(BCA) with Specialization in Mobile Application and Web Technology (MAWT) [Applicable W.E.F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Scientific Research
Michael Lewis and Jeffrey Jacobson GAME ENGINES IN SCIENTIFIC RESEARCH SERIOUS COMPUTATIONAL province of the military and high-end VR labs seek- ing to drive costly peripherals such as Caves, data- RESULTS ARE DERIVED FROM gloves, and head-mounted displays (HMDs). In COMPUTER-BASED GAMES. the past two years, however, the situation has changed remarkably. Now the mass market for ix-figure workstations and custom soft- computer games, grown even larger than the movie ware are not producing the best graphics industry, has expropriated the best in computer or virtual reality simulations anymore. hardware and software for itself. The most sophisti- Today, the only way to have the fastest, cated rendering pipelines are now found not on most realistic simulations and sophisti- specialized scientific machines but on PC video Scated graphics is to trade down from the expensive cards costing less than $500. The most sophisti- gear to standard PCs running game software. Vir- cated, responsive interactive simulations are now tual reality (VR), augmented reality (AR), and found in the engines built to power games. high-fidelity physical simulation have long posed Despite the stigma of violence and gore associ- too high a barrier to entry for any but the most gen- ated with first-person games, there has been a long erously funded researchers. Significant advances in history of unpublicized cooperation between com- computer graphics in these areas have traditionally puter scientists and the game industry [1, 2]. depended on expensive, specialized graphics hard- Games have provided the first and sometimes the ware running on scientific workstations. High- only market for advanced graphics techniques, fidelity simulation/graphics software has also demonstrating the extent to which realism could remained an expensive niche market largely the be conjured up even from relatively weak graphics COMMUNICATIONS OF THE ACM January 2002/Vol. -
High-Performance Play: the Making of Machinima
High-Performance Play: The Making of Machinima Henry Lowood Stanford University <DRAFT. Do not cite or distribute. To appear in: Videogames and Art: Intersections and Interactions, Andy Clarke and Grethe Mitchell (eds.), Intellect Books (UK), 2005. Please contact author, [email protected], for permission.> Abstract: Machinima is the making of animated movies in real time through the use of computer game technology. The projects that launched machinima embedded gameplay in practices of performance, spectatorship, subversion, modification, and community. This article is concerned primarily with the earliest machinima projects. In this phase, DOOM and especially Quake movie makers created practices of game performance and high-performance technology that yielded a new medium for linear storytelling and artistic expression. My aim is not to answer the question, “are games art?”, but to suggest that game-based performance practices will influence work in artistic and narrative media. Biography: Henry Lowood is Curator for History of Science & Technology Collections at Stanford University and co-Principal Investigator for the How They Got Game Project in the Stanford Humanities Laboratory. A historian of science and technology, he teaches Stanford’s annual course on the history of computer game design. With the collaboration of the Internet Archive and the Academy of Machinima Arts and Sciences, he is currently working on a project to develop The Machinima Archive, a permanent repository to document the history of Machinima moviemaking. A body of research on the social and cultural impacts of interactive entertainment is gradually replacing the dismissal of computer games and videogames as mindless amusement for young boys. There are many good reasons for taking computer games1 seriously. -
The Architecture and Evolution of Computer Game Engines
The architecture and evolution of computer game engines University of Oulu Department of Information Processing Sciences B.Sc thesis Rainer Koirikivi 12.3.2015 2 Abstract In this study, the architecture and evolution of computer game engines are analyzed by means of a literature review on the academic research body on the subject. The history of computer games, from early 1960s to modern day is presented, with a focus on the architectures behind the games. In the process, this study will answer a selection of research questions. The topics of the questions include identifying the common parts of a game engine, identifying the architectural trends in the evolution from early to present-day games and engines, identifying ways the process of evolution has affected the present state of the engines, and presenting some possible future trends for the evolution. As findings of the study, common parts of a game engine were identified as the parts that are specific to every game, with the suggestion that more detailed analyses could be made by concentrating on different genres. Increase in the size, modularity and portability of game engines, and improved tooling associated with them were identified as general trends in the evolution from first games to today. Various successful design decisions behind certain influential games were identified, and the way they affect the present state of the engines were discussed. Finally, increased utilization of parallelism, and the move of game engines from genre-specific towards genre-neutral were identified as possible future trends in the evolution. Keywords computer game, video game, game engine, game, software architecture, architecture, evolution 3 Foreword I'd like to thank my thesis supervisor Jouni Lappalainen for his continued support on what turned to be an epic journey into the fields of game engines and academic writing. -
Zeszyty Naukowe Wsei Seria: Transport I Informatyka
ZESZYTY NAUKOWE WSEI SERIA: TRANSPORT I INFORMATYKA 7(1/2017) Zeszyty naukowe Wyższej Szkoły ekonomii i Innowacji w Lublinie SERIA: TRANSPORT I INFORMATYKA Rada naukowa: prof. zw. dr hab. inż. Andrzej Niewczas (ITS Warszawa) prof. dr hab. inż. Zdzisław Chłopek (Politechnika Warszawska) dr hab. inż. Tadeusz Dyr (Uniwersytet Technologiczno-Humanistyczny w Radomiu) prof. Tatiana Čorejova (University of Žilina, Słowacja) prof. dr hab. inż. Igor Kabashkin (Transport & Telecommunications Institute, Łotwa) dr hab. inż. Grzegorz Koralewski (WSOWL, Dęblin) prof. dr hab. Aleksander Medvedevs (Transport & Telecommunications Institute, Łotwa) prof. Inga O. Procenko (The Russian Academy of National Economy and Public Service at the President of the Russian Federation) prof. zw. dr hab. inż. Marek Stabrowski (WSEI w Lublinie) prof. George Utekhin (Transport and Telecommunuication Institute. Riga. Latvia) prof. dr hab. inż. David Valis (University of Defence Brno, Republika Czeska) Redakcja: dr inż. Józef Stokłosa (Redaktor Naczelny), mgr Joanna Sidor-Walczak (Sekretarz Redakcji), mgr Marek Szczodrak (Redaktor Techniczny) Redaktorzy tematyczni: prof. dr hab. inż. Jan Kukiełka (Infrastruktura transportu), dr hab. Grzegorz Wójcik (Informatyka), dr hab. inż. Andrzej Marciniak (Modelowanie systemów transportowych), dr inż. Mariusz Walczak (Mechanika, Inżynieria materiałowa) Recenzenci: dr hab. inż. Andrzej Adamkiewicz dr hab. inż. Tadeusz Cisowski, dr hab. inż. Paweł Droździel, prof. dr hab. inż. Henryk Komsta, dr hab. inż. Marianna Jacyna, dr hab. inż. Marek Jaśkiewicz, dr hab. inż. Zofia Jóźwiak, dr hab. inż. Grzegorz Koralewski, prof. dr hab. Anna Križanova, dr hab. inż. Andrzej Marciniak, prof. zw. dr hab. inż. Andrzej Niewczas, prof. dr hab. inż. Marek Opielak, dr hab. inż. Marek Pawełczyk, dr hab. inż. Artur Popko, dr hab. -
Quake III Arena This Page Intentionally Left Blank Focus on Mod Programming for Quake III Arena
Focus on Mod Programming for Quake III Arena This page intentionally left blank Focus on Mod Programming for Quake III Arena Shawn Holmes © 2002 by Premier Press, a division of Course Technology. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, elec- tronic or mechanical, including photocopying, recording, or by any information stor- age or retrieval system without written permission from Premier Press, except for the inclusion of brief quotations in a review. The Premier Press logo, top edge printing, and related trade dress are trade- marks of Premier Press, Inc. and may not be used without written permis- sion. All other trademarks are the property of their respective owners. Publisher: Stacy L. Hiquet Marketing Manager: Heather Hurley Managing Editor: Sandy Doell Acquisitions Editor: Emi Smith Series Editor: André LaMothe Project Editor: Estelle Manticas Editorial Assistant: Margaret Bauer Technical Reviewer: Robi Sen Technical Consultant: Jared Larson Copy Editor: Kate Welsh Interior Layout: Marian Hartsough Cover Design: Mike Tanamachi Indexer: Katherine Stimson Proofreader: Jennifer Davidson All trademarks are the property of their respective owners. Important: Premier Press cannot provide software support. Please contact the appro- priate software manufacturer’s technical support line or Web site for assistance. Premier Press and the author have attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following the capitalization style used by the manufacturer. Information contained in this book has been obtained by Premier Press from sources believed to be reliable. However, because of the possibility of human or mechanical error by our sources, Premier Press, or others, the Publisher does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from use of such information. -
By Dumptruck Ds & Iw [email protected] Version
by dumptruck_ds & iw [email protected] version 2.0.0 2020-12-28 Contents Contents What is progs_dump? What can you do with progs_dump? Acknowledgements Installation Spawnflags Trigger Spawned Monsters Appearance Flags Monsters Behavior Modifiers Custom Monster Models Custom Monster Sounds pain_threshold pain_target monster_boss2 monster_oldone2 Enhanced Zombies Monster Styles Grunt styles Enforcer Styles Ogre styles func_monster_spawner info_monster_spawnpoint misc_teleporttrain Custom Monster Example Items Respawning Items Custom Item Models item_armor_shard item_health_vial item_backpack item_key_custom weapon_shotgun Item Customization Table Custom Sounds Attenuation play_sound_tiggered play_sound ambient_general ambient_thunder ambient_water1 ambient_wind2 ambient_fire Custom Models and Sprites misc_model Enhanced Triggers is_waiting trigger_changelevel trigger_heal trigger_look trigger_push_custom trigger_monster_jump trigger_take_weapon trigger_setgravity trigger_shake trigger_usekey trigger_void trigger_cdtrack trigger_changemusic trigger_teleport info_destination_random info_teleport_changedest Enhanced Platforms func_new_plat Elevators func_elvtr_button Misc Entities trap_spikeshooter, trap_shooter, trap_shooter_switched func_counter func_oncount func_door func_explobox func_fall func_fall2 func_togglewall func_train func_laser Lightning gib_(classname) monster_dead_(classname) Worldspawn light_candle Ladders trigger_ladder Breakables func_breakable Effect Entities play_explosion play_spawnexpl play_lavalsplash play_brlight -
'Game' Portability
A Survey of ‘Game’ Portability Ahmed BinSubaih, Steve Maddock, and Daniela Romano Department of Computer Science University of Sheffield Regent Court, 211 Portobello Street, Sheffield, U.K. +44(0) 114 2221800 {A.BinSubaih, S.Maddock, D.Romano}@dcs.shef.ac.uk Abstract. Many games today are developed using game engines. This development approach supports various aspects of portability. For example games can be ported from one platform to another and assets can be imported into different engines. The portability aspect that requires further examination is the complexity involved in porting a 'game' between game engines. The game elements that need to be made portable are the game logic, the object model, and the game state, which together represent the game's brain. We collectively refer to these as the game factor, or G-factor. This work presents the findings of a survey of 40 game engines to show the techniques they provide for creating the G-factor elements and discusses how these techniques affect G-factor portability. We also present a survey of 30 projects that have used game engines to show how they set the G-factor. Keywords: game development, portability, game engines. 1 Introduction The shift in game development from developing games from scratch to using game engines was first introduced by Quake and marked the advent of the game- independent game engine development approach (Lewis & Jacobson, 2002). In this approach the game engine became “the collection of modules of simulation code that do not directly specify the game’s behaviour (game logic) or game’s environment (level data)” (Wang et al, 2003). -
Introduction to Game Programming & Game Engines
INTRODUCTION TO GAME PROGRAMMING & GAME ENGINES Guillaume Bouyer, Adrien Allard v3.2 [email protected] www.ensiie.fr/~bouyer/ Objectives and schedule •Be aware of the technical problems and existing solutions that underpin the development of a video game (among others to succeed as well as possible in the team project) •Understand the theoretical and technical components of game engines •Operate a high-level but relatively closed game engine (Unity). Being able to create a project that looks like a game Monday Tuesday Wednesday Thursday Friday Am Pm Am Pm Am Pm Am Pm Am Pm Adrien Allard Course Part. 1 Course Part. 2 JIN Intro Proj. TC2.b TC2.d TC2.c TC2.a Proj.. Amplitude Studios, + Project Part. 1 + Project Part. 2 Talk + Project Part. 3 Homeworks 1 2 3 4 1. Prerequisites : Unity >= 2017,4 installed, several completed Unity tutorials (ex. introduction from ENSIIE S4 course) 2. Continue project 3. Finish project part 1 & 2 [email protected] 4. Finish project part 3 http://www.ensiie.fr/~bouyer/JIN Office 111 @ ENSIIE JIN 2018 – GAME DEVELOPMENT 2 References •Game Engine Architecture, Jason Gregory, A K Peters/CRC Press, 2009 (http://www.gameenginebook.com/) th •Game Coding Complete, 4 Edition, Mike McShaffry and David Graham, Course Technology, 2013 •Game Programming Algorithms and Techniques, Sanjay Madhav, Addison-Wesley, 2013 •Game Programming Patterns, Robert Nystrom, Paperback, 2014 (gameprogrammingpatterns.com/) JIN 2018 – GAME DEVELOPMENT 3 What if we programmed our own video game? JIN PROJECT 5 PART 1: THE BASICS 6 A VIDEO