The Biology of Hagfishes the Biology of Hagfishes

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of Hagfishes the Biology of Hagfishes THE BIOLOGY OF HAGFISHES THE BIOLOGY OF HAGFISHES J0RGEN M0RUP J0RGENSEN, JENS PETER LOMHOLT, ROY E. WEBER and HANSMALTE Department of Zoophysiology Institute of Biological Sciences University of Aarhus Denmark luni Springer-Science+Business Media, B.V. Published by Chapman and HaU, an imprint of Thomson Science, 2--6 Boundary Row, London SEl 8HN, UK Thomson Science, 2-6 Boundary Row, London SEl 8HN, UK Thomson Science, 115 Fifth Avenue, New York, NY 10003, USA Thomson Science, Suite 750, 400 Market Street, Philadelphia, PA 19106, USA Thomson Science, Pappelallee 3, 694469 Weinheim, Germany First edition 1998 © 1998 Springer Science+ Business Media Dordrecht OriginaUy published by Chapman & HaU Ltdin 1998 Softcover reprint of the hardcover 1st edition 1998 Typeset in 10112pt Palatino by Cambrian Typesetters, Frimley, Surrey ISBN 978-94-010-6465-1 ISBN 978-94-011-5834-3 (eBook) DOI 10.1007/978-94-011-5834-3 AII rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, e1e~tronic, mechanical, photocopying, recording or otherwise, without the prior written permis sion of the publishers. Applications for permission shou1d be addressed to the rights manager at the London address of the publisher. The publisher makes no representation, express or imp1ied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. A catalogue record for this book is available from the British Library Library ofCongress Catalog Card Number: 97-69524 8 Printed on acid-free text paper, manufactured in accordance with ANSIINISO Z39.48-1992 (Permanence of Paper). CONTENTS List of contributors Vll Editors' preface xii Introduction: Early hagfish research Ragnar Fiinge xiii Part One Evolution, Taxonomy and Ecology 1 1 Relationships of living and fossil hagfishes David Bardack 3 2 Conodonts: a sister group to hagfishes? Richard]. Aldridge and Philip c.]. Donoghue 15 3 Hagfish systematics Bo Fernholm 33 4 Asian hagfishes and their fisheries biology Yoshiharu Honma 45 5 The ecology of hagfishes Frederic H. Martini 57 Part Two Development and Pathology 79 6 Chromatin diminution and chromosome elimination in hagfishes Sei-ichi Kohno, Souichirou Kubota and Yasuharu Nakai 81 7 The tumour pathology of Myxine glutinosa Sture Falkmer 101 Part Three The Integument and Associated Glands 107 8 Hagfish skin and slime glands Robert H. Spitzer and Elizabeth A. Koch 109 9 The dermis Ulrich Welsch, Simone Buehl and Rainer Erlinger 133 Part Four Supporting Tissues 143 10 The notochord Ulrich Welsch, Akira Chiba and Yoshiharu Honma 145 11 Hagfish cartilage Glenda M. Wright, Fred W. Keeley and M. Edwin DeMont 160 Part Five The Muscular System 171 12 The skeletal muscle fibre types of Myxine glutinosa Per R. Flood 173 Part Six The Respiratory System 203 13 The gills of hagfishes Helmut Bartels 205 14 Ventilation and gas exchange Hans Malte and Jens Peter Lomholt 223 Part Seven The Cardiovascular System 235 15 Cardiovascular function in hag fishes Malcolm E. Forster 237 16 The sinus system of hagfishes -lymphatic or secondary circulatory system? Jens Peter Lomholt and Frida Franko-Dossar 259 17 Dermal capillaries Ulrich Welsch and Ian C. Potter 273 vi Contents Part Eight The blood and Immune System 285 18 Hagfish blood cells and their formation Ragnar Fiinge 287 19 Volume regulation in red blood cells Niels Dohn and Hans Malte 300 20 Transport of bicarbonate, other ions and substrates across the red blood cell membrane of hagfishes Thomas Peters and Gerolf Gros 307 21 Hagfish haemoglobins Angela Fago and Roy E. Weber 321 22 The hagfish immune system Robert L. Raison and Nicholas J. dos Remedios 334 Part Nine The Uro-genital System 345 23 The hagfish kidney as a model to study renal physiology and toxicology Luder M. Fels, Sabine Kastner and Hilmar Stolte 347 24 An analysis of the function of the glomeruli of the hagfish mesonephric kidney Jay A. Riegel 364 25 Gonads and reproduction in hagfishes Robert A. Patzner 378 Part Ten The Endocrine System 397 26 The endocrine system of hag fishes Michael C. Thorndyke and Sture Falkmer 399 27 The control of catecholamine secretion in hagfishes Nicholas J. Bernier and Steve F. Perry 413 Part Eleven The Nervous System 429 28 Ontogeny of the head and nervous system of myxinoids Helmut Wicht and Udo Tusch 431 29 The central nervous system of hagfishes Mark Ronan and R. Glenn Northcutt 451 30 The autonomic nervous system and chromaffin tissue in hagfishes Stefan Nilsson and Susanne Holmgren 478 Part Twelve The Sensory Organs 495 31 Skin sensory organs in the Atlantic hagfish Myxine glutinosa Monika von During and Karl H. Andres 497 32 Cutaneous exteroreceptors and their innervation in hagfishes Christopher B. Braun and R. Glenn Northcutt 510 33 The olfactory system of hagfishes Kjell B. DelVing 531 34 The eyes of hagfishes N. Adam Locket and JfJrgen MfJrup JfJrgensen 539 35 Structure of the hagfish inner ear JfJrgen MfJrup JfJrgensen 555 36 Physiology of the inner ear Alistair R. McVean 562 LIST OF CONTRIBUTORS Richard J. Aldridge Christopher B. Braun Department of Geology Parmly Hearing Institute University of Leicester Loyola University Chicago University Road 6525 N. Sheridan Rd Leicester LE1 7RH Chicago IL 60626 United Kingdom USA E-mail: [email protected] E-mail: [email protected] Karl H. Andres Simone Buehl Abt. fur Neuroanatomie Anatomische Anstalt, Lehrstuhl II Institut fur Anatomie Pettenkoferstrasse 11 Ruhr-Universitat Bochum Ludwig-Maximilians-Universitat Munchen Universitatsstrasse 150 D-80336 D-44780 Bochum Deutschland (Germany) Deutschland (Germany) Akira Chiba E-mail: [email protected] Department of Histology David Bardack Nippon Dental University Department of Biological 1-8 Hamaura-Cho Sciences (M/C 066) Niigata, 951 University of Illinois at Chicago Japan 845 West Taylor Street M. Edwin DeMont Chicago, Illinois 60607-7060 Department of Biology USA St Francis Xavier University E-mail: [email protected] Antigonish, Nova Scotia B2G 2W5 Canada Helmut Bartels E-mail: [email protected] Anatomische Anstalt Universitat Munchen Niels Dohn Pettenkoferstrasse 11 Department of Zoophysiology D-80336 Munchen Institute of Biological Sciences Deutschland (Germany) University of Aarhus Fax: +498951604857 Universitetsparken, building 131 E-mail: [email protected] DK-8000 Aarhus C Danmark (Denmark) Nicholas J. Bernier Department of Biology Philip c.J. Donoghue University of Ottawa School of Earth Sciences 30 Marie Curie University of Birmingham PO Box 450 STN A Edgbaston Ottawa ON K1N 6N5 Birmingham B15 2TT Canada United Kingdom E-mail: [email protected] E-mail: [email protected] viii List of contributors Monika von During Luder M. Fels Abt. fur Neuroanatomie Abteilung fur Nephrologie Institut fur Anatomie Arbeitsbereich Experimentelle Nephrologie Ruhr-Universitat Bochum Medizinische Hochschule Hannover Universitatsstrasse 150 MA6/162 Carl-Neuberg-Strassel 0-44780 Bochum 0-30625 Hannover Deutschland (Germany) Deutschland (Germany) Fax: +49 234 709 4457 Fax: +49 511 5323 780 E-mail: [email protected]­ bochum-de BoFemholm Sektionen for Vertebratzoologi Naturhistoriska Riksmuseet Kjell B. Daving Box 50007 A vdeling for generell fysiologi 5-104 05 Stockholm Biologisk Institut Sverige (Sweden) Universitetet i Oslo E-mail: VE-Bo@NRMSE PO Box 1051 N-0316 Oslo Norge (Norway) Per R. Flood Fax: +472285 4664 Zoologisk Institut E-mail: [email protected] Allegaten 41 N-5007 Bergen Norge (Norway) Rainer Erlinger E-mail: [email protected] Anatomische Anstalt, Lehrstuhl II Ludwig-Maximilians-Universitat Munchen Malcolm E. Forster Pettenkoferstrasse 11 Department of Zoology 0-80336 M unchen University of Canterbury Deutschland (Germany) Private Bag 4800 Christchurch New Zealand Angela Fago E-mail: [email protected] Department of Zoophysiology Institute of Biological Sciences University of Aarhus Frida Franko-Dossar Universitetsparken, building 131 Department of Zoophysiology DK-8000 Aarhus C Institute of Biological Sciences Danmark (Denmark) University of Aarhus E-mail: [email protected] Universitetsparken, building 131 DK-8000 Aarhus C Danmark (Denmark) Sture Falkmer Institute of Morphology and Pathology Regionsykehuset i Trondheim Ragnar Fange N-7006 Trondheim Storangsgatan 24 Norge (Norway) 5-413 19 Goteborg E-mail: [email protected] Sverige (Sweden) List of contributors ix Gerolf Gros Elizabeth A. Koch Abteilung Vegetative Physiologie Department of Biological Chemistry Zentrum Physiologie The Chicago Medical School Medizinische Hochschule Hannover Finch University of Health Sciences Postfach 61 01 80 3333 Green Bay Road 0-30623 Hannover North Chicago, Illinois 60064-3095 Deutschland (Germany) USA Fax: +49 511 532 2938 E-mail: [email protected] E-mail: [email protected] Susanne Holmgren, Dr Zoofysiologiska A vdelningen Sei-ichi Kohno Zoologiska Institutionen Department of Biology Goteborgs Universitet Faculty of Science Medicinaregatan 18 Toho University S-413 90 Goteborg Miyama 2-2-1, Funabashi, Sverige (Sweden) Chiba 274 E-mail: [email protected] Japan E-mail: [email protected] Yoshiharu Honma, Dr 3460-55 Inarimachi Niigata, 951 Souichirou Kubota Japan Department of Biology Jorgen Morup Jorgensen Faculty of Science Department of Zoophysiology Toho University Institute of Biological Sciences Miyama 2-2-1, Funabashi, University of Aarhus Chiba 274
Recommended publications
  • Stomach Content Analysis of Short-Finned Pilot Whales
    f MARCH 1986 STOMACH CONTENT ANALYSIS OF SHORT-FINNED PILOT WHALES h (Globicephala macrorhynchus) AND NORTHERN ELEPHANT SEALS (Mirounga angustirostris) FROM THE SOUTHERN CALIFORNIA BIGHT by Elizabeth S. Hacker ADMINISTRATIVE REPORT LJ-86-08C f This Administrative Report is issued as an informal document to ensure prompt dissemination of preliminary results, interim reports and special studies. We recommend that it not be abstracted or cited. STOMACH CONTENT ANALYSIS OF SHORT-FINNED PILOT WHALES (GLOBICEPHALA MACRORHYNCHUS) AND NORTHERN ELEPHANT SEALS (MIROUNGA ANGUSTIROSTRIS) FROM THE SOUTHERN CALIFORNIA BIGHT Elizabeth S. Hacker College of Oceanography Oregon State University Corvallis, Oregon 97331 March 1986 S H i I , LIBRARY >66 MAR 0 2 2007 ‘ National uooarac & Atmospheric Administration U.S. Dept, of Commerce This report was prepared by Elizabeth S. Hacker under contract No. 84-ABA-02592 for the National Marine Fisheries Service, Southwest Fisheries Center, La Jolla, California. The statements, findings, conclusions and recommendations herein are those of the author and do not necessarily reflect the views of the National Marine Fisheries Service. Charles W. Oliver of the Southwest Fisheries Center served as Contract Officer's Technical Representative for this contract. ADMINISTRATIVE REPORT LJ-86-08C CONTENTS PAGE INTRODUCTION.................. 1 METHODS....................... 2 Sample Collection........ 2 Sample Identification.... 2 Sample Analysis.......... 3 RESULTS....................... 3 Globicephala macrorhynchus 3 Mirounga angustirostris... 4 DISCUSSION.................... 6 ACKNOWLEDGEMENTS.............. 11 REFERENCES.............. 12 i LIST OF TABLES TABLE PAGE 1 Collection data for Globicephala macrorhynchus examined from the Southern California Bight........ 19 2 Collection data for Mirounga angustirostris examined from the Southern California Bight........ 20 3 Stomach contents of Globicephala macrorhynchus examined from the Southern California Bight.......
    [Show full text]
  • Lamprey, Hagfish
    Agnatha - Lamprey, Kingdom: Animalia Phylum: Chordata Super Class: Agnatha Hagfish Agnatha are jawless fish. Lampreys and hagfish are in this class. Members of the agnatha class are probably the earliest vertebrates. Scientists have found fossils of agnathan species from the late Cambrian Period that occurred 500 million years ago. Members of this class of fish don't have paired fins or a stomach. Adults and larvae have a notochord. A notochord is a flexible rod-like cord of cells that provides the main support for the body of an organism during its embryonic stage. A notochord is found in all chordates. Most agnathans have a skeleton made of cartilage and seven or more paired gill pockets. They have a light sensitive pineal eye. A pineal eye is a third eye in front of the pineal gland. Fertilization of eggs takes place outside the body. The lamprey looks like an eel, but it has a jawless sucking mouth that it attaches to a fish. It is a parasite and sucks tissue and fluids out of the fish it is attached to. The lamprey's mouth has a ring of cartilage that supports it and rows of horny teeth that it uses to latch on to a fish. Lampreys are found in temperate rivers and coastal seas and can range in size from 5 to 40 inches. Lampreys begin their lives as freshwater larvae. In the larval stage, lamprey usually are found on muddy river and lake bottoms where they filter feed on microorganisms. The larval stage can last as long as seven years! At the end of the larval state, the lamprey changes into an eel- like creature that swims and usually attaches itself to a fish.
    [Show full text]
  • Reporting for the Period from May 2015-April 2016
    Washington Contribution to the 2016 Meeting of the Technical Sub-Committee (TSC) of the Canada-U.S. Groundfish Committee: Reporting for the period from May 2015-April 2016 April 26th-27th, 2016 Edited by: Dayv Lowry Contributions by: Dayv Lowry Robert Pacunski Lorna Wargo Mike Burger Taylor Frierson Todd Sandell Jen Blaine Brad Speidel Larry LeClair Phil Weyland Donna Downs Theresa Tsou Washington Department of Fish and Wildlife April 2016 Contents I. Agency Overview.....................................................................................................................3 II. Surveys.....................................................................................................................................4 III. Reserves..............................................................................................................................16 IV. Review of Agency Groundfish Research, Assessment, and Management.........................16 A. Hagfish............................................................................................................................16 B. North Pacific Spiny Dogfish and other sharks................................................................20 C. Skates..............................................................................................................................20 D. Pacific Cod......................................................................................................................20 E. Walleye Pollock..............................................................................................................21
    [Show full text]
  • Eptatretus Stoutii)
    CARDIAC CONTROL IN THE PACIFIC HAGFISH (EPTATRETUS STOUTII) by Christopher Mark Wilson B.Sc., University of Manchester, 2007 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate and Postdoctoral Studies (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2014 © Christopher Mark Wilson, 2014 ABSTRACT The Pacific hagfish (Eptatretus stoutii), being an extant ancestral craniate, possesses the most ancestral craniate-type heart with valved chambers, a response to increased filling pressure with increased stroke volume (Frank-Starling mechanism), and myogenic contractions. Unlike all other known craniate hearts, this heart receives no direct neural stimulation. Despite this, heart rate can vary four-fold during a prolonged, 36-h anoxic challenge followed by a normoxic recovery period, with heart rate decreasing in anoxia, and increasing beyond routine rates during recovery, a remarkable feat for an aneural heart. This thesis is a study of how the hagfish can regulate heart rate without the assistance of neural stimulation. A major role of hyperpolarization-activated cyclic nucleotide-activated (HCN) channels in heartbeat initiation was indicated by pharmacological application of zatebradine to spontaneously contracting, isolated hearts, which stopped atrial contraction and vastly reduced ventricular contraction. Tetrodotoxin inhibition of voltage-gated Na+ channels induced an atrioventricular block suggesting these channels play a role in cardiac conduction. Partial cloning of HCN channel mRNA extracted from hagfish hearts revealed six HCN isoforms, two hagfish representatives of vertebrate HCN2 (HCN2a and HCN2b), three of HCN3 (HCN3a, HCN3b and HCN3c) and one HCN4. Two paralogs of HCN3b were discovered, however, HCN3a dominated the expression of ii HCN isoforms followed by HCN4.
    [Show full text]
  • Evaluation of O2 Uptake in Pacific Hagfish Refutes a Major Respiratory Role for the Skin Alexander M
    © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 2814-2818 doi:10.1242/jeb.141598 SHORT COMMUNICATION It’s all in the gills: evaluation of O2 uptake in Pacific hagfish refutes a major respiratory role for the skin Alexander M. Clifford1,2,*, Alex M. Zimmer2,3, Chris M. Wood2,3 and Greg G. Goss1,2 ABSTRACT hagfishes, citing the impracticality for O2 exchange across the – Hagfish skin has been reported as an important site for ammonia 70 100 µm epidermal layer, perfusion of capillaries with arterial excretion and as the major site of systemic oxygen acquisition. blood of high PO2 and the impact of skin boundary layers on diffusion. However, whether cutaneous O2 uptake is the dominant route of uptake remains under debate; all evidence supporting this Here, we used custom-designed respirometry chambers to isolate hypothesis has been derived using indirect measurements. Here, anterior (branchial+cutaneous) and posterior (cutaneous) regions of we used partitioned chambers and direct measurements of oxygen Pacific hagfish [Eptatretus stoutii (Lockington 1878)] to partition whole-animal Ṁ and ammonia excretion (J ). Exercise consumption and ammonia excretion to quantify cutaneous and O2 ̇ Amm branchial exchanges in Pacific hagfish (Eptatretus stoutii) at rest and typically leads to increases in MO2 and JAmm during post-exercise following exhaustive exercise. Hagfish primarily relied on the gills for recovery; therefore, we employed exhaustive exercise to determine the relative contribution of the gills and skin to elevations in both O2 uptake (81.0%) and ammonia excretion (70.7%). Following metabolic demand. Given that skin is proposed as the primary site exercise, both O2 uptake and ammonia excretion increased, but only ̇ across the gill; cutaneous exchange was not increased.
    [Show full text]
  • Using Information in Taxonomists' Heads to Resolve Hagfish And
    This article was downloaded by: [Max Planck Inst fuer Evolutionsbiologie] On: 03 September 2013, At: 07:01 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Historical Biology: An International Journal of Paleobiology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ghbi20 Using information in taxonomists’ heads to resolve hagfish and lamprey relationships and recapitulate craniate–vertebrate phylogenetic history Maria Abou Chakra a , Brian Keith Hall b & Johnny Ricky Stone a b c d a Department of Biology , McMaster University , Hamilton , Canada b Department of Biology , Dalhousie University , Halifax , Canada c Origins Institute, McMaster University , Hamilton , Canada d SHARCNet, McMaster University , Hamilton , Canada Published online: 02 Sep 2013. To cite this article: Historical Biology (2013): Using information in taxonomists’ heads to resolve hagfish and lamprey relationships and recapitulate craniate–vertebrate phylogenetic history, Historical Biology: An International Journal of Paleobiology To link to this article: http://dx.doi.org/10.1080/08912963.2013.825792 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.
    [Show full text]
  • 300556969.Pdf
    ARTICLE https://doi.org/10.1038/s42003-019-0713-y OPEN The vertebrate Aqp14 water channel is a neuropeptide-regulated polytransporter François Chauvigné1, Ozlem Yilmaz2, Alba Ferré1, Per Gunnar Fjelldal3, Roderick Nigel Finn 1,2*& Joan Cerdà 1* 1234567890():,; Water channels (aquaporins) were originally discovered in mammals with fourteen sub- families now identified (AQP0-13). Here we show that a functional Aqp14 subfamily phy- logenetically related to AQP4-type channels exists in all vertebrate lineages except hagfishes and eutherian mammals. In contrast to the water-selective classical aquaporins, which have four aromatic-arginine constriction residues, Aqp14 proteins present five non-aromatic constriction residues and facilitate the permeation of water, urea, ammonia, H2O2 and gly- cerol. Immunocytochemical assays suggest that Aqp14 channels play important osmor- egulatory roles in piscine seawater adaptation. Our data indicate that Aqp14 intracellular trafficking is tightly regulated by the vasotocinergic/isotocinergic neuropeptide and receptor systems, whereby protein kinase C and A transduction pathways phosphorylate highly conserved C-terminal residues to control channel plasma membrane insertion. The neuro- peptide regulation of Aqp14 channels thus predates the vasotocin/vasopressin regulation of AQP2-5-6 orthologs observed in tetrapods. These findings demonstrate that vertebrate Aqp14 channels represent an ancient subfamily of neuropeptide-regulated polytransporters. 1 IRTA-Institute of Biotechnology and Biomedicine (IBB), Universitat
    [Show full text]
  • Jawless Fishes of the World
    Jawless Fishes of the World Jawless Fishes of the World: Volume 1 Edited by Alexei Orlov and Richard Beamish Jawless Fishes of the World: Volume 1 Edited by Alexei Orlov and Richard Beamish This book first published 2016 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2016 by Alexei Orlov, Richard Beamish and contributors All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-8582-7 ISBN (13): 978-1-4438-8582-9 TABLE OF CONTENTS Volume 1 Preface ........................................................................................................ ix M. Docker Part 1: Evolution, Phylogeny, Diversity, and Taxonomy Chapter One ................................................................................................. 2 Molecular Evolution in the Lamprey Genomes and Its Relevance to the Timing of Whole Genome Duplications T. Manousaki, H. Qiu, M. Noro, F. Hildebrand, A. Meyer and S. Kuraku Chapter Two .............................................................................................. 17 Molecular Phylogeny and Speciation of East Asian Lampreys (genus Lethenteron) with reference to their Life-History Diversification Y. Yamazaki and
    [Show full text]
  • THE PINNIPEDS of the CALIFORNIA CURRENT California
    ANTONELIS AND FISCUS: PINNIPEDS OF THE CALIFORNIA CURRENT CalCOFI Rep., Vol. XXI, 1980 THE PINNIPEDS OF THE CALIFORNIA CURRENT GEORGE A. ANTONELIS. JR. AND CLIFFORD H. FISCUS Marine Mammal Division Northwest and Alaska Fisheries Center National Marine Fisheries Service National Oceanic and Atmospheric Administration 7600 Sand Point Way, N.E. Seattle, WA 981 15 ABSTRACT 10s pequenos peces en 10s cardumenes y peces ana- There are six species of pinnipeds-California sea dromos. Los dos focidos, otra vez con ciertas excep- lion, Zalophus californianus; northern sea lion, Eume- ciones, predan especies diferentes. Aparentemente, el topias jubatus; northern fur seal, Callorhinus ursinus; elefante marino se alimenta en aguas mas profundas que Guadalupe fur seal, Arctocephalus townsendi; harbor la foca peluda, alimentindose de especies demersales seal, Phoca uitulina richardsi; and northern elephant y benticas, y la foca peluda se alimenta de especiesdemer- seal, Mirounga angustirostris-that inhabit the study sales costeras y neriticas, entrando ocasionalmente en rios area of the California Cooperative Oceanic Fisheries y aguas estuarinas haciendopresa de 10s peces anadromos Investigations (CalCOFI). y otros pequeiios peces que entran regularmente en estas The numbers of animals in each population are given; aguas. the size, distribution, and seasonal movements are de- scribed. The known prey species of the pinnipeds are INTRODUCTION listed for each species. The otariids, with certain excep- The California Current, its components, and the Cali- tions, consume the same kinds of prey, although in slight- fornia Cooperative Oceanic Fisheries Investigations ly different amounts. In general they feed most commonly (CalCOFI) station plan have been described many times on the smaller schooling fishes and squids of the epi- in the past and are well known (Kramer et al.
    [Show full text]
  • Characterizing the Deep: Surveys in the Monterey Bay National Marine Sanctuary 2007-2010 Acknowledgments
    Characterizing the Deep: Surveys in the Monterey Bay National Marine Sanctuary 2007-2010 Acknowledgments enerous support for this project comes from the Monterey Bay Many thanks also to the Seafloor Mapping Lab at CSUMB, the US GNational Marine Sanctuary as well as California State University Geological Survey, and Monterey Bay Aquarium Research Institute for Monterey Bay’s Undergraduate Research Opportunities Center and the topographic maps of the seafloor throughout the study areas. James W. Rote Distinguished Professorship in Marine Science and Policy. All photos in this document (unless otherwise noted) were taken with This publication was conceived and implemented by the faculty, the ROV Beagle in the Monterey Bay National Marine Sanctuary. Credit staff and students of the Institute for Applied Marine Ecology at is to: IfAME/CSUMB/MBNMS/NOAA/MARE CSU Monterey Bay… Topside operations photos credit to Adam Alfasso, Ashley Knight, Heather Dr. James Lindholm – Founder & Director Kramp, Andrew DeVogelaere, Jason Adelaars Ashley Knight – Research Technician Jason Adelaars – Graduate Research Intern Special thanks to Robert Lea, Jean de Marignac, Donna Kline, and Bryon Megan Kelly – Graduate Research Assistant Downey for help with species identifications. Also many thanks to Heather Kramp – Undergraduate Research Assistant Judy Anderson (A Graphic Design Studio) for her expertise, talent, and patience with us in designing this report. ...with key support from Dr. Andrew DeVogelaere, Research Coordinator for the Monterey Bay National Marine
    [Show full text]
  • Species Codes: Fmp Prohibited Species and Cr Crab
    Fishery Conservation and Management Pt. 679, Table 2c TABLE 2b TO PART 679—SPECIES CODES: FMP PROHIBITED SPECIES AND CR CRAB Species Description Code CR Crab Groundfish PSC CRAB Box ....................................... Lopholithodes mandtii .......... 900 ✓ Dungeness ........................... Cancer magister .................. 910 ✓ King, blue ............................. Paralithodes platypus .......... 922 ✓ ✓ King, golden (brown) ........... Lithodes aequispinus ........... 923 ✓ ✓ King, red .............................. Paralithodes camtshaticus ... 921 ✓ ✓ King, scarlet (deepsea) ....... Lithodes couesi .................... 924 ✓ Korean horsehair crab ......... Erimacrus isenbeckii ............ 940 ✓ Multispinus crab ................... Paralomis multispinus .......... 951 ✓ Tanner, Bairdi ...................... Chionoecetes bairdi ............. 931 ✓ ✓ Tanner, grooved .................. Chionoecetes tanneri ........... 933 ✓ Tanner, snow ....................... Chionoecetes opilio ............. 932 ✓ ✓ Tanner, triangle ................... Chionoecetes angulatus ...... 934 ✓ Verrilli crab ........................... Paralomis verrilli .................. 953 ✓ PACIFIC HALIBUT Hippoglossus stenolepis ...... 200 ✓ PACIFIC HERRING Family Clupeidae ................. 235 ✓ SALMON Chinook (king) ..................... Oncorhynchus tshawytscha 410 ✓ Chum (dog) .......................... Oncorhynchus keta .............. 450 ✓ Coho (silver) ........................ Oncorhynchus kisutch ......... 430 ✓ Pink (humpback) .................
    [Show full text]
  • 655 Appendix G
    APPENDIX G: GLOSSARY Appendix G-1. Demersal Fish Species Alphabetized by Species Name. ....................................... G1-1 Appendix G-2. Demersal Fish Species Alphabetized by Common Name.. .................................... G2-1 Appendix G-3. Invertebrate Species Alphabetized by Species Name.. .......................................... G3-1 Appendix G-4. Invertebrate Species Alphabetized by Common Name.. ........................................ G4-1 G-1 Appendix G-1. Demersal Fish Species Alphabetized by Species Name. Demersal fish species collected at depths of 2-484 m on the southern California shelf and upper slope, July-October 2008. Species Common Name Agonopsis sterletus southern spearnose poacher Anchoa compressa deepbody anchovy Anchoa delicatissima slough anchovy Anoplopoma fimbria sablefish Argyropelecus affinis slender hatchetfish Argyropelecus lychnus silver hachetfish Argyropelecus sladeni lowcrest hatchetfish Artedius notospilotus bonyhead sculpin Bathyagonus pentacanthus bigeye poacher Bathyraja interrupta sandpaper skate Careproctus melanurus blacktail snailfish Ceratoscopelus townsendi dogtooth lampfish Cheilotrema saturnum black croaker Chilara taylori spotted cusk-eel Chitonotus pugetensis roughback sculpin Citharichthys fragilis Gulf sanddab Citharichthys sordidus Pacific sanddab Citharichthys stigmaeus speckled sanddab Citharichthys xanthostigma longfin sanddab Cymatogaster aggregata shiner perch Embiotoca jacksoni black perch Engraulis mordax northern anchovy Enophrys taurina bull sculpin Eopsetta jordani
    [Show full text]