Large D/H Variations in Bacterial Lipids Reflect Central Metabolic Pathways
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hydrogen Isotope Fractionation in Lipids of the Methane-Oxidizing Bacterium Methylococcus Capsulatus
Geochimica et Cosmochimica Acta, Vol. 66, No. 22, pp. 3955–3969, 2002 Copyright © 2002 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/02 $22.00 ϩ .00 PII S0016-7037(02)00981-X Hydrogen isotope fractionation in lipids of the methane-oxidizing bacterium Methylococcus capsulatus 1, 2 3 1 ALEX L. SESSIONS, *LINDA L. JAHNKE, ARNDT SCHIMMELMANN, and JOHN M. HAYES 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 2Exobiology Branch, NASA-Ames Research Center, Moffett Field, CA 94035, USA 3Biogeochemical Laboratories, Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA (Received December 10, 2001; accepted in revised form June 7, 2002) Abstract—Hydrogen isotopic compositions of individual lipids from Methylococcus capsulatus, an aerobic, methane-oxidizing bacterium, were analyzed by hydrogen isotope-ratio-monitoring gas chromatography–mass spectrometry (GC-MS). The purposes of the study were to measure isotopic fractionation factors between methane, water, and lipids and to examine the biochemical processes that determine the hydrogen isotopic composition of lipids. M. capsulatus was grown in six replicate cultures in which the ␦D values of methane and water were varied independently. Measurement of concomitant changes in ␦D values of lipids allowed estimation of the proportion of hydrogen derived from each source and the isotopic fractionation associated with the utilization of each source. All lipids examined, including fatty acids, sterols, and hopanols, derived 31.4 Ϯ 1.7% of their hydrogen from methane. This was apparently true whether the cultures were harvested during exponential or stationary phase. Examination of the relevant biochemical pathways indicates that no hydrogen is transferred directly (with C-H bonds intact) from methane to lipids. -
Reduced Net Methane Emissions Due to Microbial Methane Oxidation in a Warmer Arctic
LETTERS https://doi.org/10.1038/s41558-020-0734-z Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic Youmi Oh 1, Qianlai Zhuang 1,2,3 ✉ , Licheng Liu1, Lisa R. Welp 1,2, Maggie C. Y. Lau4,9, Tullis C. Onstott4, David Medvigy 5, Lori Bruhwiler6, Edward J. Dlugokencky6, Gustaf Hugelius 7, Ludovica D’Imperio8 and Bo Elberling 8 Methane emissions from organic-rich soils in the Arctic have bacteria (methanotrophs) and the remainder is mostly emitted into been extensively studied due to their potential to increase the atmosphere (Fig. 1a). The methanotrophs in these wet organic the atmospheric methane burden as permafrost thaws1–3. soils may be low-affinity methanotrophs (LAMs) that require However, this methane source might have been overestimated >600 ppm of methane (by moles) for their growth and mainte- without considering high-affinity methanotrophs (HAMs; nance23. But in dry mineral soils, the dominant methanotrophs are methane-oxidizing bacteria) recently identified in Arctic min- high-affinity methanotrophs (HAMs), which can survive and grow 4–7 eral soils . Herein we find that integrating the dynamics of at a level of atmospheric methane abundance ([CH4]atm) of about HAMs and methanogens into a biogeochemistry model8–10 1.8 ppm (Fig. 1b)24. that includes permafrost soil organic carbon dynamics3 leads Quantification of the previously underestimated HAM-driven −1 to the upland methane sink doubling (~5.5 Tg CH4 yr ) north of methane sink is needed to improve our understanding of Arctic 50 °N in simulations from 2000–2016. The increase is equiva- methane budgets. -
ISOTEC® Stable Isotopes Biomolecular NMR Isotope Labeling Methods for Protein Dynamics Studies
ISOTEC® Stable Isotopes Biomolecular NMR Isotope Labeling Methods for Protein Dynamics Studies Eric D. Watt and J. Patrick Loria, Ph.D. Department of Chemistry, Yale University, Kline Chemistry Laboratory, 225 Prospect Street, New Haven, CT 06520 Protein structure determination by solution NMR spectroscopy use of 15N-enriched minimal or nutrient-rich growth media that are has long relied on the uniform stable isotopic enrichment with readily available, allowing for easy sample preparation. Uniform 15N 13C and 15N to alleviate resonance overlap and to allow multiple labeling results in an isolated spin system (1H-15N) that lends itself well distance and angular restraints, at as many atomic sites as possible, to relaxation experiments. Every 15N position whether in the protein to facilitate computing the optimal three-dimensional structural backbone or sidechain is separated from another 15N atom by at least (1) 1 model. Recently, the optimization of these labeling techniques has two bonds. Therefore there are no JNN couplings that could lead to increased the range of protein sizes amendable to study, enhanced complicated multiexponential relaxation behavior, which would be the quality of three-dimensional structures, and simplified the analysis difficult to accurately measure and would cloud the interpretation of of experimental data.(2) Similarly, the field of protein dynamics has the associated motions. benefited from advances in isotopic labeling techniques that have However, 15N enrichment by itself does not provide a complete picture allowed researchers to study the motional properties of ever larger of the motions a protein undergoes. Nitrogen makes up only 1/3 of proteins over a broad range of timescales while more accurately the protein backbone and is only sparsely populated in the sidechains describing the protein motions. -
The Ratio of Methanogens to Methanotrophs and Water-Level Dynamics Drive Methane Exchange Velocity in a Temperate Kettle-Hole Peat Bog
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-116 Manuscript under review for journal Biogeosciences Discussion started: 23 April 2019 c Author(s) 2019. CC BY 4.0 License. The ratio of methanogens to methanotrophs and water-level dynamics drive methane exchange velocity in a temperate kettle-hole peat bog Camilo Rey-Sanchez1,4, Gil Bohrer1, Julie Slater2, Yueh-Fen Li3, Roger Grau-Andrés2, Yushan Hao2, 5 Virginia I. Rich3, & G. Matt Davies2 1Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, Columbus, Ohio, 43210, USA 2School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, 43210, USA 3Department of Microbiology, The Ohio State University, Columbus, Ohio, 43210, USA 10 4Current address, Department of Environmental Science, Management and Policy, University of California- Berkeley, California, 94720, USA Correspondence to: Camilo Rey-Sanchez ([email protected]) 15 Abstract. Peatlands are a large source of methane (CH4) to the atmosphere, yet the uncertainty around the estimates of CH4 flux from peatlands is large. To better understand the spatial heterogeneity in temperate peatland CH4 emissions and their response to physical and biological drivers, we studied CH4 dynamics throughout the growing seasons of 2017 and 2018 in Flatiron Lake Bog, a kettle-hole peat bog in Ohio. The site is composed of six different hydro-biological zones: an open water zone, four concentric vegetation zones surrounding the open water, and a restored zone connected to the main bog by a narrow 20 channel. At each of these locations, we monitored water level (WL), CH4 pore-water concentration at different peat depths, CH4 fluxes from the ground and from representative plant species using chambers, and microbial community composition with focus here on known methanogens and methanotrophs. -
A Roadmap for Interpreting 13C Metabolite Labeling Patterns from Cells
Available online at www.sciencedirect.com ScienceDirect 13 A roadmap for interpreting C metabolite labeling patterns from cells 1,2 3,* 4,* Joerg M Buescher , Maciek R Antoniewicz , Laszlo G Boros , 5,* 6,* 7,* Shawn C Burgess , Henri Brunengraber , Clary B Clish , 8,* 9,* 10,* Ralph J DeBerardinis , Olivier Feron , Christian Frezza , 1,2,* 11,* 12,* Bart Ghesquiere , Eyal Gottlieb , Karsten Hiller , 13,* 14,* 15,* Russell G Jones , Jurre J Kamphorst , Richard G Kibbey , 16,* 17,* 18,* Alec C Kimmelman , Jason W Locasale , Sophia Y Lunt , 11,* 19,* 20,* Oliver DK Maddocks , Craig Malloy , Christian M Metallo , 21,22,* 23,24,* Emmanuelle J Meuillet , Joshua Munger , 25,* 26,* 27,28,* Katharina No¨ h , Joshua D Rabinowitz , Markus Ralser , 29,* 30,* 31,* Uwe Sauer , Gregory Stephanopoulos , Julie St-Pierre , 32,* 33,* Daniel A Tennant , Christoph Wittmann , 34,35,* 11,* Matthew G Vander Heiden , Alexei Vazquez , 11,* 36,37,* 29,* Karen Vousden , Jamey D Young , Nicola Zamboni and 1,2 Sarah-Maria Fendt 13 Measuring intracellular metabolism has increasingly led to Goodman Cancer Research Centre, Department of Physiology, McGill 13 University, Montreal, QC, Canada important insights in biomedical research. C tracer analysis, 14 13 Institute of Cancer Sciences, University of Glasgow, Glasgow, UK although less information-rich than quantitative C flux 15 Internal Medicine, Cellular and Molecular Physiology, Yale University analysis that requires computational data integration, has been School of Medicine, New Haven, CT, USA 16 established as a time-efficient method to unravel relative Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA pathway activities, qualitative changes in pathway 17 Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA contributions, and nutrient contributions. -
Methane Utilization in Methylomicrobium Alcaliphilum 20ZR: a Systems Approach Received: 8 September 2017 Ilya R
www.nature.com/scientificreports OPEN Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach Received: 8 September 2017 Ilya R. Akberdin1,2, Merlin Thompson1, Richard Hamilton1, Nalini Desai3, Danny Alexander3, Accepted: 22 January 2018 Calvin A. Henard4, Michael T. Guarnieri4 & Marina G. Kalyuzhnaya1 Published: xx xx xxxx Biological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, 13C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20ZR an exceptional model system for investigating methane utilization networks. Here we present a comprehensive metabolic framework of methane and methanol utilization in M. alcaliphilum 20ZR. A set of novel metabolic reactions governing carbon distribution across central pathways in methanotrophic bacteria was predicted by in-silico simulations and confrmed by global non-targeted metabolomics and enzymatic evidences. Our data highlight the importance of substitution of ATP-linked steps with PPi-dependent reactions and support the presence of a carbon shunt from acetyl-CoA to the pentose-phosphate pathway and highly branched TCA cycle. The diverged TCA reactions promote balance between anabolic reactions and redox demands. The computational framework of C1-metabolism in methanotrophic bacteria can represent an efcient tool for metabolic engineering or ecosystem modeling. Climate change concerns linked to increasing concentrations of anthropogenic methane have spiked inter- est in biological methane utilization as a novel platform for improving ecological and human well-being1–4. -
(Antarctica) Glacial, Basal, and Accretion Ice
CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa. -
Isotope Distributions
Isotope distributions This exposition is based on: • R. Martin Smith: Understanding Mass Spectra. A Basic Approach. Wiley, 2nd edition 2004. [S04] • Exact masses and isotopic abundances can be found for example at http: //www.sisweb.com/referenc/source/exactmaa.htm or http://education. expasy.org/student_projects/isotopident/htdocs/motza.html • IUPAC Compendium of Chemical Terminology - the Gold Book. http:// goldbook.iupac.org/ [GoldBook] • Sebastian Bocker,¨ Zzuzsanna Liptak:´ Efficient Mass Decomposition. ACM Symposium on Applied Computing, 2005. [BL05] • Christian Huber, lectures given at Saarland University, 2005. [H05] • Wikipedia: http://en.wikipedia.org/, http://de.wikipedia.org/ 10000 Isotopes This lecture addresses some more combinatorial aspect of mass spectrometry re- lated to isotope distributions and mass decomposition. Most elements occur in nature as a mixture of isotopes. Isotopes are atom species of the same chemical element that have different masses. They have the same number of protons and electrons, but a different number of neutrons. The main ele- ments occurring in proteins are CHNOPS. A list of their naturally occurring isotopes is given below. Isotope Mass [Da] % Abundance Isotope Mass [Da] % Abundance 1H 1.007825 99.985 16O 15.994915 99.76 2H 2.014102 0.015 17O 16.999131 0.038 18O 17.999159 0.20 12C 12. (exact) 98.90 13C 13.003355 1.10 31P 30.973763 100. 14N 14.003074 99.63 32S 31.972072 95.02 15N 15.000109 0.37 33S 32.971459 0.75 34S 33.967868 4.21 10001 Isotopes (2) Note that the lightest isotope is also the most abundant one for these elements. -
Nitrification 31
NITROGEN IN SOILS/Nitrification 31 See also: Eutrophication; Greenhouse Gas Emis- Powlson DS (1993) Understanding the soil nitrogen cycle. sions; Isotopes in Soil and Plant Investigations; Soil Use and Management 9: 86–94. Nitrogen in Soils: Cycle; Nitrification; Plant Uptake; Powlson DS (1999) Fate of nitrogen from manufactured Symbiotic Fixation; Pollution: Groundwater fertilizers in agriculture. In: Wilson WS, Ball AS, and Hinton RH (eds) Managing Risks of Nitrates to Humans Further Reading and the Environment, pp. 42–57. Cambridge: Royal Society of Chemistry. Addiscott TM, Whitmore AP, and Powlson DS (1991) Powlson DS (1997) Integrating agricultural nutrient man- Farming, Fertilizers and the Nitrate Problem. Wallingford: agement with environmental objectives – current state CAB International. and future prospects. Proceedings No. 402. York: The Benjamin N (2000) Nitrates in the human diet – good or Fertiliser Society. bad? Annales de Zootechnologie 49: 207–216. Powlson DS, Hart PBS, Poulton PR, Johnston AE, and Catt JA et al. (1998) Strategies to decrease nitrate leaching Jenkinson DS (1986) Recovery of 15N-labelled fertilizer in the Brimstone Farm experiment, Oxfordshire, UK, applied in autumn to winter wheat at four sites in eastern 1988–1993: the effects of winter cover crops and England. Journal of Agricultural Science, Cambridge unfertilized grass leys. Plant and Soil 203: 57–69. 107: 611–620. Cheney K (1990) Effect of nitrogen fertilizer rate on soil Recous S, Fresnau C, Faurie G, and Mary B (1988) The fate nitrate nitrogen content after harvesting winter wheat. of labelled 15N urea and ammonium nitrate applied to a Journal of Agricultural Science, Cambridge 114: winter wheat crop. -
Ethane-Dependent Synthesis of Polyhydroxyalkanoates By
bioRxiv preprint doi: https://doi.org/10.1101/307108; this version posted April 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ethane-dependent synthesis of polyhydroxyalkanoates by 2 the obligate methanotroph Methylocystis parvus OBBP 3 Jaewook Myunga,e#, James C. A. Flanaganb,f, Wakuna M. Galegaa, Robert M. Waymouthb, Craig 4 S. Criddlea,c,d 5 a Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, 6 USA 7 b Department of Chemistry, Stanford University, Stanford, California 94305, USA 8 c Woods Institute for the Environment, Stanford, CA 94305, USA 9 d William and Cloy Codiga Resource Recovery Center, Stanford, CA 94305, USA 10 e Current address: Department of Civil and Environmental Engineering, Southern Methodist 11 University, Dallas, TX 75205, USA 12 f Current address: Brighton College, Eastern Road, Brighton, BN2 0AL, United Kingdom 13 14 Running title: Methanotrophic synthesis of PHAs using ethane 15 16 # Address correspondence to: Jaewook Myung, [email protected] 17 Phone: (+1) 214-768-4229 1 bioRxiv preprint doi: https://doi.org/10.1101/307108; this version posted April 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 18 ABSTRACT (250 words) 19 Under conditions of nutrient-limited growth, Type II obligate methanotrophs oxidize C1 20 compounds, such as methane or methanol and accumulate intracellular granules of poly(3- 21 hydroxybutyrate) (P3HB). Here, we report that, under same nutrient-limited conditions, the Type 22 II obligate methanotroph Methylocystis parvus OBBP can use ethane as its sole carbon and 23 energy source for synthesis P3HB granules, accumulating up to 35 ± 4 wt% P3HB. -
Co-Cultivation of the Strictly Anaerobic Methanogen Methanosarcina Barkeri with Aerobic Methanotrophs in an Oxygen-Limited Membrane Bioreactor
Applied Microbiology and Biotechnology (2018) 102:5685–5694 https://doi.org/10.1007/s00253-018-9038-x APPLIED MICROBIAL AND CELL PHYSIOLOGY Co-cultivation of the strictly anaerobic methanogen Methanosarcina barkeri with aerobic methanotrophs in an oxygen-limited membrane bioreactor Michiel H. in ’tZandt1,2 & Tijs J. M. van den Bosch1 & Ruud Rijkers1 & Maartje A. H. J. van Kessel1 & Mike S. M. Jetten1,2,3 & Cornelia U. Welte1,3 Received: 26 February 2018 /Revised: 16 April 2018 /Accepted: 18 April 2018 /Published online: 3 May 2018 # The Author(s) 2018 Abstract Wetlands contribute to 30% of global methane emissions due to an imbalance between microbial methane production and consumption. Methanogenesis and methanotrophy have mainly been studied separately, and little is known about their potential interactions in aquatic environments. To mimic the interaction between methane producers and oxidizers in the environment, we co-cultivated the methanogenic archaeon Methanosarcina barkeri with aerobic Methylocystaceae methanotrophs in an oxygen- limited bioreactor using acetate as methanogenic substrate. Methane, acetate, dissolved oxygen, available nitrogen, pH, temper- ature, and cell density were monitored to follow system stability and activity. Stable reactor operation was achieved for two consecutive periods of 2 months. Fluorescence in situ hybridization micrographs indicated close association between both groups of microorganisms. This association suggests that the methanotrophs profit from direct access to the methane that is produced from acetate, while methanogens are protected by the concomitant oxygen consumption of the methanotrophs. This proof of principle study can be used to set up systems to study their responses to environmental changes. Keywords Co-culture . Methane cycle . -
Diversity of Methane-Cycling Microorganisms in Soils and Their Relation to Oxygen
Diversity of Methane-cycling Microorganisms in Soils and Their Relation to Oxygen Claudia Knief* Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.033.023 Abstract Introduction Microorganisms are important players in the Methane cycling microorganisms are of interest global methane cycle. Anaerobic methanogenic for microbiologists since more than a century. archaea are largely responsible for methane pro- Research on these microorganisms was initially duction, while aerobic methanotrophic bacteria, largely driven by the curiosity to understand their as well as anaerobic methanotrophic bacteria particular physiology that leads to the production and archaea, are involved in methane oxidation. or consumption of methane. While this interest is In anoxic wetland soils, methanogens produce still a driver, the importance of methane as green- methane, while methanotrophs act as a flter house gas has become another important factor, and reduce methane emissions. In the predomi- promoting further research on methanogenic and nantly oxic upland soils, aerobic methanotrophs methanotrophic microorganisms. Tis leads to a oxidize atmospheric methane. Tis review gives continuously beter understanding of their physi- an overview of the diversity of methanogenic ology and ecology, and it becomes evident that and methanotrophic microorganisms, highlights the processes of microbial methane production recent discoveries and provides information and consumption are mediated by more com- concerning their occurrence in soils. Recent plex functional guilds than initially thought. Te fndings indicate that the methanogenic and improved understanding is not only due to the con- methanotrophic lifestyles are more widespread stantly increasing diversity of methanogenic and in microorganisms than previously thought, and methanotrophic microorganisms (e.g.