Design and Control Optimization of Hybrid Electric Vehicles: from Two-Wheel-Drive to All-Wheel-Drive Vehicles
Total Page:16
File Type:pdf, Size:1020Kb
Design and Control Optimization of Hybrid Electric Vehicles: from Two-Wheel-Drive to All-Wheel-Drive Vehicles by Ziheng Pan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in The University of Michigan 2019 Doctoral Committee: Professor Huei Peng, Chair Dr. Tulga Ersal Professor Jessy Grizzle Professor Chinedum Okwudire Dr. Nikhil Ravi Ziheng Pan [email protected] ORCID iD: 0000-0002-9656-0138 © Ziheng Pan 2019 ACKNOWLEDGEMENTS I would like to express my sincerest gratitude to my advisor, Professor Huei Peng. Hi guidance, assistance, patience, encouragement, and continuous support have been of enormous crucial to my studies, research, and career development. Without his support, I would not be able to reach this most amazing journey thus far in my life. I would also like to thank my other committee members, Dr. Tulga Ersal, Professor Jessy Grizzle, Professor Chinedum Okwudire, and Dr. Nikhil Ravi, for their helpful advice and comments. I am indebted to the Department of Mechanical Engineering, the Rackham Graduate School, the US-China Clean Energy Research Center, and Robert Bosch LLC for the financial support for my graduate study. As a proud member of the Vehicle Dynamics Lab, I would like to first express my earnest gratitude to the lab alumni: Chiao-Ting Li, Changsun Ahn, Byung-joo Kim, and Xiaowu zhang, whose patient guidance helped me through my research practice. Great appreciation should go to my colleague in VDL for their help, discussion and all the good times we have had in the office: William Smith, Zhenzhong Jia, Huajie ding, Yalian Yang, Daofei Li, Yugong Luo, Diange Yang, Tianyou Guo, Ding Zhao, Baojin Wang, Steven Karamihas, Yuxiao Chen, Oguz Dagzi, Shaobing Xu, Su-Yang Shieh, Xianan Huang, Geunseob Oh, Nauman Sohani, Songan Zhang, Boqi Li, Xinpeng Wang, Minghan Zhu, and Siyuan Feng. Moreover, I am proud of being in the big family of University of Michigan. I would like to express my sincerely gratitude to colleagues and friends I met in this family: Chaozhe He, Kaiwu, Jun Hou, Rui Chen, Ziyou Song, Junming Hu, and Jiaxi Li. I am also highly grateful for the internship and employment opportunity that Robert Bosch LLC provided me. That experience offered me exposure to the industry and helped improve my study with more realistic considerations, constructive suggestions and ii comments on my PhD research. Great appreciation should go to my colleague in Bosch for their support and advices: Li Jiang, Stefan Koidl, Jason Schwanke, Shyam Jade, Mohammad Fatouraie, James Doetsch, Michael Lim, Ryan O’Donnell, Utkarsh Pradhan, Iltesham Syed, Vasanthi Karri, Kwangwoo Jeong, Andre Brune, Andi Diko, Axel Hahn, Nandan Vora, Varoun Perumal, Martin Belley, Alessandro Allievi, Alexander Freitag, Matt Thorington Andreas Keuper, Yun Jae Cho, Kivanc Temel, and Viktor Rill. Last, but not least, my deepest thank to my parents for their love and support. In addition, my sincerely thank to my bosom friend, Koey Yip, for her encouragement, guidance, and support. Without her, I won’t be able to overcome the toughest time along this journey and achieve what I have done. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................ ii LIST OF FIGURES ......................................................................................................... viii LIST OF TABLES ............................................................................................................ xii LIST OF APPENDICES .................................................................................................. xiii LIST OF ABBREVIATIONS .......................................................................................... xiv ABSTRACT ...................................................................................................................... xv CHAPTER 1 Introduction................................................................................................... 1 1.1 Motivation ................................................................................................................. 1 1.2 Background ............................................................................................................... 4 1.2.1 Hybrid Powertrain Technologies Implementation ............................................. 4 1.2.2 AWD Hybrid Electric Vehicles ......................................................................... 5 1.2.3 Power-split Hybrid Electric Vehicles ................................................................ 6 1.2.4 Control Strategy for Power-split Hybrid Electric Vehicles ............................... 7 1.2.5 Powertrain Control with Vehicle Speed Relaxation .......................................... 8 1.3 Literature Review.................................................................................................... 11 1.3.1 Automated Modeling of Hybrid Powertrains .................................................. 11 1.3.2 Solving the Offline Optimal Control Problem ................................................. 12 1.3.3 Real-time Control Strategy for HEV Powertrain and Vehicle Speed Relaxation ................................................................................................................................... 13 1.4 Contributions........................................................................................................... 15 1.5 Outline of the Dissertation ...................................................................................... 16 CHAPTER 2 Automated Modeling of AWD Multi-Mode Power-Split Hybrid Vehicles 18 2.1 Modeling Power-Split Hybrid Powertrains ............................................................ 20 2.1.1 Vehicle Dynamics Model ................................................................................ 20 2.1.2 Engine and Electric Motor Models .................................................................. 23 2.1.3 Battery Model .................................................................................................. 24 2.1.4 PG Model ......................................................................................................... 24 2.1.5 Complete Dynamics of Power-Split Hybrid Powertrain Using Matrix Representation........................................................................................................... 25 iv 2.2 Automated Modeling Process I: Initialization of Configuration Matrix ................ 28 2.3 Automated Modeling Process II: Use of Clutch States to Obtain the Dynamic Equations....................................................................................................................... 29 CHAPTER 3 Systematic Design Methodology for AWD Multi-Mode Power-Split Hybrid Vehicles............................................................................................................................. 31 3.1 Four-Step Systematic Design Process .................................................................... 32 3.2 Performance Attribute Screening ............................................................................ 33 3.3 Efficient Performance Criterion Screening ............................................................. 34 3.4 Acceleration Performance Evaluation .................................................................... 36 3.5 Fuel Economy Evaluations Using Power-Weighted Efficiency Analysis for Rapid Sizing Method ............................................................................................................... 37 3.6 AWD Design Case Study of Hybrid F-150 ............................................................ 39 3.7 Analysis of Highlighted AWD Hybrid Power-Split Vehicle Designs .................... 44 3.7.1 Common Features of the Two Winning Designs ............................................. 44 3.7.2 Fuel-Saving Control Policy from Optimization Results .................................. 44 3.7.3 Comparison of Launching Performance and Gradeability of AWD and FWD Hybrid Vehicles and RWD Hybrid Vehicles ............................................................ 46 CHAPTER 4 Relaxed Optimization for Vehicle Control ................................................. 48 4.1 Constraint Relaxation.............................................................................................. 48 4.1.1 Conventional Vehicles – No Relaxations ........................................................ 49 4.1.2 Constraint Relaxation for Conventional Vehicles ........................................... 49 4.1.3 Hybrid Electric Vehicle and Its Relaxation ..................................................... 50 4.2 Formulation of the Relaxed Optimization Problem ................................................ 52 4.3 Dynamic Programming ........................................................................................... 54 4.4 Optimization Results ............................................................................................... 55 4.4.1 Fuel Consumption Comparison ....................................................................... 56 4.4.2 Speed and Battery SOC Trajectory Comparison ............................................. 59 4.5 Optimization Analysis ............................................................................................ 61 4.6 Effects of the Boundary Conditions ........................................................................ 62 CHAPTER