Functional Insights from the Distribution and Role of Homopeptide Repeat-Containing Proteins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Analysis of Chaperone Effects Using a Reconstituted Cell-Free Translation System
Global analysis of chaperone effects using a reconstituted cell-free translation system Tatsuya Niwaa, Takashi Kanamorib,1, Takuya Uedab,2, and Hideki Taguchia,2 aDepartment of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan; and bDepartment of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan Edited by George H. Lorimer, University of Maryland, College Park, MD, and approved April 19, 2012 (received for review January 25, 2012) Protein folding is often hampered by protein aggregation, which can three chaperone systems are known to act cooperatively: TF and be prevented by a variety of chaperones in the cell. A dataset that DnaK exhibit overlapping cotranslational roles in vivo (13–15). evaluates which chaperones are effective for aggregation-prone Overexpression of DnaK/DnaJ and GroEL/GroES in E. coli proteins would provide an invaluable resource not only for un- rpoH mutant cells, which are deficient in heat-shock proteins, derstanding the roles of chaperones, but also for broader applications prevents aggregation of newly translated proteins (16). GroEL is in protein science and engineering. Therefore, we comprehensively believed to be involved in folding after the polypeptides are re- evaluated the effects of the major Escherichia coli chaperones, trigger leased from the ribosome, although the possible cotranslational factor, DnaK/DnaJ/GrpE, and GroEL/GroES, on ∼800 aggregation- involvement of GroEL has also been reported (17–20). prone cytosolic E. coli proteins, using a reconstituted chaperone-free Over the past two decades many efforts have been focused on translation system. -
XIAO-DISSERTATION-2015.Pdf
CELLULAR AND PROCESS ENGINEERING TO IMPROVE MAMMALIAN MEMBRANE PROTEIN EXPRESSION By Su Xiao A dissertation is submitted to Johns Hopkins University in conformity with the requirements for degree of Doctor of Philosophy Baltimore, Maryland May 2015 © 2015 Su Xiao All Rights Reserved Abstract Improving the expression level of recombinant mammalian proteins has been pursued for production of commercial biotherapeutics in industry, as well as for biomedical studies in academia, as an adequate supply of correctly folded proteins is a prerequisite for all structure and function studies. Presented in this dissertation are different strategies to improve protein functional expression level, especially for membrane proteins. The model protein is neurotensin receptor 1 (NTSR1), a hard-to- express G protein-coupled receptor (GPCR). GPCRs are integral membrane proteins playing a central role in cell signaling and are targets for most of the medicines sold worldwide. Obtaining adequate functional GPCRs has been a bottleneck in their structure studies because the expression of these proteins from mammalian cells is very low. The first strategy is the adoption of mammalian inducible expression system. A stable and inducible T-REx-293 cell line overexpressing an engineered rat NTSR1 was constructed. 2.5 million Functional copies of NTSR1 per cell were detected on plasma membrane, which is 167 fold improvement comparing to NTSR1 constitutive expression. The second strategy is production process development including suspension culture adaptation and induction parameter optimization. A further 3.5 fold improvement was achieved and approximately 1 milligram of purified functional NTSR1 per liter suspension culture was obtained. This was comparable yield to the transient baculovirus- insect cell system. -
Chaperonin-Assisted Protein Folding: a Chronologue
Quarterly Reviews of Chaperonin-assisted protein folding: Biophysics a chronologue cambridge.org/qrb Arthur L. Horwich1,2 and Wayne A. Fenton2 1Howard Hughes Medical Institute, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA and 2Department of Genetics, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Invited Review Haven, CT 06510, USA Cite this article: Horwich AL, Fenton WA (2020). Chaperonin-assisted protein folding: a Abstract chronologue. Quarterly Reviews of Biophysics This chronologue seeks to document the discovery and development of an understanding of – 53, e4, 1 127. https://doi.org/10.1017/ oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. S0033583519000143 It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these Received: 16 August 2019 ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is orga- Revised: 21 November 2019 nized into various topics of physiology and mechanism, for each of which a chronologic order Accepted: 26 November 2019 is generally followed. The text is liberally illustrated to provide firsthand inspection of the key Key words: pieces of experimental data that propelled this field. Because of the length and depth of this Chaperonin; GroEL; GroES; Hsp60; protein piece, the use of the outline as a guide for selected reading is encouraged, but it should also be folding of help in pursuing the text in direct order. Author for correspondence: Arthur L. Horwich, E-mail: [email protected] Table of contents I. Foundational discovery of Anfinsen and coworkers – the amino acid sequence of a polypeptide contains all of the information required for folding to the native state 7 II. -
Mrvr, a Group B Streptococcus Transcription Factor That Controls Multiple Virulence Traits
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.386367; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 MrvR, a Group B Streptococcus Transcription Factor that Controls Multiple Virulence Traits 5 6 Allison N. Dammann1, Anna B. Chamby2, Andrew J. Catomeris3, Kyle M. Davidson4, Hervé 7 Tettelin5,6, Jan-Peter van Pijkeren7, Kathyayini P. Gopalakrishna4, Mary F. Keith4, Jordan L. 8 Elder4, Adam J. Ratner1,8, Thomas A. Hooven4,9* 9 10 1 Department of Pediatrics, New York University School of Medicine, New York, NY, USA 11 12 2 University of Vermont Larner College of Medicine, Burlington, VT, USA 13 14 3 Georgetown University School of Medicine, Washington, DC, USA 15 16 4 Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 17 18 5 Department of Microbiology and Immunology, University of Maryland School of Medicine, 19 Baltimore, MD, USA 20 21 6 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 22 USA 23 24 7 Department of Food Science, University of Wisconsin, Madison, WI, USA 25 26 8 Department of Microbiology, New York University, New York, NY, USA 27 28 9 Richard King Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, 29 Pittsburgh, PA, USA 30 31 * Corresponding author 32 E-mail: [email protected] 33 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.17.386367; this version posted November 17, 2020. -
Engineering Proteins with GFP: Study of Protein-Protein Interactions in Vivo, Protein Expression and Solubility
Engineering Proteins with GFP: Study of Protein-Protein Interactions In vivo, Protein Expression and Solubility Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Mohosin M. Sarkar, M. Sc. Graduate Program in Chemistry The Ohio State University 2009 Dissertation Committee: Thomas J. Magliery, Advisor Dennis Bong Ross E. Dalbey Christopher M. Hadad Copyright by Mohosin M. Sarkar 2009 Abstract Protein–protein interactions (PPIs) play a key role in most biological processes. Many of these interactions are necessary for cell survival. To understand the molecular mechanisms of biological processes, it is essential to study and characterize protein-protein interactions, identify interacting partners and protein interaction networks. There are a number of methods that have been developed to study protein-protein interactions in vitro and in vivo, such as yeast-2-hybrid, fluorescence resonance energy transfer, co-immunoprecipitation, etc. Split protein reassembly is an in vivo probe of protein interactions that circumvents some of the problems with yeast 2- hybrid (indirect interactions, false positives) and co-immunoprecipitation (loss of weak and transient interactions, decompartmentalization). Split GFP reassembly is especially attractive because the GFP chromophore forms spontaneously on protein folding in almost every cell type. However, existing split systems have limitations of evolving cellular fluorescence slowly (3-4 days), failure to evolve at all for some interactions, and also failure to work at a physiological temperature. Among different variants of GFP tested, we found that split folding-reporter GFP (frGFP, a hybrid of EGFP and GFPuv) evolves fluorescence much faster (24 - 30 h) with associating peptides and also evolves fluorescence for the RING domain BRCA1/BARD1 wild type pair. -
Horizontal Gene Transfers and Cell Fusions in Microbiology, Immunology and Oncology (Review)
441-465.qxd 20/7/2009 08:23 Ì ™ÂÏ›‰·441 INTERNATIONAL JOURNAL OF ONCOLOGY 35: 441-465, 2009 441 Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review) JOSEPH G. SINKOVICS St. Joseph's Hospital's Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center; Departments of Medical Microbiology/Immunology and Molecular Medicine, The University of South Florida College of Medicine, Tampa, FL 33607-6307, USA Received April 17, 2009; Accepted June 4, 2009 DOI: 10.3892/ijo_00000357 Abstract. Evolving young genomes of archaea, prokaryota or immunogenic genetic materials. Naturally formed hybrids and unicellular eukaryota were wide open for the acceptance of dendritic and tumor cells are often tolerogenic, whereas of alien genomic sequences, which they often preserved laboratory products of these unisons may be immunogenic in and vertically transferred to their descendants throughout the hosts of origin. As human breast cancer stem cells are three billion years of evolution. Established complex large induced by a treacherous class of CD8+ T cells to undergo genomes, although seeded with ancestral retroelements, have epithelial to mesenchymal (ETM) transition and to yield to come to regulate strictly their integrity. However, intruding malignant transformation by the omnipresent proto-ocogenes retroelements, especially the descendents of Ty3/Gypsy, (for example, the ras oncogenes), they become defenseless the chromoviruses, continue to find their ways into even the toward oncolytic viruses. Cell fusions and horizontal exchanges most established genomes. The simian and hominoid-Homo of genes are fundamental attributes and inherent characteristics genomes preserved and accommodated a large number of of the living matter. -
Proteins to Exosomes Soluble Mycobacterial and Eukaryotic
Ubiquitination as a Mechanism To Transport Soluble Mycobacterial and Eukaryotic Proteins to Exosomes This information is current as Victoria L. Smith, Liam Jackson and Jeffrey S. Schorey of September 28, 2021. J Immunol published online 5 August 2015 http://www.jimmunol.org/content/early/2015/08/05/jimmun ol.1403186 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/08/05/jimmunol.140318 Material 6.DCSupplemental Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published August 5, 2015, doi:10.4049/jimmunol.1403186 The Journal of Immunology Ubiquitination as a Mechanism To Transport Soluble Mycobacterial and Eukaryotic Proteins to Exosomes Victoria L. Smith, Liam Jackson, and Jeffrey S. Schorey Exosomes are extracellular vesicles of endocytic origin that function in intercellular communication. Our previous studies indicate that exosomes released from Mycobacterium tuberculosis-infected macrophages contain soluble mycobacterial proteins. -
Characterization of the Dual Functional Effects of Heat Shock Proteins (Hsps
Zhang et al. Genome Medicine (2020) 12:101 https://doi.org/10.1186/s13073-020-00795-6 RESEARCH Open Access Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors Zhao Zhang1†, Ji Jing2†, Youqiong Ye1, Zhiao Chen1, Ying Jing1, Shengli Li1, Wei Hong1, Hang Ruan1, Yaoming Liu1, Qingsong Hu3, Jun Wang4, Wenbo Li1, Chunru Lin3, Lixia Diao5*, Yubin Zhou2* and Leng Han1* Abstract Background: Heat shock proteins (HSPs), a representative family of chaperone genes, play crucial roles in malignant progression and are pursued as attractive anti-cancer therapeutic targets. Despite tremendous efforts to develop anti-cancer drugs based on HSPs, no HSP inhibitors have thus far reached the milestone of FDA approval. There remains an unmet need to further understand the functional roles of HSPs in cancer. Methods: We constructed the network for HSPs across ~ 10,000 tumor samples from The Cancer Genome Atlas (TCGA) and ~ 10,000 normal samples from Genotype-Tissue Expression (GTEx), and compared the network disruption between tumor and normal samples. We then examined the associations between HSPs and cancer hallmarks and validated these associations from multiple independent high-throughput functional screens, including Project Achilles and DRIVE. Finally, we experimentally characterized the dual function effects of HSPs in tumor proliferation and metastasis. Results: We comprehensively analyzed the HSP expression landscape across multiple human cancers and revealed a global disruption of the co-expression network for HSPs. Through analyzing HSP expression alteration and its association with tumor proliferation and metastasis, we revealed dual functional effects of HSPs, in that they can simultaneously influence proliferation and metastasis in opposite directions. -
Chaperonin Facilitates Protein Folding by Avoiding Polypeptide Collapse
bioRxiv preprint doi: https://doi.org/10.1101/126623; this version posted April 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Chaperonin facilitates protein folding by avoiding polypeptide collapse Fumihiro Motojima1,2,3*, Katsuya Fujii1,4, and Masasuke Yoshida1 1 Department of Molecular Bioscience, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto, 603-8555, Japan, 2 present address: Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; 3Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; 4 present address: Daiichi Yakuhin Kogyo Co.,Ltd., Kusashima 15-1, Toyama, Toyama 930-2201, Japan Running title: Chaperonin inhibits polypeptide collapse To whom correspondence should be addressed: Fumihiro Motojima, Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, Tel.: +81-766-56-7500; E-mail: [email protected] Keywords: molecular chaperon, chaperonin, GroEL, protein folding, collapsed state 1 bioRxiv preprint doi: https://doi.org/10.1101/126623; this version posted April 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Chaperonins assist folding of many cellular proteins, including essential proteins for cell viability. -
Chaperonin 10 from Escherichia Coli (C7438)
Chaperonin 10 from Escherichia coli recombinant, expressed in E. coli overproducing strain Product Number C7438 Storage Temperature 2–8 C Synonym: GroES The folding activity of a 1:1 molar mixture of GroEL and GroES is determined using urea-denatured rhodanese. Product Description At least a 2-fold increase in reactivation of rhodanese is The chaperonin proteins GroES (Chaperonin 10) and observed compared to spontaneous reactivation. GroEL (Chaperonin 60) are heat shock proteins that assist the folding of nascent and heat-destabilized The inhibition of the ATPase activity of GroEL by GroES proteins.1 GroES (Chaperonin 10) is a complex of at a molar ratio of 2:1 (GroES:GroEL) is determined to 6-8 units of a 10 kDa monomer, with a multimer be 40-60%. molecular mass of 60-80 kDa. Aggregation studies on chaperonin 10 monomer from different species have Purity: 95% (SDS-PAGE) been reported.2 GroEL (Chaperonin 60) is a tetradecamer of a 58 kDa monomer, with a multimer Precautions and Disclaimer molecular mass of 800 kDa. For R&D use only. Not for drug, household, or other uses. Please consult the Safety Data Sheet for GroEL and GroES can be used to stabilized labile information regarding hazards and safe handling proteins and reactivate denatured proteins. Refolding practices. and reactivation of denatured enzymes such as the photosynthetic enzyme RuBisCO,3 mitochondrial Preparation Instructions rhodanese,4 and glutamine synthase5 have been The product is soluble in water (0.5 mg/mL). reported. Storage/Stability Folding of proteins by these chaperonins requires It is recommended to store the product desiccated at GroEL, Mg-ATP (GroEL has ATPase activity), and in 2–8 C. -
Regulation of Antimicrobial Pathways by Endogenous Heat Shock Proteins in Gastrointestinal Disorders
Review Regulation of Antimicrobial Pathways by Endogenous Heat Shock Proteins in Gastrointestinal Disorders Emma Finlayson-Trick 1 , Jessica Connors 2, Andrew Stadnyk 1,2 and Johan Van Limbergen 1,2,* 1 Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Room 7-C, Halifax, NS B3H 4R2, Canada; emma.fi[email protected] (E.F.-T.); [email protected] (A.S.) 2 Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, Dalhousie University, IWK Health Centre, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada; [email protected] * Correspondence: [email protected]; Tel.: +902-470-8746; Fax: +902-470-7249 Received: 31 August 2018; Accepted: 26 September 2018; Published: 28 September 2018 Abstract: Heat shock proteins (HSPs) are essential mediators of cellular homeostasis by maintaining protein functionality and stability, and activating appropriate immune cells. HSP activity is influenced by a variety of factors including diet, microbial stimuli, environment and host immunity. The overexpression and down-regulation of HSPs is associated with various disease phenotypes, including the inflammatory bowel diseases (IBD) such as Crohn’s disease (CD). While the precise etiology of CD remains unclear, many of the putative triggers also influence HSP activity. The development of different CD phenotypes therefore may be a result of the disease-modifying behavior of the environmentally-regulated HSPs. Understanding the role of bacterial and endogenous HSPs in host homeostasis and disease will help elucidate the complex interplay of factors. Furthermore, discerning the function of HSPs in CD may lead to therapeutic developments that better reflect and respond to the gut environment. -
The Role of the N-Terminal Domain in the Dynamics of Hsp27
THE ROLE OF THE N-TERMINAL DOMAIN IN THE DYNAMICS OF HSP27 EQUILIBRIUM DISSOCIATION By Ezelle Teresa McDonald Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Molecular Physiology and Biophysics May, 2012 Nashville, Tennessee Approved: Charles E. Cobb, Ph.D. Albert H. Beth, Ph.D. Phoebe L. Stewart, Ph.D. Louis J. De Felice, Ph.D. I dedicate this dissertation work to my parents, David and Ezell McDonald. To my brother David and Aunt Mary for all of their love and support ii ACKNOWLEDGEMENTS This dissertation work would not have been possible without financial support from the National Eye Institute and National Institutes of Health. I would like to express my deepest gratitude to my advisor, Dr. Hassane Mchaourab, for his encouragement, support, and mentorship. He has provided me with extraordinary experiences and opportunities at each stage of my academic development. His wisdom, knowledge, and commitment to the highest standards have both inspired and motivated me. A special thanks and appreciation go to my dissertation committee members: Dr. Charles E. Cobb, Dr. Albert H. Beth, Dr. Phoebe L. Stewart, and Dr. Louis J. De Felice. I am grateful to my dissertation committee for their encouraging words, thoughtful criticism, and expertise for the betterment of my dissertation work. I would like especially like to thank Angie Pernell and Alyssa Hasty for their support. I offer my deepest regards to members of the Mchaourab lab and the Molecular Physiology and Biophysics Department for supporting me in all aspects of my dissertation project.