm morphology in the Eurasian bullfinch can be acrosome and a very short midpiece that lacks a made. helical membrane (Birkhead et al., 2006). In addition, The Azores bullfinch is endemic to the island São ultrastructural studies reveal several primitive traits Miguel in the Azores archipelago in the Atlantic not found in other oscine passerines, including a Ocean (BirdLife International, 2010; del Hoyo et al., proximal centriole and several small mitochondria 2010). The breeding range of this species is restricted instead of one large, fused mitochondrion (Birkhead to a 100-km2 area of native laurel forest on the et al., 2007). However, the deviant structural charac- eastern side of the island, and the current population teristics of the sperm of the Eurasian bullfinch are size is estimated at about 1000–1600 individuals actually present in the spermatids (i.e. immature (Monticelli et al., 2010; Ceia et al., 2011). The species sperm) of other passerines. Thus, suppression of the has recently been downlisted from ‘Critically Endan- final stages of spermatogenesis is thought to cause gered’ to ‘Endangered’ on the IUCN Red List, as the the unusual morphology of the Eurasian bullfinch population size is considered to be stable (BirdLife sperm (Birkhead et al., 2007). It has been further International, 2010). However, the species underwent hypothesized that the neotenous sperm of this species a severe population bottleneck in the 20th century, may ultimately result from a lack of sperm competi- and the current population shows clear signs of low tion (Birkhead et al., 2006; Birkhead & Immler, 2007). genetic diversity. There seems to be only one mito- Several lines of indirect evidence, including low rela- chondrial haplotype in the current population (Töpfer tive testis mass, few sperm stored in the seminal et al., 2011; R. J. Lopes, unpubl. data). A microsatel- glomera and low sperm swimming speed (Birkhead lite analysis also revealed very low levels of hetero- et al., 2006), as well as relatively short sperm with zygosity and allelic diversity relative to continental high coefficients of intermale variation in sperm total populations of the Eurasian bullfinch (R. J. Lopes, length and size components (Calhim, Immler & Birk- unpubl. data). head, 2007), support this assumption. However, to Here we present the first description of the sperm date there are no paternity studies published on the morphology and its variation in the Azores bullfinch. species to confirm genetic monogamy. Our study has two main objectives. First, we The evolutionary origin of the unusual sperm mor- wanted to know whether the neotenous sperm mor- phology of the Eurasian bullfinch is poorly under- phology of the Eurasian bullfinch is also present in stood. According to the most recent classifications the Azores bullfinch. If so, the trait might be a (del Hoyo, Elliott & Christie, 2010; Sangster et al., synapomorphy present in the last common ancestor 2011; Gill & Donsker, 2012), the genus Pyrrhula of the entire Eurasian bullfinch clade, as opposed to consists of seven species. These species fall into three a more recent event within the Eurasian bullfinch major phylogenetic clades: (1) the Eurasian clade lineage. We studied the sperm morphology of both with P. pyrrhula and the Azores bullfinch (P. murina); species using SEM and TEM for ultrastructural © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 108, 677–687 SPERM MORPHOLOGY IN BULLFINCHES 679 details, and high-resolution light microscopy for MATERIAL AND METHODS gross morphology. Second, we wanted to examine if the Azores bull- The analyses of sperm morphology
Recommended publications
  • Species Action Plan for the Azores Bullfinch Pyrrhula Murina in the European Union (2009 - 2019)
    Species Action Plan for the Azores bullfinch Pyrrhula murina in the European Union (2009 - 2019) Prepared by: On behalf of the European Commission Species action plan for the Azores bullfinch Pyrrhula murina in the European Union The present action plan was commissioned by the European Commission and prepared by BirdLife International as subcontractor to the “N2K Group” in the frame of Service Contract N#070307/2007/488316/SER/B2 “Technical and scientific support in relation to the implementation of the 92/43 ‘Habitats’ and 79/409 ‘Birds’ Directives”. Compilers Joaquim Teodósio, SPEA, [email protected] Ricardo Ceia, [email protected] Luis Costa, SPEA, [email protected] List of Contributors Boris Barov, BirdLife International Nelson Santos DRA Rui Botelho SPEA Frederico Cardigos DRA, Hugo Laborda SPEA Catarina Quintela DRRF Jaime Ramos IMAR/Univ. de Coim- Sheila da Luz Univ. De Açores bra Paulo Cabral CMN Carlos Silva SPEA Filipe Figueiredo SPEA Sérgio Timóteo Univ. de Coim- Miguel Ferreira SPR Açores bra/SPEA Carlos Pato DRT Ruben Heleno Bristol University José Pedro Tavares RSPB Milestones in the Production of the Plan First SAP was adopted by the EU in 1996 Two evaluations of the implementation were made (2001 and 2004) 28 - 30 January 2009, Workshop LIFE Laurissilva Sustentável/ Priolo SAP, Nordeste 26 May 2009, scientific meeting on the SAP, Lisboa First draft submitted to EC: 30 June 2009 Second draft submitted to EC: 01 November 2009 Consultation workshop with main stakeholders, Ponta Delgada: 17 November 2009 Final draft: 31 January 2010 International Species Working Group n/a Reviews This Action Plan should be reviewed and updated every ten years (first review in 2019).
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • High Survival Rate of a Critically Endangered Species, the Azores
    High survival rate of a critically endangered species, the Azores Bullfinch , as a contribution to population recovery David Monticelli, Ricardo Ceia, Ruben Heleno, Hugo Laborda, Sergio Timóteo, Daniel Jareño, Geoff M. Hilton, Jaime A. Ramos To cite this version: David Monticelli, Ricardo Ceia, Ruben Heleno, Hugo Laborda, Sergio Timóteo, et al.. High survival rate of a critically endangered species, the Azores Bullfinch , as a contribution to population recov- ery. Journal für Ornithologie = Journal of Ornithology, Springer Verlag, 2010, 151 (3), pp.627-636. 10.1007/s10336-010-0501-4. hal-00570023 HAL Id: hal-00570023 https://hal.archives-ouvertes.fr/hal-00570023 Submitted on 26 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J Ornithol (2010) 151:627–636 DOI 10.1007/s10336-010-0501-4 ORIGINAL ARTICLE High survival rate of a critically endangered species, the Azores Bullfinch Pyrrhula murina, as a contribution to population recovery David Monticelli • Ricardo Ceia • Ruben Heleno • Hugo Laborda • Sergio Timo´teo • Daniel Jaren˜o • Geoff M. Hilton • Jaime A. Ramos Received: 12 May 2009 / Revised: 30 November 2009 / Accepted: 1 February 2010 / Published online: 26 February 2010 Ó Dt.
    [Show full text]
  • Distributional History of Eurasian Bullfinches, Genus Pyrrkula
    52 Vol. 51 DISTRIBUTIONAL HISTORY OF EURASIAN BULLFINCHES, GENUS PYRRHULA By K. H. VOOUS Recently I have tried to reconstruct the distributional and evolutionary history of the genus Dendrocopos, pied woodpeckers (Voous, 1947). The aim of the following study, which is an attempt to reconstruct the course of the same phenomena in the genus Pywhula, bullfinches, is to ascertain whether the conclusions arrived at in the case of the Palearctic and Oriental members of Dendrocopos have a general value. As in the work on Dercdrocopos,patterns of recent geographical and ecological distribution and of character geography have furnished the basic facts of this study. The genus Pyrrhda has been chosen as the subject of this study because (1) its characteristics, which are well defined, clearly set it apart from other genera; (2) it has only a few members; (3) its taxonomy as well as (4) its geographical distribution do not show conspicuous complications; and (5) its members are exclusive inhabitants of forests, although they regularly descend to the ground for feeding. Only in the case of the European species was it necessary to make a thorough ex- amination of subspecies.In preparing this part I had the privilege of collaborating with Mr. P. A. Clancey of Glasgow. I am greatly indebted to him for his kind help. In this paper I have made use of the following terms as defined by Ripley (1945) : Interspecies: a species group or sympatric subgenus, containing a group of closely related, geographically overlapping species which have attained physiological isolation in nature. Emerge& interspecies: a speciesgroup containing a number of closely related, geo- graphically overlapping specieswith a marginal fringe of hybridization.
    [Show full text]
  • Northern Bullfinch Pyrrhula P. Pyrrhula Irruptive Behaviour Linked to Rowanberry Sorbus Aucuparia Abundance
    Ornis Fennica 86:51–60. 2009 Northern Bullfinch Pyrrhula p. pyrrhula irruptive behaviour linked to rowanberry Sorbus aucuparia abundance Anthony D. Fox, Sverre Kobro, Aleksi Lehikoinen, Peter Lyngs & Risto A. Väisänen A. D. Fox, Department of Wildlife Ecology and Biodiversity, National Environmental Re- search Institute, University of Aarhus, Kalø, Grenåvej 14, DK-8410 Rønde, Denmark. E-mail: [email protected]. (correspondence author) S. Kobro, Bioforsk, Plant Health and Plant Protection Division, Høgskoleveien 7, N-1432 Ås, Norway A. Lehikoinen, Bird Ecology Unit, Department of Biological and Environmental Sci- ences, P.O. Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Finland P. Lyngs, Christiansøs Naturvidenskabelige Feltstation. Christiansø 97, DK-3760 pr Gudhjem, Denmark R. A. Väisänen, Zoological Museum, Finnish Museum of Natural History, P.O. Box 17 (P. Rautatiekatu 13), FI-00014 University of Helsinki, Finland Received 23 December 2008, revised 15 April 2009, accepted 28 April 2009 Autumn Northern Bullfinch abundance at bird observatories around the Baltic Sea con- firmed periodic irruptive behaviour outside of its normal wintering range, but age-ratio data suggested dispersal was not linked to reproductive success. Rowan berries are im- portant food of Fennoscandian Northern Bullfinches and show synchronised masting in annual fruit production over large spatial scales. Norwegian and Finnish annual berry abundance indices from 1972–2004 were used to test the hypothesis that poor rowanberry production in normal wintering areas was responsible for efflux of birds to other areas. Annual Finnish wintering bird surveys and catches at local bird observatories correlated with rowanberry abundance indices, supporting the prediction that highest Bullfinch abundance would occur in normal wintering areas in years with heavy rowanberry crops.
    [Show full text]
  • Birdwatching in Portugal
    birdwatchingIN PORTUGAL In this guide, you will find 36 places of interest 03 - for birdwatchers and seven suggestions of itineraries you may wish to follow. 02 Accept the challenge and venture forth around Portugal in search of our birdlife. birdwatching IN PORTUGAL Published by Turismo de Portugal, with technical support from Sociedade Portuguesa para o Estudo das Aves (SPEA) PHOTOGRAPHY Ana Isabel Fagundes © Andy Hay, rspb-images.com Carlos Cabral Faisca Helder Costa Joaquim Teodósio Pedro Monteiro PLGeraldes SPEA/DLeitão Vitor Maia Gerbrand AM Michielsen TEXT Domingos Leitão Alexandra Lopes Ana Isabel Fagundes Cátia Gouveia Carlos Pereira GRP A HIC DESIGN Terradesign Jangada | PLGeraldes 05 - birdwatching 04 Orphean Warbler, Spanish Sparrow). The coastal strip is the preferred place of migration for thousands of birds from dozens of different species. Hundreds of thousands of sea and coastal birds (gannets, shear- waters, sandpipers, plovers and terns), birds of prey (eagles and harriers), small birds (swallows, pipits, warblers, thrushes and shrikes) cross over our territory twice a year, flying between their breeding grounds in Europe and their winter stays in Africa. ortugal is situated in the Mediterranean region, which is one of the world’s most im- In the archipelagos of the Azores and Madeira, there p portant areas in terms of biodiversity. Its are important colonies of seabirds, such as the Cory’s landscape is very varied, with mountains and plains, Shearwater, Bulwer’s Petrel and Roseate Tern. There are hidden valleys and meadowland, extensive forests also some endemic species on the islands, such as the and groves, rocky coasts and never-ending beaches Madeiran Storm Petrel, Madeiran Laurel Pigeon, Ma- that stretch into the distance, estuaries, river deltas deiran Firecrest or the Azores Bullfinch.
    [Show full text]
  • Birds of Anchorage Checklist
    ACCIDENTAL, CASUAL, UNSUBSTANTIATED KEY THRUSHES J F M A M J J A S O N D n Casual: Occasionally seen, but not every year Northern Wheatear N n Accidental: Only one or two ever seen here Townsend’s Solitaire N X Unsubstantiated: no photographic or sample evidence to support sighting Gray-cheeked Thrush N W Listed on the Audubon Alaska WatchList of declining or threatened species Birds of Swainson’s Thrush N Hermit Thrush N Spring: March 16–May 31, Summer: June 1–July 31, American Robin N Fall: August 1–November 30, Winter: December 1–March 15 Anchorage, Alaska Varied Thrush N W STARLINGS SPRING SUMMER FALL WINTER SPECIES SPECIES SPRING SUMMER FALL WINTER European Starling N CHECKLIST Ross's Goose Vaux's Swift PIPITS Emperor Goose W Anna's Hummingbird The Anchorage area offers a surprising American Pipit N Cinnamon Teal Costa's Hummingbird Tufted Duck Red-breasted Sapsucker WAXWINGS diversity of habitat from tidal mudflats along Steller's Eider W Yellow-bellied Sapsucker Bohemian Waxwing N Common Eider W Willow Flycatcher the coast to alpine habitat in the Chugach BUNTINGS Ruddy Duck Least Flycatcher John Schoen Lapland Longspur Pied-billed Grebe Hammond's Flycatcher Mountains bordering the city. Fork-tailed Storm-Petrel Eastern Kingbird BOHEMIAN WAXWING Snow Bunting N Leach's Storm-Petrel Western Kingbird WARBLERS Pelagic Cormorant Brown Shrike Red-faced Cormorant W Cassin's Vireo Northern Waterthrush N For more information on Alaska bird festivals Orange-crowned Warbler N Great Egret Warbling Vireo Swainson's Hawk Red-eyed Vireo and birding maps for Anchorage, Fairbanks, Yellow Warbler N American Coot Purple Martin and Kodiak, contact Audubon Alaska at Blackpoll Warbler N W Sora Pacific Wren www.AudubonAlaska.org or 907-276-7034.
    [Show full text]
  • Bird Checklists of the World Country Or Region: Myanmar
    Avibase Page 1of 30 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Myanmar 2 Number of species: 1088 3 Number of endemics: 5 4 Number of breeding endemics: 0 5 Number of introduced species: 1 6 7 8 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Myanmar. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN&region=mm [23/09/2021]. Make your observations count! Submit your data to ebird.
    [Show full text]
  • Status and Phylogenetic Analyses of Endemic Birds of the Himalayan Region
    Pakistan J. Zool., vol. 47(2), pp. 417-426, 2015. Status and Phylogenetic Analyses of Endemic Birds of the Himalayan Region M.L. Thakur* and Vineet Negi Himachal Pradesh State Biodiversity Board; Department of Environment, Science & Technology, Shimla-171 002 (HP), India Abstract.- Status and distribution of 35 species of birds endemic to Himalayas has been analysed during the present effort. Of these, relatively very high percentage i.e. 46% (16 species) is placed under different threat categories. Population of 24 species (74%) is decreasing. A very high percentage of these Himalayan endemics (88%) are dependent on forests. Population size of most of these bird species (22 species) is not known. Population size of some bird species is very small. Distribution area size of some of the species is also very small. Three species of endemic birds viz., Callacanthis burtoni, Pyrrhula aurantiaca and Pnoepyga immaculata appear to have followed some independent evolutionary lineage and also remained comparatively stable over the period of time. Three different evolutionary clades of the endemic bird species have been observed on the basis of phylogenetic tree analyses. Analyses of length of branches of the phylogenetic tree showed that the three latest entries in endemic bird fauna of Himalayan region i.e. Catreus wallichii, Lophophorus sclateri and Tragopan blythii have been categorised as vulnerable and therefore need the highest level of protection. Key Words: Endemic birds, Himalayan region, conservation status, phylogeny. INTRODUCTION broadleaved forests in the mid hills, mixed conifer and coniferous forests in the higher hills, and alpine meadows above the treeline mainly due to abrupt The Himalayas, one of the hotspots of rise of the Himalayan mountains from less than 500 biodiversity, include all of the world's mountain meters to more than 8,000 meters (Conservation peaks higher than 8,000 meters, are stretched in an International, 2012).
    [Show full text]
  • Federal Register/Vol. 85, No. 74/Thursday, April 16, 2020/Rules
    21282 Federal Register / Vol. 85, No. 74 / Thursday, April 16, 2020 / Rules and Regulations DEPARTMENT OF THE INTERIOR United States and the Government of United States or U.S. territories as a Canada Amending the 1916 Convention result of recent taxonomic changes; Fish and Wildlife Service between the United Kingdom and the (8) Change the common (English) United States of America for the names of 43 species to conform to 50 CFR Part 10 Protection of Migratory Birds, Sen. accepted use; and (9) Change the scientific names of 135 [Docket No. FWS–HQ–MB–2018–0047; Treaty Doc. 104–28 (December 14, FXMB 12320900000//201//FF09M29000] 1995); species to conform to accepted use. (2) Mexico: Convention between the The List of Migratory Birds (50 CFR RIN 1018–BC67 United States and Mexico for the 10.13) was last revised on November 1, Protection of Migratory Birds and Game 2013 (78 FR 65844). The amendments in General Provisions; Revised List of this rule were necessitated by nine Migratory Birds Mammals, February 7, 1936, 50 Stat. 1311 (T.S. No. 912), as amended by published supplements to the 7th (1998) AGENCY: Fish and Wildlife Service, Protocol with Mexico amending edition of the American Ornithologists’ Interior. Convention for Protection of Migratory Union (AOU, now recognized as the American Ornithological Society (AOS)) ACTION: Final rule. Birds and Game Mammals, Sen. Treaty Doc. 105–26 (May 5, 1997); Check-list of North American Birds (AOU 2011, AOU 2012, AOU 2013, SUMMARY: We, the U.S. Fish and (3) Japan: Convention between the AOU 2014, AOU 2015, AOU 2016, AOS Wildlife Service (Service), revise the Government of the United States of 2017, AOS 2018, and AOS 2019) and List of Migratory Birds protected by the America and the Government of Japan the 2017 publication of the Clements Migratory Bird Treaty Act (MBTA) by for the Protection of Migratory Birds and Checklist of Birds of the World both adding and removing species.
    [Show full text]
  • Žƶƌŷăů ŽĨ Dśƌğăƚğŷğě Dădžă
    KWE^^ ůůĂƌƟĐůĞƐƉƵďůŝƐŚĞĚŝŶƚŚĞ:ŽƵƌŶĂůŽĨdŚƌĞĂƚĞŶĞĚdĂdžĂĂƌĞƌĞŐŝƐƚĞƌĞĚƵŶĚĞƌƌĞĂƟǀĞŽŵŵŽŶƐƩƌŝďƵƟŽŶϰ͘Ϭ/ŶƚĞƌŶĂͲ ƟŽŶĂů>ŝĐĞŶƐĞƵŶůĞƐƐŽƚŚĞƌǁŝƐĞŵĞŶƟŽŶĞĚ͘:ŽddĂůůŽǁƐƵŶƌĞƐƚƌŝĐƚĞĚƵƐĞŽĨĂƌƟĐůĞƐŝŶĂŶLJŵĞĚŝƵŵ͕ƌĞƉƌŽĚƵĐƟŽŶĂŶĚ ĚŝƐƚƌŝďƵƟŽŶďLJƉƌŽǀŝĚŝŶŐĂĚĞƋƵĂƚĞĐƌĞĚŝƚƚŽƚŚĞĂƵƚŚŽƌƐĂŶĚƚŚĞƐŽƵƌĐĞŽĨƉƵďůŝĐĂƟŽŶ͘ :ŽƵƌŶĂůŽĨdŚƌĞĂƚĞŶĞĚdĂdžĂ dŚĞŝŶƚĞƌŶĂƟŽŶĂůũŽƵƌŶĂůŽĨĐŽŶƐĞƌǀĂƟŽŶĂŶĚƚĂdžŽŶŽŵLJ ǁǁǁ͘ƚŚƌĞĂƚĞŶĞĚƚĂdžĂ͘ŽƌŐ /^^EϬϵϳϰͲϳϵϬϳ;KŶůŝŶĞͿͮ/^^EϬϵϳϰͲϳϴϵϯ;WƌŝŶƚͿ ÊÃÃçÄ®ã®ÊÄ ò®¥çÄÊ¥«Ã®ÝãÙ®ã͕,®Ã«½WÙÝ«͕/Ä®ó®ã« ÃÖ«Ý®ÝÊÄ<½ãÊÖͲ<«¹¹®Ùt®½½®¥^ÄãçÙùÄ®ãÝ ÝçÙÙÊçÄ®Ä¦Ý dĂƌŝƋŚŵĞĚ^ŚĂŚ͕sŝƐŚĂůŚƵũĂ͕DĂƌƟŶĂŶĂŶĚĂŵΘŚĞůŵĂůĂ ^ƌŝŶŝǀĂƐƵůƵ Ϯϲ:ĂŶƵĂƌLJϮϬϭϲͮsŽů͘ϴͮEŽ͘ϭͮWƉ͘ϴϯϯϯʹϴϯϱϳ ϭϬ͘ϭϭϲϬϵͬũŽƩ͘ϭϳϳϰ͘ϴ͘ϭ͘ϴϯϯϯͲϴϯϱϳ &Žƌ&ŽĐƵƐ͕^ĐŽƉĞ͕ŝŵƐ͕WŽůŝĐŝĞƐĂŶĚ'ƵŝĚĞůŝŶĞƐǀŝƐŝƚŚƩƉ͗ͬͬƚŚƌĞĂƚĞŶĞĚƚĂdžĂ͘ŽƌŐͬďŽƵƚͺ:Ždd͘ĂƐƉ &ŽƌƌƟĐůĞ^ƵďŵŝƐƐŝŽŶ'ƵŝĚĞůŝŶĞƐǀŝƐŝƚŚƩƉ͗ͬͬƚŚƌĞĂƚĞŶĞĚƚĂdžĂ͘ŽƌŐͬ^ƵďŵŝƐƐŝŽŶͺ'ƵŝĚĞůŝŶĞƐ͘ĂƐƉ &ŽƌWŽůŝĐŝĞƐĂŐĂŝŶƐƚ^ĐŝĞŶƟĮĐDŝƐĐŽŶĚƵĐƚǀŝƐŝƚ ŚƩƉ͗ͬͬƚŚƌĞĂƚĞŶĞĚƚĂdžĂ͘ŽƌŐͬ:ŽddͺWŽůŝĐLJͺĂŐĂŝŶƐƚͺ^ĐŝĞŶƟĮĐͺDŝƐĐŽŶĚƵĐƚ͘ĂƐƉ &ŽƌƌĞƉƌŝŶƚƐĐŽŶƚĂĐƚфŝŶĨŽΛƚŚƌĞĂƚĞŶĞĚƚĂdžĂ͘ŽƌŐх WƵďůŝƐŚĞƌͬ,ŽƐƚ WĂƌƚŶĞƌ dŚƌĞĂƚĞŶĞĚTaxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 January 2016 | 8(1): 8333–8357 Avifauna of Chamba District, Himachal Pradesh, India with emphasis on Kalatop-Khajjiar Wildlife Sanctuary and its Communication surroundings ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) Tariq Ahmed Shah 1, Vishal Ahuja 2, Martina Anandam 3 & Chelmala Srinivasulu 4 OPEN ACCESS 1,2,3 Field Research Division, Wildlife Information Liaison Development (WILD) Society, 96 Kumudham Nagar, Vilankurichi Road, Coimbatore, Tamil Nadu 641035, India 1,4 Natural History Museum and Wildlife
    [Show full text]
  • State-Of-The-World's-Birds-14-30
    STATE | WHAT WE KNOW ABOUT THE CONSERVATION STATUS OF BIRDS CASE STUDY 17 ESSENTIAL Many IBAs are in danger The current list of IBAs in Danger includes 338 sites in 81 countries and territories worldwide. ECOSYSTEMS All face intense threats and need urgent attention. Examples from across each region highlight ARE IN PERIL the diversity of pressures and the urgency with which actions are required. Healthy, intact habitats are essential not CASE STUDY 16 E ETA TE E E A AA Gediz Delta is a stronghold for threatened Boeung Prek Lapouv is one of the last remnants only for securing the future of birds and Many IBAs remain unprotected waterbirds such as Dalmatian Pelican Pelecanus of seasonally inundated wet grassland in the other wildlife, but also for providing the crispus and Red-breasted Goose Branta Lower Mekong in Cambodia. It supports over Many IBAs still lack legal protection and adequate ruficollis, and a vital wintering and stopover site half of the Mekong’s population of the vital ecosystem services that sustain local management. The IBA Protection Index shows for the Greater Flamingo Phoenicopterus roseus Vulnerable Sarus Crane Antigone antigone. It is (holding 5-10% of the global population). The under threat from an irrigation scheme that communities and that ultimately keep our that 80% of IBAs are inadequately covered site is threatened by a proposed mega bridge has greatly reduced the cranes’ feeding habitat. planet habitable. Unfortunately, many key by protected areas and one third are entirely project, which would result in the loss of breeding and foraging areas for birds.
    [Show full text]