Brief Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How to Design Experiments in Animal Behaviour∗ 8
SERIES ARTICLE How to Design Experiments in Animal Behaviour∗ 8. How Do Wasps Decide Who Would Be the Queen? Part 2 Raghavendra Gadagkar Continuing to explore the fascinating world of the Indian pa- per wasp Ropalidia marginata, in this article, we will ask how wasps choose their queens in another context. In the previ- ous article in this series, we saw how a simple experiment re- vealed that wasps fight, i.e., indulge in dominance-subordinate interactions, and the winner becomes the queen and the loser becomes the worker. This was in the context of new nestfoundation. But contextmatters. Whenthe same wasps once again have to decide who will be their next queen Raghavendra Gadagkar is if the first one dies or is experimentally removed, the same DST Year of Science Chair Professor at the Centre for rules do not hold. The wasps in a mature colony continue Ecological Sciences, Indian to show dominance-subordinate interactions and can even be Institute of Science, arranged in a dominance hierarchy, but the dominance ranks Bangalore, Honorary of the wasps do not predict who their next queen will be. Professor at JNCASR, and Non-Resident Permanent How they choose their next queen in this context continues Fellow of the to be an enduring mystery. In this article, I will describe four Wissenschaftskolleg (Institute simple experiments that have helped us come close to nail- for Advanced Study), Berlin. ing the culprit, although I must confess that we have not yet During the past 40 years he has established an active found the smoking gun—the chase is on, and we are hot on school of research in the area the trail—please join in! of animal behaviour, ecology and evolution. -
The Evolution of Cooperative Breeding in the African Cichlid Fish, Neolamprologus Pulcher
Biol. Rev. (2011), 86, pp. 511–530. 511 doi: 10.1111/j.1469-185X.2010.00158.x The evolution of cooperative breeding in the African cichlid fish, Neolamprologus pulcher Marian Wong∗ and Sigal Balshine Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4L8, Canada (Received 14 December 2009; revised 5 August 2010; accepted 16 August 2010) ABSTRACT The conundrum of why subordinate individuals assist dominants at the expense of their own direct reproduction has received much theoretical and empirical attention over the last 50 years. During this time, birds and mammals have taken centre stage as model vertebrate systems for exploring why helpers help. However, fish have great potential for enhancing our understanding of the generality and adaptiveness of helping behaviour because of the ease with which they can be experimentally manipulated under controlled laboratory and field conditions. In particular, the freshwater African cichlid, Neolamprologus pulcher, has emerged as a promising model species for investigating the evolution of cooperative breeding, with 64 papers published on this species over the past 27 years. Here we clarify current knowledge pertaining to the costs and benefits of helping in N. pulcher by critically assessing the existing empirical evidence. We then provide a comprehensive examination of the evidence pertaining to four key hypotheses for why helpers might help: (1) kin selection; (2) pay-to-stay; (3) signals of prestige; and (4) group augmentation. For each hypothesis, we outline the underlying theory, address the appropriateness of N. pulcher as a model species and describe the key predictions and associated empirical tests. For N. -
Comparative Methods Offer Powerful Insights Into Social Evolution in Bees Sarah Kocher, Robert Paxton
Comparative methods offer powerful insights into social evolution in bees Sarah Kocher, Robert Paxton To cite this version: Sarah Kocher, Robert Paxton. Comparative methods offer powerful insights into social evolution in bees. Apidologie, Springer Verlag, 2014, 45 (3), pp.289-305. 10.1007/s13592-014-0268-3. hal- 01234748 HAL Id: hal-01234748 https://hal.archives-ouvertes.fr/hal-01234748 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2014) 45:289–305 Review article * INRA, DIB and Springer-Verlag France, 2014 DOI: 10.1007/s13592-014-0268-3 Comparative methods offer powerful insights into social evolution in bees 1 2 Sarah D. KOCHER , Robert J. PAXTON 1Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA 2Institute for Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany Received 9 September 2013 – Revised 8 December 2013 – Accepted 2 January 2014 Abstract – Bees are excellent models for studying the evolution of sociality. While most species are solitary, many form social groups. The most complex form of social behavior, eusociality, has arisen independently four times within the bees. -
Leary, C.J. 2014. Close-Range Vocal Signals Elicit a Stress Response in Male Green Treefrogs
Animal Behaviour 96 (2014) 39e48 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Close-range vocal signals elicit a stress response in male green treefrogs: resolution of an androgen-based conflict * Christopher J. Leary Department of Biology, The University of Mississippi, Oxford, MS, U.S.A. article info Male courtship signals often stimulate the production of sex steroids in both female and male receivers. fi Article history: Such effects bene t signallers by increasing receptivity in females, but impose costs on signallers by Received 11 March 2014 promoting sexual behaviour and aggression in male competitors. To resolve this androgen-based conflict, Initial acceptance 24 April 2014 males should use strategies that suppress sex steroid production in rival males. In green treefrogs, Hyla Final acceptance 7 July 2014 cinerea, chorus sounds (i.e. advertisement calls from aggregates of males) are known to stimulate Published online 17 August 2014 androgen production in receiver males. Here, I examined whether males of this species counter these MS. number: A14-00205R effects by eliciting an endocrine stress response in male conspecifics during close-range vocal in- teractions. I show that corticosterone (CORT) levels were higher in males that lost vocal contests in Keywords: natural choruses compared to contest winners and nonaggressive males. Testosterone levels were also acoustic signal lower in contest losers compared to nonaggressive males, but not contest winners; dihydrotesterone challenge hypothesis levels did not differ among the three groups. Aggressive and advertisement calls were then broadcast to courtship signal glucocorticoid males in an experiment that simulated close-range vocal communication. -
Eusociality: Origin and Consequences
Corrections CELL BIOLOGY. For the article ‘‘The NF1 tumor suppressor criti- BIOCHEMISTRY. For the article ‘‘Engineered single-chain dimeric cally regulates TSC2 and mTOR,’’ by Cory M. Johannessen, streptavidins with an unexpected strong preference for biotin- Elizabeth E. Reczek, Marianne F. James, Hilde Brems, Eric 4-fluorescein,’’ by Filiz M. Aslan, Yong Yu, Scott C. Mohr, and Legius, and Karen Cichowski, which appeared in issue 24, June Charles R. Cantor, which appeared in issue 24, June 14, 2005, of 14, 2005, of Proc. Natl. Acad. Sci. USA (102, 8573–8578; first Proc. Natl. Acad. Sci. USA (102, 8507–8512; first published June published June 3, 2005; 10.1073͞pnas.0503224102), the authors 6, 2005; 10.1073͞pnas.0503112102), the footnotes appeared in note the following. On page 8574, the last sentence of the first the wrong order, due to a printer’s error. The ** footnote on paragraph in the left column, ‘‘Clarified lysates were normalized page 8507 should have read: ‘‘Throughout this paper, we use the for protein levels and analyzed by Western blotting with the terms monomer(ic), dimer(ic), and tetramer(ic) to refer to the following antibodies: phospho-p70S6K (T-389), phospho- number of biotin-binding domains present in a molecule, re- tuberin (S-939), phospho-tuberin (T-1462), phospho-Akt (S- gardless of the number of polypeptide chains it has.’’ In addition, 473), tuberin (C-20) from Santa Cruz Biotechnology, and the †† footnote on page 8512 should have read: ‘‘We note, protein kinase B␣͞AKT1, actin, and -tubulin from Sigma- however, -
Concepts Derived from the Challenge Hypothesis T ⁎ John C
Hormones and Behavior 115 (2019) 104550 Contents lists available at ScienceDirect Hormones and Behavior journal homepage: www.elsevier.com/locate/yhbeh Review article Concepts derived from the Challenge Hypothesis T ⁎ John C. Wingfielda, , Wolfgang Goymannb, Cecilia Jalabertc,d, Kiran K. Somac,d,e a Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA b Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany c Department of Zoology, University of British Columbia, Vancouver, Canada d Djavad Mofawaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada e Department of Psychology, University of British Columbia, Vancouver, Canada ARTICLE INFO ABSTRACT Keywords: The Challenge Hypothesis was developed to explain why and how regulatory mechanisms underlying patterns of State levels testosterone secretion vary so much across species and populations as well as among and within individuals. The Neurosteroids hypothesis has been tested many times over the past 30 years in all vertebrate groups as well as some in- Songbird vertebrates. Some experimental tests supported the hypothesis but many did not. However, the emerging con- Aggression cepts and methods extend and widen the Challenge Hypothesis to potentially all endocrine systems, and not only Testosterone control of secretion, but also transport mechanisms and how target cells are able to adjust their responsiveness to Mass spectrometry Androgens circulating levels of hormones independently of other tissues. The latter concept may be particularly important in explaining how tissues respond differently to the same hormone concentration. Responsiveness of the hy- pothalamo-pituitary-gonad (HPG) axis to environmental and social cues regulating reproductive functions may all be driven by gonadotropin-releasing hormone (GnRH) or gonadotropin-inhibiting hormone (GnIH), but the question remains as to how different contexts and social interactions result in stimulation of GnRH or GnIH release. -
UC Santa Barbara Electronic Theses and Dissertations
UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title How Collective Personality, Behavioral Plasticity, Information, and Fear Shape Collective Hunting in a Spider Society Permalink https://escholarship.org/uc/item/4pm302q6 Author Wright, Colin Morgan Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara How Collective Personality, Behavioral Plasticity, Information, and Fear Shape Collective Hunting in a Spider Society A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Colin M. Wright Committee in charge: Professor Jonathan Pruitt, Chair Professor Erika Eliason Professor Thomas Turner June 2018 The dissertation of Colin M. Wright is approved. ____________________________________________ Erika Eliason ____________________________________________ Thomas Turner ____________________________________________ Jonathan Pruitt, Committee Chair April 2018 ACKNOWLEDGEMENTS I would like to thank my Ph.D. advisor, Dr. Jonathan Pruitt, for supporting me and my research over the last 5 years. I could not imagine having a better, or more entertaining, mentor. I am very thankful to have had his unwavering support through academic as well as personal challenges. I am also extremely thankful for all the members of the Pruitt Lab (Nick Keiser, James Lichtenstein, and Andreas Modlmeier), as well as my cohorts at both the University of Pittsburgh and UCSB that have been my closest friends during graduate school. I appreciate Dr. Walter Carson at the University of Pittsburgh for being an unofficial second mentor to me during my time there. Most importantly, I would like to thank my family, Rill (mother), Tom (father), and Will (brother) Wright. -
Finding a Mate with Eusocial Skills
Finding a Mate With Eusocial Skills Chris Marriott1 and Jobran Chebib2 1University of Washington, Tacoma, WA, USA 98402 2University of Zurich,¨ Zurich,¨ Switzerland 8057 [email protected] Downloaded from http://direct.mit.edu/isal/proceedings-pdf/alif2016/28/298/1904330/978-0-262-33936-0-ch052.pdf by guest on 30 September 2021 Abstract mutual response of the individuals in the herd with no need for social awareness or exchange of information. Sexual reproductive behavior has a necessary social coordina- Prior work (from now on when we reference the prior tion component as willing and capable partners must both be work we mean the work in Marriott and Chebib (2015a,b)) in the right place at the right time. It has recently been demon- strated that many social organizations that support sexual re- showed that herding, philopatry, and assortative mating production can evolve in the absence of social coordination arose through non-social mechanisms of convergence and between agents (e.g. herding, assortative mating, and natal common descent. This work raised a few questions regard- philopatry). In this paper we explore these results by includ- ing the role that social interaction plays in many of these ob- ing social transfer mechanisms to our agents and contrasting served behaviors. These mating behaviors can be explained their reproductive behavior with a control group without so- cial transfer mechanisms. We conclude that similar behaviors by both non-social and social mechanisms. In many cases emerge in our social learning agents as those that emerged in the non-social solution is the simpler one, though it is likely the non-social learning agents. -
Lecture Outline: 1
Bio342_ Animals_Behavior_F2018 LECTURE GOALS: £ Consider different ways of classifying questions in Animal Behavior. LECTURE OUTLINE: 1. Ethology cleaves to the “4 questions” delineated by Niko Tinbergen including: a. Causation ~ mechanism b. Ontogeny ~ development c. Adaptive Value ~ function d. Phylogeny ~ evolution 2. These 4 questions can be described in dichotomous distinctions: a. proximate vs. ultimate b. contemporary (snapshot) vs. chronicle (story) 3. Tinbergen’s 4 Questions resemble Aristotle’s theoretical framework for a general analytical scheme known as “the 4 causes”. 4. Dewsburry presents an alternate classification scheme that avoid the problems of the proximate/ultimate distinction. a. Genesis: What is the influence of past events as a dynamic interpretation of history on 3 timescales. i. Evolution: relates past natural selection & drift etc. ii. Culture: covers cross generational, non-genetic transmission. iii. Development: begins with conception and includes genetic factors as well as environmental factors. - dynamic. b. Control: Short term regulation of behavior. i. external (outside the skin: including biotic and abiotic environment) ii. internal (physiology & endocrinology) factors. c. Consequences: The full range of effects that are contingent on behavior i. consequences for the organism: behaviors change the organism itself ii. consequences for the environment : The extended phenotype, both abiotic and social iii. consequences for differential reproduction : inclusive fitness 5. Example of behaviors that are difficult to put into Tinberbgen’s 4 Questions. a. Genetic Assimilation – the role of plasticity past and present. b. Epigenetic inheritance – Michael Meaney’s work with maternal care in rats. i. This is a maternal influence at a critical period ii. The mechanism involves methylation of the Cortisol (Glucocorticoid) Receptor during a critical period that alters the function of the HPA. -
Genetic Accommodation and the Role of Ancestral Plasticity in the Evolution of Insect Eusociality Beryl M
© 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb153163. doi:10.1242/jeb.153163 COMMENTARY Genetic accommodation and the role of ancestral plasticity in the evolution of insect eusociality Beryl M. Jones1,* and Gene E. Robinson1,2,3,4 ABSTRACT novel genetic combinations and phenotypes (Carroll, 2008). ‘ ’ For over a century, biologists have proposed a role for phenotypic Mutation-first evolution (see Glossary), where a new mutation ‘ ’ plasticity in evolution, providing an avenue for adaptation in addition provides novel phenotypes that can be screened by natural to ‘mutation-first’ models of evolutionary change. According to the selection, is easily studied when the mutation can be directly linked various versions of this idea, the ability of organisms to respond to the phenotype. Even without knowledge of the phenotypic adaptively to their environment through phenotypic plasticity may consequences of alleles, mutation-first evolution studies can be lead to novel phenotypes that can be screened by natural selection. If initiated in both natural populations and laboratories simply by these initially environmentally induced phenotypes increase fitness, documenting changes in allele frequencies over time. then genetic accommodation can lead to allele frequency change, However, novel traits are also suggested to originate independent influencing the expression of those phenotypes. Despite the long of new mutations, via the environmental and developmental history of ‘plasticity-first’ models, the importance of genetic induction of phenotypes. One of the first biologists to emphasize accommodation in shaping evolutionary change has remained this was Baldwin, who at the turn of the 20th century suggested a ‘ ’ controversial – it is neither fully embraced nor completely discarded process of organic selection by which fitness differences arising by most evolutionary biologists. -
Hormonal Anticipation of Territorial Challenges in Cichlid Fish
Hormonal anticipation of territorial challenges in cichlid fish Raquel A. Antunesa,b and Rui F. Oliveiraa,b,1 aUnidade de Investigac¸a˜ o em Eco-Etologia, Instituto Superior de Psicologia, Aplicada, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal; and bChampalimaud Neuroscience Programme, Instituto Gulbenkian de Cieˆncia, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal Edited by Edward A. Kravitz, Harvard Medical School, Boston, MA, and approved July 22, 2009 (received for review January 23, 2009) In many territorial species androgens respond to social interac- individuals take part influences their androgen levels and an- tions. This response has been interpreted as a mechanism for drogens will themselves modulate perceptual, motivational, or adjusting aggressive motivation to a changing social environment. cognitive mechanisms that influence behavior (2, 11), therefore Therefore, it would be adaptive to anticipate social challenges and optimizing behavioral performance in future social interactions. reacting to their clues with an anticipatory androgen response to It would thus be adaptive for the individuals to predict social adjust agonistic motivation to an imminent social challenge. Here challenges and to respond to their clues with an anticipatory we test the hypothesis of an anticipatory androgen response to increase in androgen levels. Even though the conditioned release territorial intrusions using classical conditioning to establish an of androgens has already been shown after conditioning of light) and an mating behavior -
CAVEMAN ECONOMICS Towards a Biological Synthesis Of
CAVEMAN ECONOMICS Towards a Biological Synthesis of Neoclassical and Behavioral Economics. © Terence C. Burnham October 2011 Abstract There is a schism within economics between the neoclassical view that people optimize and the behavioral view that people are filled with biases and heuristics. In recent decades, the behavioral school has been on the ascent. A primary cause of the behavioral ascent is the experimental evidence of deviations between actual behavior and the neoclassical prediction of behavior. While behavioral scholars have documented these “anomalies,” they have made little progress explaining the origin of such behavior. This paper proposes a biological and evolutionary foundation for the anomalies of behavioral economics by separating proximate and ultimate causation. Such a foundation may allow for a re-uniting of economics; a neo-Darwinian synthesis of neoclassical and behavioral economics. Introduction Economics is divided into two competing schools based on divergent views of human nature. Neoclassical economists assume that people make optimal decisions. In sharp contrast, behavioral economists believe that people make systematic mistakes. Behavioral economics has made significant advances in recent decades. At the core of these behavioral successes is the empirical evidence of divergences between neoclassical predictions of human behavior and actual human behavior. Richard Thaler calls these divergences “anomalies.” Neoclassical economics is unique among the social sciences in deriving conclusions from a small number of underlying axioms. However, each and every neoclassical axiom now has a behavioral economic literature that documents related anomalies. Neoclassical economists dismiss the behavioral anomalies as interesting quirks, laboratory artifacts, or small-stakes effects that can be ignored when working on important issues.