40 Jahre Erfolgsgeschichte BS2000 Vortrag Von 2014

Total Page:16

File Type:pdf, Size:1020Kb

40 Jahre Erfolgsgeschichte BS2000 Vortrag Von 2014 Fujitsu NEXT Arbeitskreis BS2000 40 Jahre BS2000: Eine Erfolgsgeschichte Achim Dewor Fujitsu NEXT AK BS2000 5./6. Mai 2014 0 © FUJITSU LIMITED 2014 Was war vor 40 Jahren eigentlich so los? (1974) 1 © FUJITSU LIMITED 2014 1974 APOLLO-SOJUS-KOPPLUNG Die amtierenden Staatspräsidenten Richard Nixon und Leonid Breschnew unterzeichnen das Projekt. Zwei Jahre arbeitet man an den Vorbereitungen für eine neue gemeinsame Kopplungsmission 2 © FUJITSU LIMITED 2014 1974 Der erste VW Golf wird ausgeliefert 3 © FUJITSU LIMITED 2014 1974 Willy Brandt tritt zurück 6. MAI 1974 TRITT BUNDESKANZLER WILLY BRANDT IM VERLAUF DER SPIONAGE-AFFÄRE UM SEINEN PERSÖNLICHEN REFERENTEN, DEN DDR-SPION GÜNTER GUILLAUME 4 © FUJITSU LIMITED 2014 1974 Muhammad Ali gegen George Foreman „Ich werde schweben wie ein Schmetterling, zustechen wie eine Biene", "Ich bin das Größte, das jemals gelebt hat“ "Ich weiß nicht immer, wovon ich rede. Aber ich weiß, dass ich recht habe“ (Zitate von Ali) 5 © FUJITSU LIMITED 2014 1974 Deutschland wird Fußball-Weltmeister Breitners Elfer zum Ausgleich und das unvergängliche, typische Müller- Siegtor aus der Drehung. Es war der sportliche Höhepunkt der wohl besten deutschen Mannschaft aller Zeiten. 6 © FUJITSU LIMITED 2014 Was ist eigentlich „alt“? These: „Stillstand macht alt …. …. ewig jung bleibt, was laufend weiterentwickelt wird!“ 7 © FUJITSU LIMITED 2014 Was ist „alt“ - was wurde weiterentwickelt ? Wird das Fahrrad bald 200 Jahre alt !? Welches? Das linke oder das rechte? Fahrrad (Anfang 1817) Fahrrad (2014) 8 © FUJITSU LIMITED 2014 Was ist „alt“ - was wurde weiterentwickelt ? Soroban (Japan) Im Osten, vom Balkan bis nach China, wird er hier und da noch als preiswerte Rechenmaschine bei kleineren Geschäften verwendet. ABAKUS Rechenzentrum (Mittelalter 1300) ABAKUS (heute) 9 © FUJITSU LIMITED 2014 Was ist „alt“ - was wurde weiterentwickelt ? VW Golf (1974) VW Golf heute (2014) 10 © FUJITSU LIMITED 2014 Was ist „alt“ - was wurde weiterentwickelt ? 1941 Großrechner Z3 (Konrad Zuse 1941) Großrechner K-Computer (2012) 11 © FUJITSU LIMITED 2014 Was ist „alt“ - was wurde weiterentwickelt ? Heimcomputer (Prognose 1954) Heimcomputer (2014) 12 © FUJITSU LIMITED 2014 Was ist „alt“ - was wurde weiterentwickelt ? 40 Jahre PC-Betriebssystem Erstes PC Betriebssystem (1974) PC Betriebssysteme (2014) 13 © FUJITSU LIMITED 2014 Was war vor den Mainframes? These: „Alte IT-Systeme kommen ins Museum …. …. laufend weiterentwickelte stehen beim Anwender!“ 14 © FUJITSU LIMITED 2014 Erste Lochkartensysteme (1919) Keine Klaviere, sondern die ersten Lochkartensysteme der Computing- Tabulating-Recording Company Sozusagen die „Ur-Computer“ der „Ur-IBM“ Einer der Gründerväter war Thomas J. Watson 15 © FUJITSU LIMITED 2014 Erste elektronische Schreibmaschine (1935) 16 © FUJITSU LIMITED 2014 Konrad Zuse und seine z-Serie (… schon lange vor der IBM!) • Erster programmierbarer • Erster funktionsfähiger, Computer „Made in Handarbeit“! in Relaistechnik (2.000 ) • Bauzeit 1931 bis 1938 gebauter, frei programmierbarer, • Steuerung erfolgte rein programmgesteuerter mechanisch mittels Lochstreifen Rechenautomat • Alle Komponeten moderner • Zerstört im 2. Weltkrieg Computer bereits vorhanden: • 1960 wieder voll funktionsfähig ControlUnit, Memory, I/O- repliziert device, floating point logic, micro • Zu bestaunen im Deutschen sequences …. etc. Museum München • Komplett zerstört im 2. Weltkrieg Z1 Z3 (1938) (1941) Konrad Zuse (Bauingenieur & IT Pionier) Gründer der ersten deutschen Computerfirma der Zuse KG 17 © FUJITSU LIMITED 2014 Der „Irrtum“ des Jahrhunderts (1943) 18 © FUJITSU LIMITED 2014 ENIAC - Electronic Numerical Integrator and Computer (ab 1946) • 1.000 x schneller als alles was bisher gebaut wurde ENIAC 3 • 5.000 Operationen /sec • Gewicht 30 Tonnen • 18.000 Vakuum Röhren ENIAC 2 ENIAC 1 .. Laufend mussten Röhren getauscht werden … Gebaut von J. Mauchly und J.P. Eckert (University of Pennsylvania) 19 © FUJITSU LIMITED 2014 HAL (2001: A Space Odyssey) 20 © FUJITSU LIMITED 2014 UNIVAC 1 (1951) Erster „General Purpose Computer“ d.h. der erste kommerziell genutzte Computer, der in den USA gebaut wurde Ebenfalls gebaut von J. Mauchly und J.P. Eckert Später gekauft von „Remington Rand“ Kunden/Einsatz: - US Census (Volkszählung) - US AtomEnergieBehörde 21 © FUJITSU LIMITED 2014 IBM 701 Defense Calculator (1952) Erster kommerzieller Wissenschafts- Computer Einsatz bei Militär und Forschung Germanium-Röhren statt der bisherigen Vakuumröhren 22 © FUJITSU LIMITED 2014 Heinz Nixdorf (1952) 1952 gründete Nixdorf mit 27 Jahren als mittelloser Physikstudent aus wirtschaftlich einfachen Verhältnissen seine erste Computerfirma, Diese führte er später als Inhaber der Nixdorf AG zu einem internationalen und weltweit tätigen Elektronikkonzern mit knapp vier Milliarden D-Mark Umsatz Seine Kleinrechner stießen im aufkommenden Computerzeitalter in eine Marktlücke und konnten sich gegen die Großrechner der Konkurrenz behaupten. Damit galt Nixdorf als einer der Gründungs- unternehmer, die in den 1950er bis 1970er Jahren als Symbol für das deutsche Wirtschaftswunder standen. 23 © FUJITSU LIMITED 2014 RZ-Alltag 50iger / 60-iger / 70-iger 24 © FUJITSU LIMITED 2014 UNIX (1970) Bell Labs bringt 1970 UNIX auf den Markt – Damit ist UNIX schon mal viel „älter“ als BS2000 And new Fighter in the operating system arena will follow: Microsoft, Apple, Linux 25 © FUJITSU LIMITED 2014 Entwicklungen folgten jetzt Schlag auf Schlag .. 1972 Das erste e-mal Programm wurde entwickelt 1972 Die C-Programmiersprache wurde entwickelt 1972 IBM bringt DOS/VSE für seine Mainframes 1974 Gary Kildall bringt CP/M das erste Betriebssystem für Mikroprozessoren an den Markt = das erste „PC Betriebssystem“ 1975 Microsoft wird gegründet 1976 Apple Inc. wird gegründet 1976 Cray1 – Erster Vektorprozessor („SuperComputer“) 26 © FUJITSU LIMITED 2014 Seit wann gab es eigentlich Mainframes? Erste Mainframes kamen damals aus: - USA - Japan - Europa 27 © FUJITSU LIMITED 2014 IBM System 360 … der Meilenstein (!) S/360 (1964) 07. April 1964 IBM kündigt das System S/360 an Chefarchitekten: G. Amdahl, G.A. Blaauw, F.Brooks Angebl. 5 Mrd. Dollar Entwicklungskosten Revolutionär war erstmalig „Kompatibilität“ 360 steht für Kreis bzw. Universelle Einsetzbarkeit Abgestufte Leistung unter einem Betriebssystem Hochrüstung ohne Änderung der Anwender-Programme Peripherie kompatibel bei Hochrüstungen Großrechner wurden bezahlbar ! 28 © FUJITSU LIMITED 2014 Mainframe Werbung in der 60igern Mainframes: „Objekte der Begierde“ für Unternehmen, Behörden, …. Durch Auf- und Abwärtskompatibilität ging von nun an „die Post ab“! 29 © FUJITSU LIMITED 2014 Danach folgen weitere Systemfamilien …. 1964 S/360 Adressraum 16 MB (real) 1970 S/370 Adressraum 16 MB (real) viele virtuelle Adressräume 1981 370 XA Adressräume 2 GB 1985 S/370 ESA PR/SM LPAR Vektorrechnung 1990 S/390 ESA Externer Timer Optische Kanäle 30 © FUJITSU LIMITED 2014 IBM /360 (1964) 31 © FUJITSU LIMITED 2014 IBM 3031 (1977) 32 © FUJITSU LIMITED 2014 IBM 3083 (1982) 33 © FUJITSU LIMITED 2014 Mainframes „Made in Japan“ 34 © FUJITSU LIMITED 2014 FACOM 222 (1960) Transistor Card for the FACOM 222, with germanium transistor and 200k cycle of operating frequency, which is on display at IKEDA Toshio Memorial Room, Numazu Factory of Fujitsu 35 © FUJITSU LIMITED 2014 FACOM 241C (1961) 36 © FUJITSU LIMITED 2014 FACOM 231 (1963) 37 © FUJITSU LIMITED 2014 Mainframes „Made in Japan“ S/360-Ankündigung revolutionierte den Markt und schuf „Betriebsamkeit“ Japan (und Europa) intensivierten verstärkt eigene Entwicklungen Das Thema war von hoher „nationaler“ Bedeutung Wegen hoher Kosten knapper Zeit wurden Technologie-Allianzen gebildet: Nippon Electronic mit Honeywell, Hitachi mit RCA, Mitsubishi mit TRW, Oki mit UNIVAC+Sperry Rand, Thosiba kooperierte mit der Universität Koyoto Fujitsu ließ sich durch das Ministerum für Handel und Industrie unterstützen In den 70iger bildeten sich 3 Gruppen von Allianzen „New Product Corporate Group Development Grant System“ Fujitsu und Hitachi, Nippon Electronic und Toshiba, Mitshubishi und Oki Ergebnisse: M-Series , ACOS Series und COSMO Series. Diese gingen auch nach Europa und USA Betriebssysteme wurden ebenfalls entwickelt … Zudem traten die Japaner auch als PCM auf 38 © FUJITSU LIMITED 2014 FUJITSU FACOM 230-30 (1964) „Kopf an Kopf“ mit der IBM /360 wurde dieses System im April 1964 geliefert. Beide hatten das gleiche /360 Design-Konzept. Damit konnte aus Japan ebenfalls „state-of-the-art- technology“ weltweit angeboten werden. u.a. damals an Siemens 39 © FUJITSU LIMITED 2014 FACOM 230-60 (1968) 40 © FUJITSU LIMITED 2014 FACOM 230-10 (1970) 41 © FUJITSU LIMITED 2014 FACOM M-200 (1978) 42 © FUJITSU LIMITED 2014 Mainframes „Made in Europe“ Siemens steigt ins EDV-Geschäft ein 43 © FUJITSU LIMITED 2014 BS2000: Eltern und Familie Die Eltern: S & R (Siemens und RCA) Heirat 1. November 1964, Scheidung am 30. Juni 1972 In der Folge: unglückliche europäische Liebschaften mit CII und Philips, ICL wollte nicht (UNIDATA); formelles Ende am 19.12.1975. Ab 1977 gute Beziehungen zu Fujitsu; Heirat 1.10.1999, Dann Fujitsu Siemens Computers; Dann Fujitsu Nachwuchs: Vielerlei! Aus der ersten Ehe u.a. TSOS (+), VMOS (+), PBS / BS1000 (+), …, und BS2000 44 © FUJITSU LIMITED 2014 Ein Elternteil: Siemens DV Beginn Siemens-Datenverarbeitung 1954: „…Vertrieb September 1957: 6 Personen ….“ „…Kundenkontakte und Gespräche mit KLM, SAS, Bundesbahn, Dänische Staatsbahnen, Deutscher Wetterdienst, Bayer, ….“ „… vorwiegend technisch-wissenschaftlichen
Recommended publications
  • Supercomputer Fugaku
    Supercomputer Fugaku Toshiyuki Shimizu Feb. 18th, 2020 FUJITSU LIMITED Copyright 2020 FUJITSU LIMITED Outline ◼ Fugaku project overview ◼ Co-design ◼ Approach ◼ Design results ◼ Performance & energy consumption evaluation ◼ Green500 ◼ OSS apps ◼ Fugaku priority issues ◼ Summary 1 Copyright 2020 FUJITSU LIMITED Supercomputer “Fugaku”, formerly known as Post-K Focus Approach Application performance Co-design w/ application developers and Fujitsu-designed CPU core w/ high memory bandwidth utilizing HBM2 Leading-edge Si-technology, Fujitsu's proven low power & high Power efficiency performance logic design, and power-controlling knobs Arm®v8-A ISA with Scalable Vector Extension (“SVE”), and Arm standard Usability Linux 2 Copyright 2020 FUJITSU LIMITED Fugaku project schedule 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Fugaku development & delivery Manufacturing, Apps Basic Detailed design & General Feasibility study Installation review design Implementation operation and Tuning Select Architecture & Co-Design w/ apps groups apps sizing 3 Copyright 2020 FUJITSU LIMITED Fugaku co-design ◼ Co-design goals ◼ Obtain the best performance, 100x apps performance than K computer, within power budget, 30-40MW • Design applications, compilers, libraries, and hardware ◼ Approach ◼ Estimate perf & power using apps info, performance counts of Fujitsu FX100, and cycle base simulator • Computation time: brief & precise estimation • Communication time: bandwidth and latency for communication w/ some attributes for communication patterns • I/O time: ◼ Then, optimize apps/compilers etc. and resolve bottlenecks ◼ Estimation of performance and power ◼ Precise performance estimation for primary kernels • Make & run Fugaku objects on the Fugaku cycle base simulator ◼ Brief performance estimation for other sections • Replace performance counts of FX100 w/ Fugaku params: # of inst. commit/cycle, wait cycles of barrier, inst.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Programming on K Computer
    Programming on K computer Koh Hotta The Next Generation Technical Computing Fujitsu Limited Copyright 2010 FUJITSU LIMITED System Overview of “K computer” Target Performance : 10PF over 80,000 processors Over 640K cores Over 1 Peta Bytes Memory Cutting-edge technologies CPU : SPARC64 VIIIfx 8 cores, 128GFlops Extension of SPARC V9 Interconnect, “Tofu” : 6-D mesh/torus Parallel programming environment. 1 Copyright 2010 FUJITSU LIMITED I have a dream that one day you just compile your programs and enjoy high performance on your high-end supercomputer. So, we must provide easy hybrid parallel programming method including compiler and run-time system support. 2 Copyright 2010 FUJITSU LIMITED User I/F for Programming for K computer K computer Client System FrontFront End End BackBack End End (80000 (80000 Nodes) Nodes) IDE Interface CCommommandand JobJob C Controlontrol IDE IntInteerfrfaceace debugger DDebugebuggerger App IntInteerfrfaceace App Interactive Debugger GUI Data Data Data CoConvnveerrtteerr Data SamplSampleerr debugging partition official op VisualizedVisualized SSaammpplingling Stage out partition Profiler DaDattaa DaDattaa (InfiniBand) 3 Copyright 2010 FUJITSU LIMITED Parallel Programming 4 Copyright 2010 FUJITSU LIMITED Hybrid Parallelism on over-640K cores Too large # of processes to manipulate To reduce number of processes, hybrid thread-process programming is required But Hybrid parallel programming is annoying for programmers Even for multi-threading, procedure level or outer loop parallelism was desired Little opportunity for such coarse grain parallelism System support for “fine grain” parallelism is required 5 Copyright 2010 FUJITSU LIMITED Targeting inner-most loop parallelization Automatic vectorization technology has become mature, and vector-tuning is easy for programmers. Inner-most loop parallelism, which is fine-grain, should be an important portion for peta-scale parallelization.
    [Show full text]
  • Toward Automated Cache Partitioning for the K Computer
    IPSJ SIG Technical Report Toward Automated Cache Partitioning for the K Computer Swann Perarnau1 Mitsuhisa Sato1,2 Abstract: The processor architecture available on the K computer (SPARC64VIIIfx) features an hardware cache par- titioning mechanism called sector cache. This facility enables software to split the memory cache in two independent sectors and to select which one will receive a line when it is retrieved from memory. Such control over the cache by an application enables significant performance optimization opportunities for memory intensive programs, that several studies on software-controlled cache partitioning environments already demonstrated. Most of these previous studies share the same implementation idea: the use of page coloring and an overriding of the operating system virtual memory manager. However, the sector cache differs in several key points over these imple- mentations, making the use of the existing analysis or optimization strategies impractical, while enabling new ones. For example, while most studies overlooked the issue of phase changes in an application because of the prohibitive cost of a repartitioning, the sector cache provides this feature without any costs, allowing multiple cache distribution strategies to alternate during an execution, providing the best allocation of the current locality pattern. Unfortunately, for most application programmers, this hardware cache partitioning facility is not easy to take advantage of. It requires intricate knowledge of the memory access patterns of a code and the ability to identify data structures that would benefit from being isolated in cache. This optimization process can be tedious, with multiple code modifications and countless application runs necessary to achieve a good optimization scheme.
    [Show full text]
  • Fujitsu Standard Tool
    Toward Building up ARM HPC Ecosystem Shinji Sumimoto, Ph.D. Next Generation Technical Computing Unit FUJITSU LIMITED Sept. 12th, 2017 0 Copyright 2017 FUJITSU LIMITED Outline Fujitsu’s Super computer development history and Post-K Processor Overview Compiler Development for ARMv8 with SVE Towards building up ARM HPC Ecosystem 1 Copyright 2017 FUJITSU LIMITED Fujitsu’s Super computer development history and Post-K Processor Overview 2 Copyright 2017 FUJITSU LIMITED Fujitsu Supercomputers Fujitsu has been providing high performance FX100 supercomputers for 40 years, increasing application performance while maintaining FX10 Post-K Under Development application compatibility w/ RIKEN No.1 in Top500 (June and Nov., 2011) K computer World’s Fastest FX1 Vector Processor (1999) Most Efficient Performance VPP5000 SPARC in Top500 (Nov. 2008) NWT* Enterprise Developed with NAL No.1 in Top500 PRIMEQUEST (Nov. 1993) VPP300/700 PRIMEPOWER PRIMERGY CX400 Gordon Bell Prize Skinless server (1994, 95, 96) ⒸJAXA HPC2500 VPP500 World’s Most Scalable PRIMERGY VP Series Supercomputer BX900 Cluster node AP3000 (2003) HX600 F230-75APU Cluster node AP1000 PRIMERGY RX200 Cluster node Japan’s Largest Japan’s First Cluster in Top500 Vector (Array) (July 2004) Supercomputer (1977) *NWT: Numerical Wind Tunnel 3 Copyright 2017 FUJITSU LIMITED FUJITSU high-end supercomputers development 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 K computer and PRIMEHPC FX10/FX100 in operation FUJITSU The CPU and interconnect of FX10/FX100 inherit the K PRIMEHPC FX10 PRIMEHPC FX100
    [Show full text]
  • World's Fastest Computer
    HISTORY OF FUJITSU LIMITED SUPERCOMPUTING “FUGAKU” – World’s Fastest Computer Birth of Fugaku Fujitsu has been developing supercomputer systems since 1977, equating to over 40 years of direct hands-on experience. Fujitsu determined to further expand its HPC thought leadership and technical prowess by entering into a dedicated partnership with Japan’s leading research institute, RIKEN, in 2006. This technology development partnership led to the creation of the “K Computer,” successfully released in 2011. The “K Computer” raised the bar for processing capabilities (over 10 PetaFLOPS) to successfully take on even larger and more complex challenges – consistent with Fujitsu’s corporate charter of tackling societal challenges, including global climate change and sustainability. Fujitsu and Riken continued their collaboration by setting aggressive new targets for HPC solutions to further extend the ability to solve complex challenges, including applications to deliver improved energy efficiency, better weather and environmental disaster prediction, and next generation manufacturing. Fugaku, another name for Mt. Fuji, was announced May 23, 2019. Achieving The Peak of Performance Fujitsu Ltd. And RIKEN partnered to design the next generation supercomputer with the goal of achieving Exascale performance to enable HPC and AI applications to address the challenges facing mankind in various scientific and social fields. Goals of the project Ruling the Rankings included building and delivering the highest peak performance, but also included wider adoption in applications, and broader • : Top 500 list First place applicability across industries, cloud and academia. The Fugaku • First place: HPCG name symbolizes the achievement of these objectives. • First place: Graph 500 Fugaku’s designers also recognized the need for massively scalable systems to be power efficient, thus the team selected • First place: HPL-AI the ARM Instruction Set Architecture (ISA) along with the Scalable (real world applications) Vector Extensions (SVE) as the base processing design.
    [Show full text]
  • Mainframes in Tomorrow's Data Center
    Mainframes in Tomorrow's Data Center Achim Dewor Fujitsu BS2000/OSD Mainframe Summit Munich, 28th June 2012 0 Tomorrow's Data Center Today's Data Center Yesterday's Data Center 1 The origins of IT "Programming language" Cuneiform script Data medium: - Clay tablet Branch solutions: - Administration - Inventory mgmt. Users: - Sumerians - Babylonians - Akkadians approx. 3000 BC - Assyrians - Persians 2 The origins of IT 1. Programming language: Hieroglyphics 2. State-of-the-art IT support: Cubit rule 4. Application: Branch application - Building of the pyramids (App) (Individual application) Pyramid of Cheops at Giza (approx. 2750 BC) 3. Data medium / Storage medium: Papyrus 3 Further development of IT Medieval ABACUS data center ABACUS ( Roman version ) 1100 BC Suan Pan / ABACUS (Chinese version) 4 Further development of IT Abacus Calculator 1500 AD Adam Riese (Germany) John Neper (Scotland) 5 First Data Center 1938 1941 Z3 Z1 Konrad Zuse 6 First Data Center 1946 ENIAC (Electronic Numerical Integrator and Computer) 7 Data Center - Further developments 1978 FACOM M-200 8 Data Center - Further developments 1988 H120 Quadro 9 Today's Data Center World’s No.1 2012 Again on TOP 500 List Performance of over 10 Peta*flops *) Floating Point Operations Per Second K Computer 1 Peta = 1015 (arithmetic operations per second) 10 Data Center - Today's Installations Large hosters accommodate up to 70,000 servers in their data centers Google is estimated at > 500,000 servers Microsoft (Chicago) > 300.000 servers Other members of this "club" are e.g.
    [Show full text]
  • Introduction of Fujitsu's Next-Generation Supercomputer
    Introduction of Fujitsu’s next-generation supercomputer MATSUMOTO Takayuki July 16, 2014 HPC Platform Solutions Fujitsu has a long history of supercomputing over 30 years Technologies and experience of providing Post-FX10 several types of supercomputers such as vector, MPP and cluster, are inherited PRIMEHPC FX10 and implemented in latest supercomputer product line No.1 in Top500 K computer (June and Nov., 2011) FX1 World’s Fastest Vector Processor (1999) Highest Performance VPP5000 SPARC efficiency in Top500 NWT* Enterprise (Nov. 2008) Developed with NAL No.1 in Top500 PRIMEQUEST VPP300/700 (Nov. 1993) PRIMEPOWER PRIMERGY CX400 Gordon Bell Prize HPC2500 Skinless server (1994, 95, 96) ⒸJAXA VPP500 World’s Most Scalable PRIMERGY VP Series Supercomputer BX900 Cluster node AP3000 (2003) HX600 Cluster node F230-75APU AP1000 PRIMERGY RX200 Cluster node Japan’s Largest Cluster in Top500 Japan’s First (July 2004) Vector (Array) *NWT: Supercomputer Numerical Wind Tunnel (1977) 1 Copyright 2014 FUJITSU LIMITED K computer and Fujitsu PRIMEHPC series Single CPU/node architecture for multicore Good Bytes/flop and scalability Key technologies for massively parallel supercomputers Original CPU and interconnect Support for tens of millions of cores (VISIMPACT*, Collective comm. HW) VISIMPACT SIMD extension HPC-ACE HPC-ACE HPC-ACE2 Collective comm. HW Direct network Tofu Direct network Tofu Tofu interconnect 2 HMC & Optical connections CY2008~ CY2010~ CY2012~ Coming soon 40GF, 4-core/CPU 128GF, 8-core/CPU 236.5GF, 16-core/CPU 1TF~, 32-core/CPU
    [Show full text]
  • Post-K Computer Development
    Post-K Computer Development In collaboration with RIKEN, Fujitsu is developing the world’s top-level supercomputer, capable of realizing high effective performance for a broad range of application software. Advanced Technology Fujitsu Contributions to the Post-K Computer National Project Post-K Development ・System Characteristics We are aiming to achieve the development goals of having an effective application performance that is up to 100 times greater than that of the K computer and power consumption of 30-40 MW (the K computer’s power consumption is 12.7MW), and to create the world’s top-performing general-purpose supercomputer. To be more precise, our aim is to balance various factors, such as i) power consumption, ii) computational performance, iii) user convenience, and iv) ability to produce ground-breaking results, characterized by its all-around capabilities, compared to any other system in the world. ・Fujitsu’s Efforts Fujitsu, through efficient use of not only cutting-edge technology, but also the cultivation of know-how and performance experience with the K computer and the Supercomputer PRIMEHPC Series, is developing the entire system; from the processor to the software. In particular, in regards to the processor, Fujitsu chose the Arm instruction set architecture with supercomputing extensions co-created with Arm, and is working hard to extract the potential maximum performance from it. 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 K Computer K Computer Development Operation Basic Mass Install./ Prototype・Detailed Design Operation Post-K Design Product. Tuning K computer The K computer is used in various fields PRIMEHPC FX100 from advanced research to manufacturing.
    [Show full text]
  • Overview of the K Computer System
    Overview of the K computer System Hiroyuki Miyazaki Yoshihiro Kusano Naoki Shinjou Fumiyoshi Shoji Mitsuo Yokokawa Tadashi Watanabe RIKEN and Fujitsu have been working together to develop the K computer, with the aim of beginning shared use by the fall of 2012, as a part of the High-Performance Computing Infrastructure (HPCI) initiative led by Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT). Since the K computer involves over 80 000 compute nodes, building it with lower power consumption and high reliability was important from the availability point of view. This paper describes the K computer system and the measures taken for reducing power consumption and achieving high reliability and high availability. It also presents the results of implementing those measures. 1. Introduction Technology (MEXT). As the name “Kei” in Fujitsu has been actively developing and Japanese implies, one objective of this project providing advanced supercomputers for over was to achieve a computing performance of 30 years since its development of the FACOM 1016 floating-point operations per second (10 230-75 APU—Japan’s first supercomputer—in PFLOPS). The K computer, moreover, was 1977 (Figure 1). As part of this effort, it has developed not just to achieve peak performance been developing its own hardware including in benchmark tests but also to ensure high original processors and software too and building effective performance in applications used in up its technical expertise in supercomputers actual research. Furthermore, to enable the along the way. entire system to be installed and operated at The sum total of this technical expertise one location, it was necessary to reduce power has been applied to developing a massively consumption and provide a level of reliability parallel computer system—the K computer1), note)i that could ensure the total operation of a large- —which has been ranked as the top performing scale system.
    [Show full text]
  • Exascale” Supercomputer Fugaku & Beyond
    The first “exascale” supercomputer Fugaku & beyond l Satoshi Matsuoka l Director, RIKEN Center for Computational Science l 20190815 Modsim Presentation 1 Arm64fx & Fugaku 富岳 /Post-K are: l Fujitsu-Riken design A64fx ARM v8.2 (SVE), 48/52 core CPU l HPC Optimized: Extremely high package high memory BW (1TByte/s), on-die Tofu-D network BW (~400Gbps), high SVE FLOPS (~3Teraflops), various AI support (FP16, INT8, etc.) l Gen purpose CPU – Linux, Windows (Word), otherSCs/Clouds l Extremely power efficient – > 10x power/perf efficiency for CFD benchmark over current mainstream x86 CPU l Largest and fastest supercomputer to be ever built circa 2020 l > 150,000 nodes, superseding LLNL Sequoia l > 150 PetaByte/s memory BW l Tofu-D 6D Torus NW, 60 Petabps injection BW (10x global IDC traffic) l 25~30PB NVMe L1 storage l many endpoint 100Gbps I/O network into Lustre l The first ‘exascale’ machine (not exa64bitflops but in apps perf.) 3 Brief History of R-CCS towards Fugaku April 2018 April 2012 AICS renamed to RIKEN R-CCS. July 2010 Post-K Feasibility Study start Satoshi Matsuoka becomes new RIKEN AICS established 3 Arch Teams and 1 Apps Team Director August 2010 June 2012 Aug 2018 HPCI Project start K computer construction complete Arm A64fx announce at Hotchips September 2010 September 2012 Oct 2018 K computer installation starts K computer production start NEDO 100x processor project start First meeting of SDHPC (Post-K) November 2012 Nov 2018 ACM Gordon bell Award Post-K Manufacturing approval by Prime Minister’s CSTI Committee 2 006 2011 2013
    [Show full text]
  • Supercomputer "Fugaku"
    Supercomputer “Fugaku” Formerly known as Post-K 0 Copyright 2019 FUJITSU LIMITED Supercomputer Fugaku Project RIKEN and Fujitsu are currently developing Japan's next-generation flagship supercomputer, the successor to the K computer, as the most advanced general-purpose supercomputer in the world PRIMEHPC FX100 PRIMEHPC FX10 No.1(2017) Finalist(2016) No.1(2018) K computer Supercomputer Fugaku © RIKEN RIKEN and Fujitsu announced that manufacturing started in March 2019 RIKEN announced on May 23, 2019 that the supercomputer is named*Formerly “Fugaku known as” Post-K 1 Copyright 2019 FUJITSU LIMITED Goals and Approaches for Fugaku Goals High application Good usability Keeping application performance and wide range of uses compatibility RIKEN announced predicted performance: More than 100x+ faster than K computer for GENESIS and NICAM+LETKF Geometric mean of speedup over K computer in 9 Priority Issues is greater than 37x+ https://postk-web.r-ccs.riken.jp/perf.html 2 Copyright 2019 FUJITSU LIMITED Goals and Approaches for Fugaku Goals High application Good usability Keeping application performance and wide range of uses compatibility Approaches Develop Achieve 1. High-performance Arm CPU A64FX in HPC and AI areas - High performance in real applications 2. Cutting-edge hardware design - High efficiency in key features for AI 3. System software stack applications 3 Copyright 2019 FUJITSU LIMITED 1. High-Performance Arm CPU A64FX in HPC and AI Areas Architecture features CMG (Core Memory Group) ISA Armv8.2-A (AArch64 only) SVE (Scalable
    [Show full text]