Kombinationswirkung Der Beiden Pflanzenschutzmittel Karate Zeon

Total Page:16

File Type:pdf, Size:1020Kb

Kombinationswirkung Der Beiden Pflanzenschutzmittel Karate Zeon Kombinationswirkung der beiden Pflanzenschutzmittel Karate® Zeon und Callisto® in aquatischen Modellökosystemen Inauguraldissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Geowissenschaften der Westfälischen Wilhelms-Universität Münster vorgelegt von Rabea Christmann Dekan: Prof. Dr. Hans Kerp Erster Gutachter: Prof. Dr. Klaus Peter Ebke Zweiter Gutachter Prof. Dr. Dr. Wilfried Huber Dritter Gutachter Prof. Dr. Hermann Mattes Tag der mündlichen Prüfung: 05. Februar 2014 Tag der Promotion: ____________________________ INHALTSVERZEICHNIS Zusammenfassung .................................................................................................................. III Abstract .................................................................................................................................... V 1 Einleitung .......................................................................................................................... 1 1.1 Pflanzenschutzmittel-Zulassung .................................................................................. 2 1.2 Problematik Mischungstoxizität .................................................................................. 4 1.3 Testsubstanzen ............................................................................................................. 7 1.3.1 Insektizid – Karate® Zeon .................................................................................... 7 1.3.2 Herbizid – Callisto® ........................................................................................... 10 1.4 Zielsetzung ................................................................................................................. 12 2 Material und Methoden ................................................................................................. 14 2.1 Versuchsdesign .......................................................................................................... 14 2.1.1 Testsysteme ........................................................................................................ 14 2.1.2 Applikation der Testsubstanzen ......................................................................... 17 2.2 Analytik ..................................................................................................................... 20 2.3 Erhebung der ökologischen Daten ............................................................................. 21 2.3.1 Probennahme ...................................................................................................... 21 2.3.2 Entnahme der Wassersäulen ............................................................................... 23 2.3.3 Physikalische Parameter ..................................................................................... 24 2.3.4 Chemische Parameter ......................................................................................... 24 2.3.5 Biologische Parameter ........................................................................................ 25 2.4 Aufbereitung der Daten ............................................................................................. 28 2.5 Statistische Auswertung ............................................................................................ 28 2.5.1 Mittelwerte ......................................................................................................... 28 2.5.2 Datentransformation ........................................................................................... 28 2.5.3 Univariate Statistik ............................................................................................. 29 2.5.4 Multivariate Statistik .......................................................................................... 32 2.5.5 Effektbeurteilung ................................................................................................ 35 2.5.6 Ableitung einer Regulatory Acceptable Concentration (RAC) .......................... 36 3 Ergebnisse ....................................................................................................................... 38 3.1 Mesokosmos I – Einzelbelastung Karate® Zeon ....................................................... 38 3.1.1 Wasserqualität (physikalische und chemische Parameter) (I) ............................ 38 3.1.2 Makroinvertebraten (I) ....................................................................................... 38 3.1.3 Zooplankton (I) .................................................................................................. 53 I 3.2 Mesokosmos II – Kombinationsbelastung bei zeitgleicher Applikation ................... 69 3.2.1 Analytik (II) ........................................................................................................ 69 3.2.2 Physikalische Parameter (II) .............................................................................. 70 3.2.3 Chemische Parameter (II) ................................................................................... 77 3.2.4 Makroinvertebraten (II) ...................................................................................... 80 3.2.5 Zooplankton (II) ................................................................................................. 97 3.2.6 Makrophyten (II) .............................................................................................. 110 3.2.7 Phytoplankton (II) ............................................................................................ 111 3.3 Mesokosmos III – Kombinationsbelastung bei versetzter Applikation ................... 122 3.3.1 Physikalische Parameter (III) ........................................................................... 122 3.3.2 Chemische Parameter (III) ............................................................................... 130 3.3.3 Makroinvertebraten (III) .................................................................................. 135 3.3.4 Zooplankton (III) .............................................................................................. 150 3.4 Tabellarische Zusammenfassung der Ergebnisse .................................................... 171 4 Diskussion ..................................................................................................................... 174 4.1 Mesokosmos I – Einzelbelastung Karate® Zeon ..................................................... 174 4.1.1 Bewertung der Ergebnisse (I) ........................................................................... 174 4.1.2 Risikomanagement (I) ........................................................................................... 180 4.2 Mesokosmos II – Kombinationsbelastung bei zeitgleicher Applikation ................. 181 4.2.1 Bewertung der Ergebnisse (II) ......................................................................... 181 4.2.2 Risikomanagement (II) ..................................................................................... 189 4.3 Mesokosmos III – Kombinationsbelastung bei versetzter Applikation ................... 190 4.3.1 Bewertung der Ergebnisse (III) ........................................................................ 190 4.3.2 Risikomanagement (III) ................................................................................... 194 4.4 Extrapolation der Effekte der Einzelsubstanzen auf Kombinationseffekte ................. 196 4.5 zeitgleiche vs. versetzte Kombinationsbelastung ......................................................... 198 5 Fazit ............................................................................................................................... 200 Danksagung ............................................................................................................................ 202 Quellen ................................................................................................................................... 203 II ZUSAMMENFASSUNG ZUSAMMENFASSUNG Bis heute liegt das Augenmerk der aquatischen Risikobewertung von Pflanzenschutzmitteln (PSM) auf der Evaluierung und Regulierung einzelner aktiver Substanzen (VAN DEN BRINK ET AL. 2009, KUNZ ET AL. 2011, BACKHAUS & FAUST 2012). Verbindliche Richtlinien für die Regulatorik von PSM fehlen bislang, obgleich Organismen betroffener aquatischer Ökosysteme gegenüber einer Vielzahl unterschiedlicher, potentiell toxischer Stoffe exponiert sind. Dieser Diskrepanz widmet sich die vorliegende Studie. Insbesondere soll die experimentelle Arbeit klären, inwieweit sich aus der Kenntnis der Toxizität einzelner PSM Aussagen über die Kombinationswirkung der Substanzen einer PSM-Mischung treffen lassen. Ein weiterer Aspekt der Arbeit zur Kombinationswirkung von PSM liegt im Vergleich einer zeitgleichen gegenüber einer zeitlich versetzten Applikation einer binären PSM-Mischung. Im Fokus der Studie stehen das Pyrethroidinsektizid Karate® Zeon (Wirkstoff Lambda- Cyhalothrin) und das Bleichherbizid Callisto® (Wirkstoff Mesotrione). Beide Produkte finden ihre Anwendung unter anderem im Bereich des Maisanbaus, so dass sie sowohl zeitgleich auf benachbarten Feldern als auch zeitversetzt auf gleichen Ackerflächen in der Umwelt ausgebracht werden. Um das Risikopotential der Mischung dieser PSM auf ein aquatisches Ökosystem abschätzen zu können, wurden drei Freilandmesokosmenstudien durchgeführt: Die Einzeltoxizität des Insektizids wurde zunächst zwischen 1 ng active ingredient (a.i.)/L – 1000 ng a.i./L Karate® Zeon getestet (Mesokosmos I). Die Kombinationswirkung
Recommended publications
  • Perspectives in Phycology Vol
    Perspectives in Phycology Vol. 3 (2016), Issue 3, p. 141–154 Article Published online June 2016 Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences Margot Tragin1, Adriana Lopes dos Santos1, Richard Christen2,3 and Daniel Vaulot1* 1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France 2 CNRS, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71. F06108 Nice cedex 02, France 3 Université de Nice-Sophia Antipolis, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71. F06108 Nice cedex 02, France * Corresponding author: [email protected] With 5 figures in the text and an electronic supplement Abstract: Green algae (Chlorophyta) are an important group of microalgae whose diversity and ecological importance in marine systems has been little studied. In this review, we first present an overview of Chlorophyta taxonomy and detail the most important groups from the marine environment. Then, using public 18S rRNA Chlorophyta sequences from culture and natural samples retrieved from the annotated Protist Ribosomal Reference (PR²) database, we illustrate the distribution of different green algal lineages in the oceans. The largest group of sequences belongs to the class Mamiellophyceae and in particular to the three genera Micromonas, Bathycoccus and Ostreococcus. These sequences originate mostly from coastal regions. Other groups with a large number of sequences include the Trebouxiophyceae, Chlorophyceae, Chlorodendrophyceae and Pyramimonadales. Some groups, such as the undescribed prasinophytes clades VII and IX, are mostly composed of environmental sequences. The 18S rRNA sequence database we assembled and validated should be useful for the analysis of metabarcode datasets acquired using next generation sequencing.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Diapositive 1
    1 Diversity and ecology of green microalgae in marine systems: 2 an overview based on 18S rRNA sequences 3 4 Margot Tragin1, Adriana Lopes dos Santos1, Richard Christen2, 3, Daniel Vaulot1* 5 1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique, Place 6 Georges Teissier, 29680 Roscoff, France 7 2 CNRS, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71. F06108 Nice 8 cedex 02, France 9 3 Université de Nice-Sophia Antipolis, UMR 7138, Systématique Adaptation Evolution, Parc 10 Valrose, BP71. F06108 Nice cedex 02, France 11 12 13 * corresponding author : [email protected] 14 Revised version : 28 March 2016 15 For Perspectives in Phycology 16 17 Tragin et al. - Marine Chlorophyta diversity and distribution - p. 2 18 Abstract 19 Green algae (Chlorophyta) are an important group of microalgae whose diversity and ecological 20 importance in marine systems has been little studied. In this review, we first present an overview of 21 Chlorophyta taxonomy and detail the most important groups from the marine environment. Then, using 22 public 18S rRNA Chlorophyta sequences from culture and natural samples retrieved from the annotated 23 Protist Ribosomal Reference (PR²) database, we illustrate the distribution of different green algal 24 lineages in the oceans. The largest group of sequences belongs to the class Mamiellophyceae and in 25 particular to the three genera Micromonas, Bathycoccus and Ostreococcus. These sequences originate 26 mostly from coastal regions. Other groups with a large number of sequences include the 27 Trebouxiophyceae, Chlorophyceae, Chlorodendrophyceae and Pyramimonadales. Some groups, such as 28 the undescribed prasinophytes clades VII and IX, are mostly composed of environmental sequences.
    [Show full text]
  • Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers
    International Journal of Molecular Sciences Article Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers Hyeonah Shim 1, Hyeon Ju Lee 1, Junki Lee 1,2, Hyun-Oh Lee 1,2, Jong-Hwa Kim 3, Tae-Jin Yang 1,* and Nam-Soo Kim 4,* 1 Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; [email protected] (H.S.); [email protected] (H.J.L.); [email protected] (J.L.); [email protected] (H.-O.L.) 2 Phyzen Genomics Institute, Seongnam 13558, Korea 3 Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; [email protected] 4 Department of Molecular Bioscience, Kangwon National University, Chuncheon 24341, Korea * Correspondence: [email protected] (T.-J.Y.); [email protected] (N.-S.K.); Tel.: +82-2-880-4547 (T.-J.Y.); +82-33-250-6472 (N.-S.K.) Abstract: The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginel- laceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Se- laginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly.
    [Show full text]
  • Rike Bacteria Protozoa Chromista Plantae
    Svenska art projekt et Forskningsprioriteringar 2017 2017-03-21 RIKE UNDERRIKE INFRARIKE ÖVERSTAM DIVISION/STAM Ordning KLASS UNDERKLASS INFRAKLASS ÖVERORDNING Underordning "Infraordning" Familj SUBDIVISION/UNDERSTAM INFRASTAM ÖVERKLASS Överfamilj Underfamilj Forskningsprioritet Forskningsprioritet: 1= Mycket hög; 2= Hög; 3. Medelhög; 4= Låg; 5= Mycket låg BACTERIA 5 CYANOBACTERIA 5 PROTOZOA 5 EBRIOPHYCEAE 5 CILIOPHORA 5 FORAMINIFERA 5 CHOANOZOA 5 CHOANOFLAGELLIDA 5 MESOMYCETOZOEA 5 MYZOZOA 5 ELLOBIOPSEA 5 DINOPHYCEAE 5 EUGLENOZOA 5 EUGLENOPHYCEAE 5 Euglenales 5 Eutreptiales (syn. Sphenomonadales) 5 CERCOZOA 5 ASCETOSPOREA 5 PHYTOMYXEA (syn. PLASMODIOPHOROMYCETES) 5 LABYRINTHISTA ( syn. LABYRINTHULOMYCOTA) 5 APICOMPLEXA 5 PERCOLOZOA 5 HETEROLOBOSEA 5 Acrasida (syn. Acrasiomycetes) 5 SARCOMASTIGOPHORA 5 MYCETOZOA 3 DICTYOSTELIOMYCETES 5 MYXOMYCETES 3 PROTOSTELIOMYCETES 3 CHROMISTA CRYPTOPHYTA 5 HETEROKONTOPHYTA PHAEOPHYCEAE 3 Övriga klasser 5 BACILLARIOPHYTA 5 HAPTOPHYTA 5 HYPHOCHYTRIOMYCOTA 5 OOMYCOTA 3 PLANTAE BILIPHYTA RHODOPHYTA 2 VIRIDIPLANTAE CHLOROPHYTA CHLOROPHYTA CHLOROPHYCEAE Chaetophorales 3 Microsporales 3 1 Svenska art projekt et Forskningsprioriteringar 2017 2017-03-21 RIKE UNDERRIKE INFRARIKE ÖVERSTAM DIVISION/STAM Ordning KLASS UNDERKLASS INFRAKLASS ÖVERORDNING Underordning "Infraordning" Familj SUBDIVISION/UNDERSTAM INFRASTAM ÖVERKLASS Överfamilj Underfamilj Forskningsprioritet Oedogoniales 4 Övriga ordningar 5 ULVOPHYCEAE 3 TREBOUXIOPHYCEAE Prasiolales 3 Microthamniales 3 Övriga ordningar 5 PEDINOPHYCEAE 5 PRASINOPHYCEAE
    [Show full text]
  • Diversity and Evolution of Algae: Primary Endosymbiosis
    CHAPTER TWO Diversity and Evolution of Algae: Primary Endosymbiosis Olivier De Clerck1, Kenny A. Bogaert, Frederik Leliaert Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 56 1.1. Early Evolution of Oxygenic Photosynthesis 56 1.2. Origin of Plastids: Primary Endosymbiosis 58 2. Red Algae 61 2.1. Red Algae Defined 61 2.2. Cyanidiophytes 63 2.3. Of Nori and Red Seaweed 64 3. Green Plants (Viridiplantae) 66 3.1. Green Plants Defined 66 3.2. Evolutionary History of Green Plants 67 3.3. Chlorophyta 68 3.4. Streptophyta and the Origin of Land Plants 72 4. Glaucophytes 74 5. Archaeplastida Genome Studies 75 Acknowledgements 76 References 76 Abstract Oxygenic photosynthesis, the chemical process whereby light energy powers the conversion of carbon dioxide into organic compounds and oxygen is released as a waste product, evolved in the anoxygenic ancestors of Cyanobacteria. Although there is still uncertainty about when precisely and how this came about, the gradual oxygenation of the Proterozoic oceans and atmosphere opened the path for aerobic organisms and ultimately eukaryotic cells to evolve. There is a general consensus that photosynthesis was acquired by eukaryotes through endosymbiosis, resulting in the enslavement of a cyanobacterium to become a plastid. Here, we give an update of the current understanding of the primary endosymbiotic event that gave rise to the Archaeplastida. In addition, we provide an overview of the diversity in the Rhodophyta, Glaucophyta and the Viridiplantae (excluding the Embryophyta) and highlight how genomic data are enabling us to understand the relationships and characteristics of algae emerging from this primary endosymbiotic event.
    [Show full text]
  • Distinctive Architecture of the Chloroplast Genome in The
    Manuscript Click here to download Manuscript Turmel_etal_revMS_clean.docx 1 2 Distinctive Architecture of the Chloroplast Genome in the 3 Chlorodendrophycean Green Algae Scherffelia dubia and 4 Tetraselmis sp. CCMP 881 5 6 7 Monique Turmel*, Jean-Charles de Cambiaire, Christian Otis and Claude Lemieux 8 9 10 Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de 11 microbiologie et de bio-informatique, Université Laval, Québec, Québec, Canada 12 13 14 15 * Corresponding author 16 E-mail: [email protected] (MT) 17 2 18 Abstract 19 The Chlorodendrophyceae is a small class of green algae belonging to the core Chlorophyta, an 20 assemblage that also comprises the Pedinophyceae, Trebouxiophyceae, Ulvophyceae and 21 Chlorophyceae. Here we describe for the first time the chloroplast genomes of 22 chlorodendrophycean algae (Scherffelia dubia, 137,161 bp; Tetraselmis sp. CCMP 881, 100,264 23 bp). Characterized by a very small single-copy (SSC) region devoid of any gene and an 24 unusually large inverted repeat (IR), the quadripartite structures of the Scherffelia and 25 Tetraselmis genomes are unique among all core chlorophytes examined thus far. The lack of 26 genes in the SSC region is offset by the rich and atypical gene complement of the IR, which 27 includes genes from the SSC and large single-copy regions of prasinophyte and streptophyte 28 chloroplast genomes having retained an ancestral quadripartite structure. Remarkably, seven of 29 the atypical IR-encoded genes have also been observed in the IRs of pedinophycean and 30 trebouxiophycean chloroplast genomes, suggesting that they were already present in the IR of the 31 common ancestor of all core chlorophytes.
    [Show full text]
  • Dinoflagellates with Relic Endosymbiont Nuclei As Models for Elucidating Organellogenesis
    Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis Chihiro Saraia,1, Goro Tanifujib,c,1,2, Takuro Nakayamad,e,1, Ryoma Kamikawaf,1, Kazuya Takahashia,g, Euki Yazakih, Eriko Matsuoi, Hideaki Miyashitaf, Ken-ichiro Ishidab, Mitsunori Iwatakia,g,2, and Yuji Inagakid,i,2 aGraduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan; bFaculty of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan; cDepartment of Zoology, National Museum of Nature and Science, 305-0005 Tsukuba, Japan; dCenter for Computational Sciences, University of Tsukuba, 305-8577 Tsukuba, Japan; eGraduate School of Life Sciences, Tohoku University, 980-8578 Sendai, Japan; fGraduate School of Human and Environmental Studies, Kyoto University, 606-8501 Kyoto, Japan; gAsian Natural Environmental Science Center, The University of Tokyo, 113-8657 Tokyo, Japan; hDepartment of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, 113-0033 Tokyo, Japan; and iGraduate School of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved January 29, 2020 (received for review July 15, 2019) Nucleomorphs are relic endosymbiont nuclei so far found only in The evolutionary process of integrating an endosymbiont into two algal groups, cryptophytes and chlorarachniophytes, which the host cell (organellogenesis) has yet to be fully understood. have been studied to model the evolutionary process of integrat- Nevertheless, genomic data from diverse eukaryotic lineages ing an endosymbiont alga into a host-governed plastid (organello- indicated that endosymbiont genomes should have lost a massive genesis).
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]