) (51) International Patent Classification: A01N 63/00

Total Page:16

File Type:pdf, Size:1020Kb

) (51) International Patent Classification: A01N 63/00 ) ( (51) International Patent Classification: Declarations under Rule 4.17: A01N 63/00 (2006.01) A01P5/00 (2006.01) — as to applicant's entitlement to apply for and be granted a A01P3/00 (2006.01) A01P 7/00 (2006.01) patent (Rule 4.17(H)) (21) International Application Number: — as to the applicant's entitlement to claim the priority of the PCT/US20 19/040 107 earlier application (Rule 4.17(iii)) (22) International Filing Date: Published: 0 1 July 2019 (01.07.2019) — with international search report (Art. 21(3)) — before the expiration of the time limit for amending the (25) Filing Language: English claims and to be republished in the event of receipt of (26) Publication Language: English amendments (Rule 48.2(h)) (30) Priority Data: 62/692,059 29 June 2018 (29.06.2018) US (71) Applicant: AGBIOME, INC. [US/US]; 104 T.W. Alexan¬ der Drive, Building 1, Durham, North Carolina 27709 (US). (72) Inventors: PALEKAR, Narendra; 121 Amiable Loop, Cary, North Carolina 275 13 (US). KEYSER, Chad Alton; 452 Texanna Way, Holly Springs, North Carolina 27540 (US). (74) Agent: BUCK, B. Logan; Womble Bond Dickinson (US) LLP, P.O. Box 7037, Atlanta, Georgia 30357-0037 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY,MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available) : ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). (54) Title: COMPOSITIONS COMPRISING BACTERIA AND METHODS FOR CONTROLLING PLANT PESTS AND IM¬ PROVING PLANT HEALTH (57) Abstract: Compositions and methods for controlling plant pests and/or improving at least one agronomic trait of interest in a plant are provided. Such compositions and methods comprise abacterial strain that can be used as an inoculant for plants. Therefore, methods for growing a plant susceptible to a plant pest and/or plant disease caused by a plant pest and methods for controlling plant pests and/ or plant disease on a plant susceptible to the plant pest and/or plant disease are also provided. COMPOSITIONS COMPRISING BACTERIA AND METHODS FOR CONTROLLING PLANT PESTS AND IMPROVING PLANT HEALTH FIELD OF THE INVENTION The invention relates to bacterial strains and populations for controlling plant pests and/or improving an agronomic trait of interest in a plant. BACKGROUND Damage and diseases caused by plant pests are responsible for significant agricultural losses. Effects can range from mild symptoms to catastrophic plant damage, which can lead to major economic and social consequences. Methods are needed to effectively control plant pests. SUMMARY Compositions and methods for controlling plant pests and/or for improving at least one agronomic trait of interest in a plant are provided. Such compositions and methods comprise bacterial strains that control one or more plant pests, and/or improve at least one agronomic trait of interest. The bacterial strains can be used as an inoculant for plants. Also provided herein are methods for growing a plant susceptible to a plant pest or plant disease caused by a plant pest and for treating or preventing a plant disease or damage caused by a plant pest. Further provided are methods and compositions for making a modified bacterial strain having resistance to a biocide of interest. DETAILED DESCRIPTION I. Overview Compositions and methods for controlling one or more plant pests and/or improving at least one agronomic trait of interest are provided. A biological agent, biocontrol agent, bacterial strain, modified bacterial strain, modified biological agent, or modified biocontrol agent or active variant thereof are used herein to describe a microorganism that is used to control plant pests and/or improve at least one agronomic trait of interest. II. Bacterial Strains Various biocontrol agents or bacterial strains are provided which can be used to control one or more plant pest and/or improve at least one agronomic trait of interest. Such bacterial strains include AIP03 1898 (a Pseudomonas chlororaphis FB24 strain), AIP023234 (a Lonsdalea quercina strain), AIP024552 (an Agrobacterium tumefaciens strain), AIP035573 (a Lonsdalea quercina strain), AIP071234 (a Pseudarthrobacterphenanthrenivoram strain), AIP080021 (a Pseudomonas libanensis strain), AIP001237 Pseudomonas brassicaceanm strain), AIP050674 (a Pseudomonas brassicaceanm strain), AIP071546 (a Pseudomonas brassicacearum strain), AIP049805 (a Pseudomonas ni strain), AIPO 16229 (a Pseudomonas brassicacearum strain), AIP081435 (a Pseudomonas poae strain), AIP082140 (an Agrohacierium tumefaciens strain), AIP000817 (a Mucilaginibacter gossypii strain), AIP060333 (a Pseudomonasfluorescens strain), AIP070494 (a Mycolicibacteriumfrederiksbergense strain), AIPO 15104 (a Pseudomonas graminis strain), AIP011586 (an Agrobacterium tumefaciens strain), AIP010884 (an Agrohacierium tumefaciens strain), AIP082287 (a Pseudomonas oryzihabitans strain), AIP088026 (an Ochrobaclrum intermedium strain), AIP065969 (a Microbacterium arborescens strain), AIPO 185 14 (an Exiguobacterium indicum strain), AIP033041 (a Variovoraxginsengisoii strain), AIP092281 (a Microbacterium testaceum strain), AIP081 114 (a Microbacterium hominis strain), AIP046403 (a Microbacterium oleivorans strain), AIP02263 5 (a Paenarthrobacter ureafaciens strain), AIP070925 (a Pseudomonasfluorescens strain), and AIP039063 (a Klebsiella aerogenes strain). Cell populations comprising one or more of, AIP031898, AIP023234, AIP024552, AIP035573, AIP071234, AIP080021, AIP001237, AIP050674, AIP071546, AIP049805, AIP016229, AIP081435, AIP082140, AIP000817, AIP060333, AIP070494, AIP015104, AIP011586, AIP010884, AIP082287, AIP088026, AIP065969, AIP018514, AIP033041, AIP092281, AIP081 114, AIP046403, AIP022635, AIP070925, and AIP039063 are provided, as well as, populations of spores derived from each of these strains, or any preparation thereof. Thus, various bacterial strains and/or the pesticidal compositions provided herein comprise as an active ingredient a cell population comprising one or more of AIP031898, AIP023234, AIP024552, AIP035573, AIP071234, AIP080021, AIP001237, AIP050674, AIP071546, AIP049805, AIP016229, AIP081435, AIP082140, AIP000817, AIP060333, AIP070494, AIP015104, AIP01 1586, AIP010884, AIP082287, AIP088026, AIP065969, AIP018514, AIP033041, AIP092281, AIP081114, AIP046403, AIP022635, AIP070925, and AIP039063, or an active variant of any thereof. AIP03 1898 was deposited with the Patent Depository of the National Center for Agricultural Utilization Research Agricultural Research Service, U S . Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604 U.S.A. on June 4, 2019 and assigned NRRL No.B-67799. AIP023234 was deposited with the Patent Depository of the National Center for Agricultural Utilization Research Agricultural Research Service, U S . Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604 U.S.A. on June 4, 2019 and assigned RRL No.B-67784. AIP024552 was deposited with the Patent Depository of the National Center for Agricultural Utilization Research Agricultural Research Service, U S . Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604 U.S.A. on June 4, 2019 and assigned NRRL No.B-67780. AIP035573 was deposited with the Patent Depository of the National Center for Agricultural Utilization Research Agricultural Research Service, U S . Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604 U.S.A. on June 14, 2019 and assigned NRRL No._ . AIP071234 was deposited with the Patent Depository of the National Center for Agricultural Utilization Research Agricultural Research Service, U S . Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604 U.S.A. on June 4, 2019 and assigned NRRL No.B-67793. AIP080021 was deposited with the Patent Depository of the National Center for Agricultural Utilization Research Agricultural Research Service, U S . Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604 U.S.A. on June 4, 2019 and assigned NRRL No.B-67803. AIP001237 was deposited with the Patent Depository of the National Center for Agricultural Utilization Research Agricultural Research Service, U S . Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604 U.S.A. on June 4, 2019 and assigned NRRL No.B-67794. AIP050674 was deposited with the Patent Depository of the National Center for Agricultural Utilization Research Agricultural Research Service, U S . Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604 U.S.A. on June 4, 2019 and assigned NRRL No.B-67795. AIP071546 was deposited with the Patent Depository of the National Center for Agricultural Utilization Research Agricultural
Recommended publications
  • ANOTHER RECORD for AZALEA AS AFOODPLANT of Satyrilj
    • FOUNDED VOL.7 NO.1 1978 MAY'1985 THE OFFICIAL PUBLICATION OF THE SOUTHERN LEPIDOPTERISTS' SOCIETY, ORGANIZED TO PROMOTE SCIENTIFIC INTEREST AND KNOWLEDGE RELATED TO UNDERSTANDING THE LEPIDOPTERA FAUNA OF THE SOUTHERN REGION OF THE UNITED STATES. ANOTHER RECORD FOR AZALEA AS AFOODPLANT 1985 ANNUAL MEETING SATYRIlJ~1 OF LIPAROPS LIPAROPS CB & U NEAR ST I MARKS NWR, FLOR IDA By Bob Cavanaugh By Dave Baggett ON March 16, 1985 while searching over I AM working towards setting up the 1985 the leaves of a wild azalea bush (Rho­ annual meeting in or near St. Marks NWR dodendron canescens (Michaux)) I found (Inner Big Bend area along the NW Gulf a pale green, slug shaped larva which Coast, about 40 miles south of Tallahassee). reared out to be a male Satyrium ~­ There has been very limited exploration in arops liparops. The description of the the area, and I think it is one that holds larva contained in Klots' A FIELD GUIDE a great deal of promise. The date will be TO THE BUTTERFLIES is accurate for this Labor Day weekend (Aug. 30 - Sept. 1). This subspecies. The larva turned a pretty could be a bit early for the area, but then lavender color three days prior to pu­ again, it might just be right on target. pation. Pupation occurred on April 1st The immediate area adjacent holds a lot of and the adult emerged on the morning of promise for several field trips, especially April 18th. in conjunction with the long holiday week­ end. The azalea plant was in full bloom and the leaves were young and soft.
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • The L E Pi D 0 Pte R 1St S' Soc I E Ty
    JOURNAL OF THE L E PI D 0 PTE R 1ST S' SOC I E TY Volume 29 1975 Number 3 ROSTROLAETILIA-A NEW NORTH AMERICAN GENUS OF THE SUBFAMILY PHYCITINAE, WITH DESCRIPTIONS OF SEVEN NEW SPECIES (PYRALIDAE) ANDRE BLANCHARD P.O. Box 20304, Houston, Texas 77025 and DOUGLAS C. FERGUSON Systematic Entomology Laboratory, IIBIII, Agr. Res. Serv., USDA c/o U. S. National Museum, Smithsonian Institution, Washington, D.C. 20560 In his revision of the Anerastiinae (auctorum), Shaffer (1968) showed that this subfamily, which had been separated by Ragonot (1886) from the Phycitinae on the basis of a single reduction character, loss or ex­ treme reduction of the tongue, was not monophyletic. On the basis of the genitalia, he showed that some genera should remain separate from the Phycitinae and be treated under the subfamily name Peoriinae, a name previously used in a much broader sense by Hulst (1890). The remainder of the Anerastiinae, including the genus Anerastia Hubner, were considered by Shaffer to belong to the Phycitinae. For lack of sufficient information or material Shaffer left unplaced a few genera and species which he discussed briefly at the end of his revision. These are taxa that had not been treated by Heinrich (1956) because he thought that they were Anerastiinae and thus not within the scope of his revision of the Phycitinae. The present paper offers a redescription of three of these unplaced species, namely Altoona ardi­ fer ella Hulst, Aurora nigromaculella Hulst, and Parramatta placidella Barnes & McDunnough, as well as descriptions of seven new species. We were able to assign the three existing species names with confidence because the types are available, and their genitalia are distinctive.
    [Show full text]
  • Lepidoptera of the Tolman Bridge Area (2000-2011)
    LEPIDOPTERA OF THE TOLMAN BRIDGE AREA, ALBERTA, 2000-2011 Charles Bird, 8 March 2012 Box 22, Erskine, AB T0C 1G0 [email protected] The present paper includes a number of redeterminations and additions to the information in earlier reports. It also follows the up-to-date order and taxonomy of Pohl et al. (2010), rather than that of Hodges et al. (1983). Brian Scholtens, Greg Pohl and Jean-François Landry collecting moths at a sheet illuminated by a mercury vapor (MV) light, Tolman Bridge, 24 July 2003, during the 2003 Olds meetings of the Lepidopterist’s Society (C.D. Bird image). Tolman Bridge, is located in the valley of the Red Deer River, 18 km (10 miles) east of the town of Trochu. The bridge and adjoining Park land are in the north half of section 14, range 22, township 34, west of the Fourth Meridian. The coordinates at the bridge are 51.503N and 113.009W. The elevation ranges from around 600 m at the river to 800 m or so near the top of the river breaks. In a Natural Area Inspection Report dated 25 June 1982 and in the 1989 Trochu 82 P/14, 1:50,000 topographic map, the land southwest of the bridge was designated as the “Tolman Bridge Municipal Park” while that southeast of the bridge was referred to as the “Tolman Bridge Recreation Area”. In an Alberta, Department of the Environment, Parks and Protected Areas Division paper dated 9 May 2000, the areas on both sides of the river are included in “Dry Island Buffalo Jump Provincial Park”.
    [Show full text]
  • Field Evaluation of Granular Starch Formulations of Bacillus Thuringiensis Against Ostrinia Nubilalis (Lepidoptera: Pyralidae)
    6 85 Field Evaluation of Granular Starch Formulations of Bacillus thuringiensis Against Ostrinia nubilalis (Lepidoptera: Pyralidae) MICHAEL R. !\'lcGUIRE, BARUCH S. SHASHA, LESLIE C. LEWIS,l ROBERT J. BARTELT, AND KARL KINNEY2 VSDA-ARS, Plant Polymer Research, Northern Regional Research Center, Peoria, Illinois 61604 J. Econ. Entomol. 83(6): 2207-2210 (1990) ABSTRACT Bacillus thuringiensis subsp. kurstaki Berliner was encapsulated within corn­ starch granules with the feeding stimulant Coax or the VV screen Congo red and tested at two field sites against European corn borer, Ostrinia nubilalis (Hubner), feeding in whorl­ stage corn. These tests were done to determine the relative effect of these additives on efficacy of starch-encapsulated B. thuringiensis. At both sites, all treatments with B. thuringiensis significantly reduced tunneling by O. nubilalis. At one site, significant effects of addition of the phagostimulant were observed. When Coax was added at 1 or 10% of starch dry weight with 400 international units (IV) B. thuringiensis per mg dry granule weight, response of O. nubilalis was equivalent to that obtained with granules containing no feeding stimulant and 1,600 IV/mg. Also, granules with Coax and 400 IV/mg gave a response similar to that obtained from the commercial product Dipel lOG formulated at 1,600 IV/mg. At the other site, the effect of phagostimulant was not significant, primarily because O. nubilalis infestation levels were too low for precise discrimination among treatments. KEY WORDS Insecta, Ostrinia nubilalis, starch encapsulation, feeding stimulant FOR APPROXIMATELY 20 YEARS, Bacillus thuTin­ ringiensis could be reduced from 1,600 interna­ giensis subsp. kUTstaki Berliner has been used as tional units (IU)/ mg to 400 IU/ mg in the presence an agent to control the European corn borer, Os­ of Coax without loss of insecticidal activity (Bartelt trinia nubilalis (Hubner) selectively.
    [Show full text]
  • An Annotated List of the Lepidoptera of Alberta, Canada
    A peer-reviewed open-access journal ZooKeys 38: 1–549 (2010) Annotated list of the Lepidoptera of Alberta, Canada 1 doi: 10.3897/zookeys.38.383 MONOGRAPH www.pensoftonline.net/zookeys Launched to accelerate biodiversity research An annotated list of the Lepidoptera of Alberta, Canada Gregory R. Pohl1, Gary G. Anweiler2, B. Christian Schmidt3, Norbert G. Kondla4 1 Editor-in-chief, co-author of introduction, and author of micromoths portions. Natural Resources Canada, Northern Forestry Centre, 5320 - 122 St., Edmonton, Alberta, Canada T6H 3S5 2 Co-author of macromoths portions. University of Alberta, E.H. Strickland Entomological Museum, Department of Biological Sciences, Edmonton, Alberta, Canada T6G 2E3 3 Co-author of introduction and macromoths portions. Canadian Food Inspection Agency, Canadian National Collection of Insects, Arachnids and Nematodes, K.W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, Canada K1A 0C6 4 Author of butterfl ies portions. 242-6220 – 17 Ave. SE, Calgary, Alberta, Canada T2A 0W6 Corresponding authors: Gregory R. Pohl ([email protected]), Gary G. Anweiler ([email protected]), B. Christian Schmidt ([email protected]), Norbert G. Kondla ([email protected]) Academic editor: Donald Lafontaine | Received 11 January 2010 | Accepted 7 February 2010 | Published 5 March 2010 Citation: Pohl GR, Anweiler GG, Schmidt BC, Kondla NG (2010) An annotated list of the Lepidoptera of Alberta, Canada. ZooKeys 38: 1–549. doi: 10.3897/zookeys.38.383 Abstract Th is checklist documents the 2367 Lepidoptera species reported to occur in the province of Alberta, Can- ada, based on examination of the major public insect collections in Alberta and the Canadian National Collection of Insects, Arachnids and Nematodes.
    [Show full text]
  • Ohio Economic Insects and Related Arthropods
    April 1989 · Bulletin 752 OHIO ECONOMIC INSECTS AND RELATED ARTHROPODS Armyworm feeding on com; 2x. (USDA) This list was prepared in cooperation with faculty of the Ohio Cooperative Extension Service, the Ohio Agricultural Research and Development Center, the Ohio Department of Agriculture, the Ohio Department of Health, The Ohio State University and the Plant Pest Control Division of the United States Department of Agriculture . .Uhio Cooperative Extension Service The Ohio State University 2 OHIO ECONOMIC INSECTS AND RELATED ARTUROPODS For additional information, contact William F. Lyon, Extension Entomologist, The Ohio State University, 1991 Kenny Road, Columbus, Ohio 43210-1090. Phone: (614) m-5274. INTRODUCTION This list of Ohio Economic Insects and Related Arthropods was first assembled back in 1962-1964 while employed as the first "Survey Entomologist" of Ohio based at The Ohio Agricultural Research and Development Center, Wooster, Ohio. It was felt that such a list would serve as a valuable reference and useful purpose for commercial, government and public needs. This list was prepared and updated in cooperation with faculty of the Ohio Cooperative Extension Service, the Ohio Agricultural Research and Development Center, the Ohio Department of Agriculture, the Ohio Department of Health, the Ohio State University and the Plant Pest Control Division of the United States Department of Agriculture. Common and scientific names are listed under various host and habitat categories. ACKNQWLEDGEMENT Several individuals have made valuable contributions to this list of Ohio Insects and Related Arthropods. by updating common names, scientific names, hosts and habitats. Carl W. Albrecht George Keeney Bruce Eisley Richard K. Lindquist John K.
    [Show full text]
  • R. L. Meagher, Jr.R and J. C. Kgaspi 2 Texas A&M University Agricultural
    S O U T IIW E S T E R N E N T O M O L O G IS T N IA R .2003 M ttIIN ‐F IE L D D IST R IB U T IO N O F T H R E E H O M O PT E R A N SP E C ttS IN T E X A S SU G A R C A N E R. L. Meagher,Jr.r andJ. C. kgaspi 2 TexasA&M University Agricultural Researchand ExtensionCenter 2415EastHighway 83 Weslaco,Texas 78596 ABSTRACT Sugarcanefields composed ofeither'CP 70-321'or'NCo 310'weresampled during 1993 and 1994 for three speciesofhomopteran insects. The West Indian canefly, Saccharosydne saccharivora(tlestwood), wasthe mostabundant speiies collectedwith densitiesreaching over 40 per shoot. Populationdensities varied sigrificantly throughoutthe seasonin 1993but were similar in 1994. No differencein densitieswere found between sugarcane cultivars. Both the sugarcanedelphacid, Perhinsiella saccharicidaKirkaldyand the leafhopperDraeculacephala portola Ball, were found in low numbers(< 1.0per shoot). P. saccharicidareached its highest levelslater in the season,and 'CP 70-321'shoots harbored more individuals than 'NCo 310' shoots.Although D. portola dertsitieswere low, differe,ncesamong fields andbetwecn cultivars were found. Aggregation,as measuredusing Taylor a and b coefficients, was shown to be greaterfor ,S.saccharivora than the other species. INTRODUCTION Sugarcane(interspecific hybrids of Saccharum)has been commercially grown in a tlree- county areaof southemTexas since 1972. Stemboringpyralids, Mexican rice borer, Eoreuma loftini (Dyar), andsugarcane borer, Diatraea saccharalis(F.), havebeen the most seriousinsect pests of the in{ustry (Meagher et al. 1994); however, other insects are active in the Texas sugarcaneagroecos)Nstem.
    [Show full text]
  • The Gut Microbiota of Larvae of Rhynchophorus Ferrugineus Oliver
    Tagliavia et al. BMC Microbiology 2014, 14:136 http://www.biomedcentral.com/1471-2180/14/136 RESEARCH ARTICLE Open Access The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae) Marcello Tagliavia1,3, Enzo Messina2, Barbara Manachini1, Simone Cappello2 and Paola Quatrini1* Abstract Background: The red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is one of the major pests of palms. The larvae bore into the palm trunk and feed on the palm tender tissues and sap, leading the host tree to death. The gut microbiota of insects plays a remarkable role in the host life and understanding the relationship dynamics between insects and their microbiota may improve the biological control of insect pests. The purpose of this study was to analyse the diversity of the gut microbiota of field-caught RPW larvae sampled in Sicily (Italy). Results: The 16S rRNA gene-based Temporal Thermal Gradient Gel Electrophoresis (TTGE) of the gut microbiota of RPW field-trapped larvae revealed low bacterial diversity and stability of the community over seasons and among pools of larvae from different host trees. Pyrosequencing of the 16S rRNA gene V3 region confirmed low complexity and assigned 98% of the 75,564 reads to only three phyla: Proteobacteria (64.7%) Bacteroidetes (23.6%) and Firmicutes (9.6%) and three main families [Enterobacteriaceae (61.5%), Porphyromonadaceae (22.1%) and Streptococcaceae (8.9%)]. More than half of the reads could be classified at the genus level and eight bacterial genera were detected in the larval RPW gut at an abundance ≥1%: Dysgonomonas (21.8%), Lactococcus (8.9%), Salmonella (6.8%), Enterobacter (3.8%), Budvicia (2.8%), Entomoplasma (1.4%), Bacteroides (1.3%) and Comamonas (1%).
    [Show full text]
  • INTSORMIL Annual Report 1992 SORGHUM/MILLET
    INTSORMIL Annual Report 1992 SORGHUM/MILLET COLLABORATIVE RUSEARCH SUPPORT-- : PROGRAM (CRSP) FightingHunger with Research a team effort Funding support through the Agency for International Development Grant No: DAN 1254-G-00-0021-00 Cover Photographs (top to bottom) 1. Researchers in Mali use cages to protect sorghum from head bugs to establish base line data. Photo courtesy of Dr. Lloyd Rooney. 2. A young farmer in Maradi (Niger) stands in front of NAD-1 hybrid, a product of INRAN/INTSORMIL collaborative research. Pheto courtesy of Mr. Issoufou Kapran. 3. Malian food scientists conduct parboiling cooking trials in a village near Cinzana, Mali. Photo courtesy of Dr. Lloyd Rooney. 4. Village grain storage huts in Mali (West Africa). Photo courtesy of Dr. Timothy Schilling. t t INTSORMIL Annual Report 1992 Fighting Hunger with Research ... A Team Effort Grain Sorghum/Pearl Millet Collaborative Research Support Program (CRSP) The Sorghum/Millet Collaborative Research Support Program (CRSP) is an initiative of the Agency for International Development, Grant No. DAN-1254-G-00-0021-00, Title XII and the Board for International Food and Agricultural Development and Economic Cooperation (BIFADEC), the participating U.S. Universities and other collaborating institutions. INTSORMIL Publication 93-2 Report Coordinators John M. Yohe, Program Director Joan Frederick and Dorothy Stoner For additional informa.ion contact the INTSORMIL Management Entity at: INTSORMIL 54 Nebraska Center University of Nebraska Lincoln, Nebraska 68583-0948 Telephone (402)
    [Show full text]
  • Survey of Arthropod Assemblages Responding to Live Yeasts in an Organic Apple Orchard
    ORIGINAL RESEARCH published: 26 October 2015 doi: 10.3389/fevo.2015.00121 Survey of arthropod assemblages responding to live yeasts in an organic apple orchard Stefanos S. Andreadis * †, Peter Witzgall and Paul G. Becher Chemical Ecology Unit, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden Associations between yeasts and insect herbivores are widespread, and these inter-kingdom interactions play a crucial role in yeast and insect ecology and evolution. We report a survey of insect attraction to live yeast from a community ecology perspective. In the summer of 2013 we screened live yeast cultures of Metschnikowia pulcherrima, M. andauensis, M. hawaiiensis, M. lopburiensis, and Cryptococcus tephrensis in an organic apple orchard. More than 3000 arthropods from 3 classes, 15 orders, and 93 species were trapped; ca. 79% of the trapped specimens were dipterans, of which 43% were hoverflies (Syrphidae), followed by Sarcophagidae, Edited by: Thomas Seth Davis, Phoridae, Lauxaniidae, Cecidomyidae, Drosophilidae, and Chironomidae. Traps baited University of Idaho, USA with M. pulcherrima, M. andauensis, and C. tephrensis captured typically 2.4 times Reviewed by: more specimens than control traps; traps baited with M. pulcherrima, M. hawaiiensis, Dong H. Cha, M. andauensis, M. lopburiensis, and C. tephrensis were more species-rich than unbaited Cornell University/SUNY-ESF, USA Qing-He Zhang, control traps. We conclude that traps baited with live yeasts of the genera Metschnikowia Sterling International, Inc., USA and Cryprococcus are effective attractants and therefore of potential value for pest *Correspondence: control. Yeast-based monitoring or attract-and-kill techniques could target pest insects Stefanos S.
    [Show full text]
  • The Role of Birds As Predators and Potential Biocontrol Agents of Lnsect Pests in Corn Fields
    The Role of Birds as Predators and Potential Biocontrol Agents of lnsect Pests in Corn Fields by Annie C. Tremblay A thesis submitted to the Faculty of Graduate Studies and Research in partial fuifilment of the requirements of the degree of Master of Sciences Department of Natural Resources Sciences Macdonald Campus of McGill University Sainte-Anne-de-Bellevue, Quebec, Canada May 1999 O Annie C. Tremblay 1999 National Library Bibliothèque nationale l*l of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rwWellington OttawaON K1AW Otfawaûîü KIAW CaMda Canade The author has granted a non- L'auteur a accordé une Licence non exclusive licence aliowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seil reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or othexwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT Annie C. Tremblay Natural Resources This project investigated the impact of bird predation on insect pest populations within tvJo cornfields of Southwestern Quebec. Birds were excluded from portions of these fields through the use of bird-proof netting.
    [Show full text]