Remote Sensing of Mountain Glaciers and Related Hazards
Total Page:16
File Type:pdf, Size:1020Kb
Chapter 5 Remote Sensing of Mountain Glaciers and Related Hazards Pratima Pandey, Alagappan Ramanathan and Gopalan Venkataraman Additional information is available at the end of the chapter http://dx.doi.org/10.5772/61981 Abstract Mountain glaciers are highly sensitive to temperature and precipitation fluctuations and active geomorphic agents in shaping the landforms of glaciated regions which are direct imprints of past glaciations, providing reliable evidence of the evolution of the past Cryo‐ sphere and contain important information on climatic variables. But most importantly, glaciers have aroused a lot of concern in terms of glacier area changes, thickness change, mass balance and their consequences on water resources as well as related hazards. The contribution of glacier mass loss to global sea-level rise and increasing number of glacier- related hazards are the most important and current socioeconomic concerns. Therefore, understanding the dynamics of the changes and constant monitoring of glaciers are es‐ sential for studying climate, water resource management and hydropower and also to predict and evade glacier-related hazards. The recent advances in the techniques of earth observations have proved as a boon for investigating glaciers and glacier-related hazards. Remote sensing technology enables extraction of glacier parameters such as albedo/reflec‐ tance/scattering, glacier area, glacier zones and facies, equilibrium line, glacier thickness, volume, mass balance, velocity and glacier topography. The present chapter explores the prospective of remote sensing technology for understanding and surveying glaciers formed at high, inaccessible mountains and glacier-induced hazards. Keywords: Mountain glacier, hazard, assessment, remote sensing 1. Introduction Glaciers require standard and accurate technology to be studied. Remote sensing technologies play tremendous role for monitoring glaciers. In fact, a glacier can be considered as a large body of moving ice wherein water penetrates in the form of snow. The snow then transforms into ice by compaction and recrystallization and the ice flows through the system under its own weight and leaves the system by melting and evaporation [1]. The glacier is thus a large © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 132 Environmental Applications of Remote Sensing body of moving ice. Therefore, glaciers store considerable amount of fresh water in frozen form. The water supply from the glaciers located in the upstream mountains is vital for sustaining and maintaining downstream cultures. The melt water from the snowpack and glaciers fulfil manifold requirements of humankind. In the dry season, the water from glaciers is released by delayed response through snow and ice melting and enhances the river runoff, therefore providing water to the downstream when there is no other source of water [2]. For instance, the melt water released from the glaciers in the Alps and Himalayas and other mountain ranges is crucially important and plays a major role in the water supply of large downstream population [3–6]. The ice sheets, ice caps and glaciers constitute 10% of the earth’s land surface contributing to about 3% of the total water on earth corresponding to about 80% of the world’s freshwater [7]. According to the estimate made by Meier and Bahr [8], the total area of the glaciers and ice sheets are about 680,000 km2 and according to Dyurgerov and Meier [9], the same is about 785,000 km2. The Hindu-Kush Himalayan region alone contains a total of 60,054 km2 glaciated area, which is the largest concentration of glaciers outside the polar caps. The Hindu-Kush Himalayan region is home to about 54,252 glaciers and is aptly called as the “Water Tower of Asia” as it provides 86,000,000 m3 of water annually. These glaciers feed the world’s largest rivers such as the Ganga, Indus, Brahmaputra, Salween, Mekong, Yangtze and Huang Ho and supply water to about one billion people living down‐ stream. The fresh water coming from the glaciers of high mountains in these rivers is an important resource for agriculture, navigation, fishing, generation of hydropower and tourism. Apart from being a boon to society, glaciers also play havoc to life and property of the people residing downstream. The mountain glaciers are a potential source of severe natural hazards [10–12]. Besides playing many roles in hydrological sectors, glaciers are also consid‐ ered as a key indicator of climate. Any change in the climate is visible through glacier behavior and response. Glaciologists and climatologists carry out research on glacier changes to understand the change in the past and present climate and to predict the future changes. Contribution of glacier melt water to sea level rise under warming climate is the burning topic among the glaciologists and the hydrologists. Glaciers form under the climatic condition when snowfall is more than snowmelt and this condition in the tropics is fulfilled at very high altitude where the temperature is very less. Therefore, the mountain glaciers are generally located at remote and inaccessible locations. Monitoring of these glaciers through ground survey is costintensive, difficult and sometimes dangerous to life. Remote sensing offers an innovative and valuable tool for gathering information about remotely located glaciers which are otherwise inaccessible and significantly capable of extending the scale of the study both spatially and temporally. In the past few decades, the remote sensing has proved to be a crucial resource for glaciologist. The advent, advancement and increase in the number and quality of earth observing sensors, the devel‐ opment of new technologies, algorithms, high processing capability and new methodologies have brought huge revolution in understanding the Cryospheric processes [13]. Keeping in view the importance of glaciers in society and environment, this chapter will provide information on the remote sensing data available for glaciological studies, the glacier parameters studied by remote sensing and the method of studying those parameters. The chapter will focus on the method of estimating snow and glacier area change, volumetric Remote Sensing of Mountain Glaciers and Related Hazards 133 http://dx.doi.org/10.5772/61981 change, mass change, velocity and assessment of glacier-related hazards. The chapter will broadly address two major topics: (a) study of snow and glacier parameters and (b) hazard assessments. This chapter will provide an overview of the importance, impact and the place of mountain glaciers in our social life as well in scientific research. The objectives of the chapter are very precise and clear, that is, to endow the readers with the scope of studying various glaciological parts and subjects with remote sensing. Our aim is to make the readers familiar with mountain glaciers, their parts and dynamics and the method‐ ology to study the same. Thus, in the chapter we will attempt to discuss about the remote sensing data types and the different glacier parameters which can be studied and derived by them. The emphasis will be given to the methodology of extracting various glaciological parameters from remotely sensed data. Figure 1 is the field photograph of Chhota Shigri glacier taken during September 2014. Figure 1. Field photograph of a Himalayan glacier, September 2014 (Chhota Shigri, western Himalaya, India), showing debris on the glacier, the surrounding avalanche prone steep cliffs and the Bergshrund line separating the glacier body from the cliff. 2. Glacier zones and features Glaciers form when in a year fall of snow is more than the wasting of snow and the trend continues for many years. The formation and sustenance of glacier thus are functions of climatic parameters such as precipitation and temperature. The transformation of snow into glacier ice takes place through compaction and recrystallization [14]. Snowfall, snow ava‐ lanches and snow drift are some of the accumulation processes through which glaciers gain 134 Environmental Applications of Remote Sensing in mass, whereas melting, evaporation and calving are the ablation processes by which glaciers lose mass. Climate and topography play major role in determining the shape, size and type of glacier [15]. Starting from the upper elevation to the terminus, a glacier can be divided into several specific zones. A typical temperate mountain glacier consists of (1) accumulation zone, which is the upper most part of the glacier and where there is net gain of ice, and (2) ablation zone, the lower part of the glacier where there is net loss in the ice through melting, calving and evaporation. The accumulation and ablation zones are separated by equilibrium line where there is neither gain nor loss of glacier ice. The lowest part of the glacier where the glacier ends and the discharge starts is known as snout/terminus/glacier toe. A glacier is a dynamic system which along with snow and ice also transports rocks and debris avalanching on the glacier from the side valley walls. These rocks and debris materials are transported through the glacier system from upper zone to the lower zone. Below the equilibrium line, after melting of ice, these rocks and debris concentrates linearly to the sides of the glacier to form lateral moraine. When a tributary glacier meets the main glaciers, the two adjacent lateral moraines form medial moraine. Terminal and end moraines are the rocks and debris piled near the end of the glacier. When these rocks and debris appear on the surface of the glacier through melting of ice, they are called supra glacier debris. Most of the mountain glaciers are debris-covered glaciers. The debris cover on the glacier changes the interaction of glacier with the climate. Sometimes, a glacier ends with a lake near its snout. This type of lake is known as pro-glacier lake.