MYC Oncogene Contributions to Release of Cell Cycle Brakes

Total Page:16

File Type:pdf, Size:1020Kb

MYC Oncogene Contributions to Release of Cell Cycle Brakes Review MYC Oncogene Contributions to Release of Cell Cycle Brakes Lucía García-Gutiérrez 1,2, María Dolores Delgado 1 and Javier León 1* 1 Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) CSIC-Universidad de Cantabria and Department of Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain; [email protected] (M.D.D.) 2 Current address: Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] (L.G-G) * Correspondence: [email protected]; Tel: +34-942-201952 Received: 24 February 2019; Accepted: 18 March 2019; Published: 22 March 2019 Abstract: Promotion of the cell cycle is a major oncogenic mechanism of the oncogene c-MYC (MYC). MYC promotes the cell cycle by not only activating or inducing cyclins and CDKs but also through the downregulation or the impairment of the activity of a set of proteins that act as cell- cycle brakes. This review is focused on the role of MYC as a cell-cycle brake releaser i.e., how MYC stimulates the cell cycle mainly through the functional inactivation of cell cycle inhibitors. MYC antagonizes the activities and/or the expression levels of p15, ARF, p21, and p27. The mechanism involved differs for each protein. p15 (encoded by CDKN2B) and p21 (CDKN1A) are repressed by MYC at the transcriptional level. In contrast, MYC activates ARF, which contributes to the apoptosis induced by high MYC levels. At least in some cells types, MYC inhibits the transcription of the p27 gene (CDKN1B) but also enhances p27’s degradation through the upregulation of components of ubiquitin ligases complexes. The effect of MYC on cell-cycle brakes also opens the possibility of antitumoral therapies based on synthetic lethal interactions involving MYC and CDKs, for which a series of inhibitors are being developed and tested in clinical trials Keywords: MYC; cell cycle; CDK inhibitors; p21; p27; p15; ARF 1. Introduction The oncogene c-MYC (referred to herein as MYC) was the first described gene that encoded for an oncogenic transcription factor with the ability to transform cells in culture. MYC is overexpressed by different mechanisms in 60–70% of human solid and hematopoietic tumors [1,2,3,4,5]. The MYC family of proteins is composed of three members: c-MYC, N-MYC, and L-MYC. The existence of multiple MYC family members with distinct expression patterns reflects different requirements of MYC during development and in the adult animal, which is consistent with the specific way each gene is deregulated in certain cancer types [6]. MYC is a transcription factor of the helix-loop-helix-leucine zipper (HLH-LZ) family that regulates the activation or repression of many target genes [7,8]. Regulation of transcription by MYC depends on the formation of heterodimeric complexes with MAX protein [9]. The MYC-MAX heterodimer is the active form, which binds to specific DNA sequences called E-boxes (canonical sequence CACGTG) in the regulatory regions of target genes. The MYC network (also known as the MAX-MLX network), includes other components of the HLH-LZ family such as the MXDs, MNT, MLX and others, with different functions in gene expression regulation upon binding to E-boxes in the DNA (for recent reviews see [10,11]). The number of MYC-binding sites revealed by genome-wide technologies ranks between 7000 and 15,000 in different models. Indeed, MYC is bound at one or more sites of the regulatory regions Genes 2019, 10, 244; doi:10.3390/genes10030244 www.mdpi.com/journal/genes Genes 2019, 10, 244 2 of 28 of 10–15% of human genes [6,7,8,12]. In agreement with the large number of MYC target genes, overexpression of MYC deregulates a series of biological functions such as cell-cycle progression, nucleotide biosynthesis, energy metabolism, protein synthesis and ribosome genesis, genomic maintenance, immortalization, and differentiation [1,7,13,14,15]. Such deregulation confers ample competitive advantages to the cell and contributes to the well-stablished role of MYC in a wide variety of cancers. MYC protein contains several domains that play important roles in MYC functions, as well as many residues susceptible of being modified, modulating MYC’s activity and stability [6]. MYC contains an unstructured N-terminal region, which includes two conserved regions known as MYC boxes (MB) (Figure 1). MBI and MBII are located within the transcriptional transactivation domain (TAD), essential for MYC transcriptional and cell-transforming activity. The MBII is crucial for the recruitment of MYC transactivation co-activators such as TRRAP, GCN5, TIP48, TIP49, TIP60, CBP/p300, as well as SKP2 [16,17,18]. The central region of MYC contains the MBIII, which has been shown to be important for transcriptional repression [19,20] and MBIV, needed for MYC transcriptional activity and MYC induced apoptosis [21]. The C-terminal region of MYC includes the basic, helix-loop-helix, and leucine zipper domains (b-HLH-LZ). Through the basic domain, MYC protein recognizes specific sequences and binds the DNA, while the HLH-LZ domain mediates the dimerization with its major partner MAX [9,22,23]. Activation or repression of MYC-regulated genes is mediated by its interaction with a variety of partner proteins, many of them involved in chromatin structure regulation (recently reviewed in [17,24]). The mechanism for MYC-mediated transactivation depends on the recruitment of complexes containing histone acetyltransferases (HATs) [7,8] (Figure 1a). TRRAP (Transformation- Transactivation domain Associated Protein) was originally isolated as a cofactor of MYC and recruited to most of the MYC target genes upon mitogen stimulation [25,26]. Two different TRRAP containing complexes possess GCN5 HAT activity. TRRAP-containing TIP60 complex consists of the TIP60 HAT, the ATPase/helicase motif containing cofactors TIP48 and TIP49 and the SWI/SNF related protein p400 ATPase. Both GCN5 and TIP60 acetylate histones at MYC target genes. Furthermore, CBP/p300 interacts with MYC mediating its acetylation, increasing MYC stability and stimulating MYC-transcriptional activation [17]. MYC is present at the promoter of nearly all active genes acting as an amplifier of the transcription already going on at those genes [27,28] although there is some selectivity on the genes regulated by MYC [29,30]. Different studies support the idea of MYC as a transcription amplifier because of its role regulating global transcriptional pause release [31]. The mechanism is not well known but the activating interaction of MYC with P-TEFb (positive transcription elongation factor b) likely plays an important role in it [32] (Figure 1a). Apart from transcriptional activation of gene expression, MYC also represses a great number of genes, many of them involved in processes such as the inhibition of cell-cycle progression and cell adhesion [33,34]. MYC represses transcription by interacting with other transcription factors and co- repressor complexes at the core promoter region of genes. So far, MYC has been reported to exert its repression activity by interacting mainly with SP1 and/or MIZ-1 (Figure 1b). These two transcription factors normally activate transcription. However, interaction with MYC switches them into transcriptional repressors mainly by displacing SP1 and MIZ-1 co-activators. For example, MIZ-1 recruitment of p300 can be antagonized by MYC [35,36]. Further, MYC represses transcription through SP1 by recruiting histone deacetylases (HDACs) [37]. SP1-SMAD complex has been found to be inactivated by MYC resulting in gene repression [38]. MYC also interacts with SIN3 [19] and with HDAC3 [20]. In this way, MYC recruits HDACs to the core promoter of several genes, resulting in transcriptional repression. The MYC-MIZ-1 complex can recruit the DNA methyltransferase DMNT3A to promoters, repressing transcription. This might be an efficient mechanism to repress CpG island promoters [39]. At least two of the genes known to be repressed by MYC through these mechanisms encode proteins involved in cell-cycle regulation: CDKN1A (p21CIP1) [40,41], CDKN2B (p15INK4B) [35,38,42]. Genes 2019, 10, 244 3 of 28 Figure 1. Oncogene c-MYC (MYC) structure and interaction complexes. (a) MYC structural domains are represented. MB, MYC boxes I-IV; TAD, transactivation domain; PEST, PEST sequence; NLS, Nuclear Location Signal. b, basic; HLH, Helix-Loop-Helix; LZ, Leucine Zipper. Through these domains, MYC interacts with different cofactors involved in transcriptional activation (in green) or repression (in red). MYC-MAX interaction is also indicated. (b) Transcriptional activation through MYC-associated complexes. Upper: MYC-MAX heterodimers bind E-box sequences and interact with co-activators such as TRRAP, GCN5 and others. These complexes mediate histone acetylation to transactivate MYC target genes. Middle: CBP/p300 also mediates MYC acetylation and increased stability. Bottom: BRD4 is a reader of acetylated histones and promotes the activity of P-TEFb complex, composed of CyclinT1 and CDK9. MYC interacts with P-TEFb, which phosphorylates the C-terminal domain of RNA polymerase II to trigger elongation. (c) Transcriptional repression through MYC-associated complexes. Upper: MYC interacts with MIZ-1, displacing coactivators with HAT activity such as CBP/p300. The MYC/MIZ-1 complex binds to Initiator element (Inr) sequences and recruits the DNA methyltransferase DNMT3A to repress transcription. Middle: SP1-SMAD complex is repressed by MYC. Recruitment of HDAC1 contribute to histone deacetylation nearby Inr sequences. Bottom: MYC also recruits HDAC3 to E-box sequences, reducing histone acetylation. We will review here the role of MYC as cell-cycle brake releaser i.e., how MYC stimulates cell cycle mainly through the repression of cell-cycle inhibitors (Figure 2). Cell-cycle progression is regulated by serine/threonine protein kinases composed by a catalytic subunit or CDK (cyclin- dependent protein kinase), and a regulatory subunit, the cyclin [43,44]. CDK1, 2, 4, and 6 and A, B, E, and D-type cyclins constitute the major regulators of the mammalian cell cycle.
Recommended publications
  • Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements
    International Journal of Molecular Sciences Review Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements Ahmed Malki 1,*, Rasha Abu ElRuz 1, Ishita Gupta 2,3,4, Asma Allouch 1 , Semir Vranic 2,3 and Ala-Eddin Al Moustafa 2,3,4,* 1 Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; [email protected] (R.A.E.); [email protected] (A.A.) 2 College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; [email protected] (I.G.); [email protected] (S.V.) 3 Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar 4 Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar * Correspondence: [email protected] (A.M.); [email protected] (A.-E.A.M.); Tel.: +974-4403-6557 (A.M.); +974-3097-7440 (A.-E.A.M.) Abstract: Colorectal cancer (CRC), the third most common type of cancer, is the second leading cause of cancer-related mortality rates worldwide. Although modern research was able to shed light on the pathogenesis of CRC and provide enhanced screening strategies, the prevalence of CRC is still on the rise. Studies showed several cellular signaling pathways dysregulated in CRC, leading to the onset of malignant phenotypes. Therefore, analyzing signaling pathways involved in CRC metastasis is necessary to elucidate the underlying mechanism of CRC progression and pharmacotherapy. This review focused on target genes as well as various cellular signaling pathways including Wnt/β-catenin, p53, TGF-β/SMAD, NF-κB, Notch, VEGF, and JAKs/STAT3, which are associated with CRC progression and metastasis.
    [Show full text]
  • The P16 (Cdkn2a/Ink4a) Tumor-Suppressor Gene in Head
    The p16 (CDKN2a/INK4a) Tumor-Suppressor Gene in Head and Neck Squamous Cell Carcinoma: A Promoter Methylation and Protein Expression Study in 100 Cases Lingbao Ai, M.D., Krystal K. Stephenson, Wenhua Ling, M.D., Chunlai Zuo, M.D., Perkins Mukunyadzi, M.D., James Y. Suen, M.D., Ehab Hanna, M.D., Chun-Yang Fan, M.D., Ph.D. Departments of Pathology (LA, KKS, CZ, PM, CYF) and Otolaryngology-Head and Neck Surgery (CYF, JYS, EH), University of Arkansas for Medical Sciences; and School of Public Health (LA, WL), Sun-Yat Sen University, Guangzhou, China apparent loss of p16 protein expression appears to The p16 (CDKN2a/INK4a) gene is an important be an independent prognostic factor, although loss tumor-suppressor gene, involved in the p16/cyclin- of p16 protein may be used to predict overall pa- dependent kinase/retinoblastoma gene pathway of tient survival in early-stage head and neck squa- cell cycle control. The p16 protein is considered to mous cell carcinoma. be a negative regulator of the pathway. The gene encodes an inhibitor of cyclin-dependent kinases 4 KEY WORDS: Gene inactivation, Head and and 6, which regulate the phosphorylation of reti- neck squamous cell carcinoma, p16, Promoter noblastoma gene and the G1 to S phase transition of hypermethylation. the cell cycle. In the present study, p16 gene pro- Mod Pathol 2003;16(9):944–950 moter hypermethylation patterns and p16 protein expression were analyzed in 100 consecutive un- The development of head and neck squamous cell treated cases of primary head and neck squamous carcinoma is believed to be a multistep process, in cell carcinoma by methylation-specific PCR and im- which genetic and epigenetic events accumulate as munohistochemical staining.
    [Show full text]
  • Involvement of the Cyclin-Dependent Kinase Inhibitor P16 (Ink4a) in Replicative Senescence of Normal Human Fibroblasts
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13742–13747, November 1996 Biochemistry Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts DAVID A. ALCORTA*†,YUE XIONG‡,DAWN PHELPS‡,GREG HANNON§,DAVID BEACH§, AND J. CARL BARRETT* *Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; ‡Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599; and §Howard Hughes Medical Institute, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724 Communicated by Raymond L. Erickson, Harvard University, Cambridge, MA, September 19, 1996 (received for review on May 15, 1996) ABSTRACT Human diploid fibroblasts (HDFs) can be viewed in ref. 5). In senescent fibroblasts, CDK2 is catalytically grown in culture for a finite number of population doublings inactive and the protein down-regulated (7). CDK4 is also before they cease proliferation and enter a growth-arrest state reported to be down-regulated in senescent cells (8), while the termed replicative senescence. The retinoblastoma gene prod- status of CDK6 has not been previously addressed. The uct, Rb, expressed in these cells is hypophosphorylated. To activating cyclins for these CDKs, cyclins D1 and E, are present determine a possible mechanism by which senescent human in senescent cells at similar or elevated levels relative to early fibroblasts maintain a hypophosphorylated Rb, we examined passage cells (8). A role of the CDK inhibitors in senescence the expression levels and interaction of the Rb kinases, CDK4 was revealed by the isolation of a cDNA of a highly expressed and CDK6, and the cyclin-dependent kinase inhibitors p21 message in senescent cells that encoded the CDK inhibitor, p21 and p16 in senescent HDFs.
    [Show full text]
  • Transcriptional Regulation of the P16 Tumor Suppressor Gene
    ANTICANCER RESEARCH 35: 4397-4402 (2015) Review Transcriptional Regulation of the p16 Tumor Suppressor Gene YOJIRO KOTAKE, MADOKA NAEMURA, CHIHIRO MURASAKI, YASUTOSHI INOUE and HARUNA OKAMOTO Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, Fukuoka, Japan Abstract. The p16 tumor suppressor gene encodes a specifically bind to and inhibit the activity of cyclin-CDK specific inhibitor of cyclin-dependent kinase (CDK) 4 and 6 complexes, thus preventing G1-to-S progression (4, 5). and is found altered in a wide range of human cancers. p16 Among these CKIs, p16 plays a pivotal role in the regulation plays a pivotal role in tumor suppressor networks through of cellular senescence through inhibition of CDK4/6 activity inducing cellular senescence that acts as a barrier to (6, 7). Cellular senescence acts as a barrier to oncogenic cellular transformation by oncogenic signals. p16 protein is transformation induced by oncogenic signals, such as relatively stable and its expression is primary regulated by activating RAS mutations, and is achieved by accumulation transcriptional control. Polycomb group (PcG) proteins of p16 (Figure 1) (8-10). The loss of p16 function is, associate with the p16 locus in a long non-coding RNA, therefore, thought to lead to carcinogenesis. Indeed, many ANRIL-dependent manner, leading to repression of p16 studies have shown that the p16 gene is frequently mutated transcription. YB1, a transcription factor, also represses the or silenced in various human cancers (11-14). p16 transcription through direct association with its Although many studies have led to a deeper understanding promoter region.
    [Show full text]
  • The P16 Status of Tumor Cell Lines Identifies Small Molecule Inhibitors Specific for Cyclin-Dependent Kinase 41
    Vol. 5, 4279–4286, December 1999 Clinical Cancer Research 4279 The p16 Status of Tumor Cell Lines Identifies Small Molecule Inhibitors Specific for Cyclin-dependent Kinase 41 Akihito Kubo,2 Kazuhiko Nakagawa,2, 3 CDK4 kinase inhibitors that may selectively induce growth Ravi K. Varma, Nicholas K. Conrad, inhibition of p16-altered tumors. Jin Quan Cheng, Wen-Ching Lee, INTRODUCTION Joseph R. Testa, Bruce E. Johnson, INK4A 4 The p16 gene (also known as CDKN2A) encodes p16 , Frederic J. Kaye, and Michael J. Kelley which inhibits the CDK45:cyclin D and CDK6:cyclin D com- Medicine Branch [A. K., K. N., N. K. C., F. J. K., B. E. J.] and plexes (1). These complexes mediate phosphorylation of the Rb Developmental Therapeutics Program [R. K. V.], National Cancer Institute, Bethesda, Maryland 20889; Department of Medical protein and allow cell cycle progression beyond the G1-S-phase Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania checkpoint (2). Alterations of p16 have been described in a wide 19111 [J. Q. C., W-C. L., J. R. T.]; and Department of Medicine, variety of histological types of human cancers including astro- Duke University Medical Center, Durham, North Carolina 27710 cytoma, melanoma, leukemia, breast cancer, head and neck [M. J. K.] squamous cell carcinoma, malignant mesothelioma, and lung cancer. Alterations of p16 can occur through homozygous de- ABSTRACT letion, point mutation, and transcriptional suppression associ- ated with hypermethylation in cancer cell lines and primary Loss of p16 functional activity leading to disruption of tumors (reviewed in Refs. 3–5). the p16/cyclin-dependent kinase (CDK) 4:cyclin D/retino- Whereas the Rb gene is inactivated in a narrow range of blastoma pathway is the most common event in human tumor cells, the pattern of mutational inactivation of Rb is tumorigenesis, suggesting that compounds with CDK4 ki- inversely correlated with p16 alterations (6–8), suggesting that nase inhibitory activity may be useful to regulate cancer cell a single defect in the p16/CDK4:cyclin D/Rb pathway is suffi- growth.
    [Show full text]
  • AP-1 in Cell Proliferation and Survival
    Oncogene (2001) 20, 2390 ± 2400 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc AP-1 in cell proliferation and survival Eitan Shaulian1 and Michael Karin*,1 1Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, California, CA 92093-0636, USA A plethora of physiological and pathological stimuli extensively discussed previously (Angel and Karin, induce and activate a group of DNA binding proteins 1991; Karin, 1995). that form AP-1 dimers. These proteins include the Jun, The mammalian AP-1 proteins are homodimers and Fos and ATF subgroups of transcription factors. Recent heterodimers composed of basic region-leucine zipper studies using cells and mice de®cient in individual AP-1 (bZIP) proteins that belong to the Jun (c-Jun, JunB proteins have begun to shed light on their physiological and JunD), Fos (c-Fos, FosB, Fra-1 and Fra-2), Jun functions in the control of cell proliferation, neoplastic dimerization partners (JDP1 and JDP2) and the closely transformation and apoptosis. Above all such studies related activating transcription factors (ATF2, LRF1/ have identi®ed some of the target genes that mediate the ATF3 and B-ATF) subfamilies (reviewed by (Angel eects of AP-1 proteins on cell proliferation and death. and Karin, 1991; Aronheim et al., 1997; Karin et al., There is evidence that AP-1 proteins, mostly those that 1997; Liebermann et al., 1998; Wisdom, 1999). In belong to the Jun group, control cell life and death addition, some of the Maf proteins (v-Maf, c-Maf and through their ability to regulate the expression and Nrl) can heterodimerize with c-Jun or c-Fos (Nishiza- function of cell cycle regulators such as Cyclin D1, p53, wa et al., 1989; Swaroop et al., 1992), whereas other p21cip1/waf1, p19ARF and p16.
    [Show full text]
  • Supplementary Figures and Tables
    Supplementary data Figure S1. Immunoblots of PRMT5, PTEN, p18, p21, p57 and p63 levels in Scr, sh-PRMT5-treated, sh-PRMT5 + PRMT5 (wild type)-treated or sh-PRMT5 + PRMT5 R368A (enzymatically inactive)-treated BGC823 cells. GAPDH served as a loading control. Figure S2. H4R3me2s enrichment at the proximal promoter region of p15 (-163 ~ +220) determined by ChIP analysis. IgG was used as a negative control. Data shown are mean ± SD (n = 3). #P > 0.05. The CAGCTG motif is shown in the promoter region of p15 (up panel). Figure S3. Relative enrichment of c-Myc at the promoters of PTEN (P4, left panel) and p57 (P5, right panel) was examined by ChIP assays in Scr, sh-PRMT5-treated, sh-PRMT5 + PRMT5 WT-treated or sh-PRMT5 + PRMT5 K490A-treated BGC823 cells. IgG was used as a negative control. Data shown are mean ± SD (n = 3). #P > 0.05. Table S1. Real-time PCR primer sequences CDKN1A forward (5’-3’) TACCCTTGTGCCTCGCTCAG CDKN1A reverse (5’-3’) CGGCGTTTGGAGTGGTAGA PRMT5 forward (5’-3’) TCAGGAAGATAACACCAACCTGG PRMT5 reverse (5’-3’) AGCCACTGCAATCCTCTTACTAT GAPDH forward (5’-3’) GAGCCACATCGCTCAGACAC GAPDH reverse (5’-3’) CATGTAGTTGAGGTCAATGAAGG TP53 forward (5’-3’) GAGGTTGGCTCTGACTGTACC TP53 reverse (5’-3’) TCCGTCCCAGTAGATTACCAC ABL1 forward (5’-3’) CCAGGTGTATGAGCTGCTAGAG ABL1 reverse (5’-3’) GTCAGAGGGATTCCACTGCCAA ANAPC2 forward (5’-3’) CAGGACAGTGAGGATGACTCAG ANAPC2 reverse (5’-3’) TTGCTGCCGTAGATGCTGACCA ANAPC4 forward (5’-3’) AAGGAGGTGACGTGTCTGGCAT ANAPC4 reverse (5’-3’) GCATACAGGAAACTGGAGCCTC DIRAS3 forward (5’-3’) CACATCACCGACAGCAAGAGTG DIRAS3 reverse
    [Show full text]
  • Regulation of P27kip1 and P57kip2 Functions by Natural Polyphenols
    biomolecules Review Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols Gian Luigi Russo 1,* , Emanuela Stampone 2 , Carmen Cervellera 1 and Adriana Borriello 2,* 1 National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; [email protected] 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Napoli, Italy; [email protected] * Correspondence: [email protected] (G.L.R.); [email protected] (A.B.); Tel.: +39-0825-299-331 (G.L.R.) Received: 31 July 2020; Accepted: 9 September 2020; Published: 13 September 2020 Abstract: In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth.
    [Show full text]
  • Expression of P16 INK4A and P14 ARF in Hematological Malignancies
    Leukemia (1999) 13, 1760–1769 1999 Stockton Press All rights reserved 0887-6924/99 $15.00 http://www.stockton-press.co.uk/leu Expression of p16INK4A and p14ARF in hematological malignancies T Taniguchi1, N Chikatsu1, S Takahashi2, A Fujita3, K Uchimaru4, S Asano5, T Fujita1 and T Motokura1 1Fourth Department of Internal Medicine, University of Tokyo, School of Medicine; 2Division of Clinical Oncology, Cancer Chemotherapy Center, Cancer Institute Hospital; 3Department of Hematology, Showa General Hospital; 4Third Department of Internal Medicine, Teikyo University, School of Medicine; and 5Department of Hematology/Oncology, Institute of Medical Science, University of Tokyo, Tokyo, Japan The INK4A/ARF locus yields two tumor suppressors, p16INK4A tumor suppressor genes.10,11 In human hematological malig- ARF and p14 , and is frequently deleted in human tumors. We nancies, their inactivation occurs mainly by means of homo- studied their mRNA expressions in 41 hematopoietic cell lines and in 137 patients with hematological malignancies; we used zygous deletion or promoter region hypermethylation a quantitative reverse transcription-PCR assay. Normal periph- (reviewed in Ref. 12). In tumors such as pancreatic adenocar- eral bloods, bone marrow and lymph nodes expressed little or cinomas, esophageal squamous cell carcinomas and familial undetectable p16INK4A and p14ARF mRNAs, which were readily melanomas, p16INK4A is often inactivated by point mutation, detected in 12 and 17 of 41 cell lines, respectively. Patients with 12 INK4A which is not the case in hematological malignancies. On hematological malignancies frequently lacked p16 INK4C INK4D ARF the other hand, genetic aberrations of p18 or p19 expression (60/137) and lost p14 expression less frequently 12 (19/137, 13.9%).
    [Show full text]
  • Uncommon Association of Germline Mutations of RET Proto-Oncogene
    European Journal of Endocrinology (2008) 158 417–422 ISSN 0804-4643 CASE REPORT Uncommon association of germline mutations of RET proto-oncogene and CDKN2A gene L Foppiani1, F Forzano2, I Ceccherini3, W Bruno4, P Ghiorzo4, F Caroli3, P Quilici5, R Bandelloni5, A Arlandini6, G Sartini6, M Cabria7 and P Del Monte1 1Endocrinology 2Genetics Laboratory, Galliera Hospital, 16128 Genova, Italy, 3Laboratory of Molecular Genetics, G Gaslini Institute, 16148 Genova, Italy, 4Department of Oncology, Biology and Genetics/Medical Genetics Service, University of Genova, 1632 Genova, Italy, 5Pathology Unit, 6Division of Surgery and 7Nuclear Medicine, Galliera Hospital, 16128 Genova, Italy (Correspondence should be addressed to L Foppiani who is now at S S D Endocrinologia, Mura delle Cappuccine 14, 16128 Genova, Italy; Email: [email protected]) Abstract Introduction: Calcitonin measurement is advised in the diagnosis of thyroid nodules, as it is an accurate marker of medullary thyroid carcinoma (MTC). C-cell hyperplasia (CCH)-induced hypercalcitoninemia cannot be distinguished from that induced by MTC, unless surgery is performed. Case: We report the clinical and biological features of a patient with a family history of cancer, including melanoma and pancreatic cancer, who had previously undergone surgery for melanoma. He presented the unusual association of papillary thyroid carcinoma (PTC), normocalcemic hyperpara- thyroidism, and hypercalcitoninemia with a pathological response to pentagastrin, which was histologically deemed secondary to CCH. Multiple endocrine neoplasia (MEN) 2A was diagnosed. RET gene analysis showed a p.V804M missense mutation in exon 14, a low- but variably penetrant defect found in both sporadic and MEN2A-associated MTC/CCH, and a p.G691S polymorphism in exon 11.
    [Show full text]
  • Dysregulated Gene Expression Predicts Tumor Aggressiveness In
    www.nature.com/scientificreports OPEN Dysregulated gene expression predicts tumor aggressiveness in African-American prostate cancer Received: 8 April 2018 Accepted: 22 October 2018 patients Published: xx xx xxxx Hamdy E. A. Ali1,6, Pei-Yau Lung2, Andrew B. Sholl3, Shaimaa A. Gad1, Juan J. Bustamante1, Hamed I. Ali1, Johng S. Rhim4, Gagan Deep5, Jinfeng Zhang2 & Zakaria Y. Abd Elmageed 1 Molecular mechanisms underlying the health disparity of prostate cancer (PCa) have not been fully determined. In this study, we applied bioinformatic approach to identify and validate dysregulated genes associated with tumor aggressiveness in African American (AA) compared to Caucasian American (CA) men with PCa. We retrieved and analyzed microarray data from 619 PCa patients, 412 AA and 207 CA, and we validated these genes in tumor tissues and cell lines by Real-Time PCR, Western blot, immunocytochemistry (ICC) and immunohistochemistry (IHC) analyses. We identifed 362 diferentially expressed genes in AA men and involved in regulating signaling pathways associated with tumor aggressiveness. In PCa tissues and cells, NKX3.1, APPL2, TPD52, LTC4S, ALDH1A3 and AMD1 transcripts were signifcantly upregulated (p < 0.05) compared to normal cells. IHC confrmed the overexpression of TPD52 (p = 0.0098) and LTC4S (p < 0.0005) in AA compared to CA men. ICC and Western blot analyses additionally corroborated this observation in PCa cells. These fndings suggest that dysregulation of transcripts in PCa may drive the disparity of PCa outcomes and provide new insights into development of new therapeutic agents against aggressive tumors. More studies are warranted to investigate the clinical signifcance of these dysregulated genes in promoting the oncogenic pathways in AA men.
    [Show full text]
  • Development of Gastric Tumors in Apc Mice by the Activation of the B
    Research Article Development of Gastric Tumors in ApcMin/+ Mice by the Activation of the B-Catenin/Tcf Signaling Pathway Hiroyuki Tomita,1,2 Yasuhiro Yamada,1 Takeru Oyama,1 Kazuya Hata,1 Yoshinobu Hirose,1 Akira Hara,1 Takahiro Kunisada,3 Yasuyuki Sugiyama,2 Yosuke Adachi,2 Heinz Linhart,4 and Hideki Mori1 Departments of 1Tumor Pathology, 2Oncologic Surgery, and 3Tissue and Organ Development, Gifu University Graduate School of Medicine, Gifu, Japan and 4Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts Abstract 5q21, is responsible for such phenotypes in FAP (1, 2). Therefore, inactivating APC is considered to initiate the multistep progression Although several lines of evidence suggest the involvement of of colorectal cancer (3). The knowledge about how APC acts as a the Wnt pathway in the development of gastric cancers, the tumor suppressor gene was considerably advanced by the demon- functional significance of the pathway in gastric carcinogen- stration that APC contributes to the degradation of cytosolic esis is still poorly defined. To examine the role of the Apc/B- h-catenin, thereby linking APC to the Wnt/h-catenin pathway as a catenin signaling pathway in the development of gastric Min/+ negative regulator (4–7). The critical event in the Wnt pathway cancers, we investigated the gastric mucosa of the Apc activation is the elevation of the cytoplasmic pool of h-catenin and mouse, which is a murine model for familial adenomatous its resultant transport to the nucleus (5, 8). Consequently, the polyposis, carrying a germ-line mutation at codon 850 of Apc. inactivation of APC leads to a constitutive accumulation of h- We found that aged ApcMin/+ mice spontaneously develop catenin, which triggers an aberrant transcriptional activation of the multiple tumors in the stomach, which are accompanied by h-catenin/Tcf target genes, such as Myc and Cyclin D1 (9, 10).
    [Show full text]