Geomorphology, Hydrology, and Ecology of Great Basin Meadow

Total Page:16

File Type:pdf, Size:1020Kb

Geomorphology, Hydrology, and Ecology of Great Basin Meadow Chapter 2: Controls on Meadow Distribution and Characteristics Dru Germanoski, Jerry R. Miller, and Mark L. Lord Introduction precipitation values are recorded in the central and southern Toiyabe and southern Toquima Mountains (fig. 1.4) and, as eadow complexes are located in distinct geomorphic expected, meadow complexes are abundant in those areas. Mand hydrologic settings that allow groundwater to be In contrast, basins located in sections of mountain ranges at or near the ground surface during at least part of the year. that do not have significant area at high elevation (greater Meadows are manifestations of the subsurface flow system, than approximately 2500 m) and that are characterized by and their distribution is controlled by factors that cause lo- limited annual precipitation contain relatively few meadows. calized zones of groundwater discharge. Knowledge of the For example, much of the Shoshone Range and the north- factors that serve as controls on groundwater discharge and ern and southernmost portions of the Toiyabe, Toquima, and formation of meadow complexes is necessary to understand Monitor Ranges are lower in elevation and receive less pre- why meadows occur where they do and how anthropogenic cipitation. Therefore, meadow complexes are uncommon in activities might affect their persistence and ecological condi- these regions. Analyses of color-enhanced satellite images tion. In this chapter, we examine physical factors that lead to of the region reveal that meadow complexes also are uncom- the formation of meadow complexes in upland watersheds mon in low-elevation mountain ranges in the surrounding of the central Great Basin. We then describe variations in area, including the Pancake Range, Antelope Range, the meadow characteristics across the region and parameters Park Range, and Simpson Park Mountains. that produce differences in the nature of meadow complexes at basin scales. In subsequent chapters, we examine the geo- Geologic, Stratigraphic, and Hydrologic morphic, hydrologic, and vegetation processes that operate Controls within individual wet meadow complexes. Groundwater along riparian corridors of most basins is Factors Affecting Meadow typically located well below the ground surface (usually greater than 3 to 5 m), even when an ample supply of ground- Distribution and Development water would be expected based on the watershed’s elevation and precipitation. Thus, meadow complexes represent an Precipitation anomalous condition where groundwater levels are elevated compared to adjacent upstream and downstream reaches of Wet meadows require a reliable supply of groundwater the riparian corridor. These spatial changes in subsurface that supports high water tables year after year and that sus- water levels raise two important, interrelated questions: tains the phreatophytic vegetation characteristic of these (1) Is the water that is found within meadows entirely de- discrete ecosystems (Castelli and others 2000). The ultimate rived from its down-valley movement through valley fill? supply of this water is precipitation. Annual precipitation and (2) Are other factors causing groundwater levels to rise varies from 150 mm/year to approximately 700 mm/year locally? The meadows may be products of localized inputs in the study area (Oregon Climate Service 2009) and falls of water to the valley that raise water levels, of changes in mostly as snow in winter. Observed spatial variations in hydrologic flow conditions that produce upwelling, or of precipitation closely parallel changes in elevation (figs.1.2 some combination of the two. The answers to these ques- and 1.4). Watersheds that have a significant portion of their tions require an understanding of the geologic, stratigraphic, drainage area located at high elevations should be able to and geomorphic settings of meadow complexes. capture more rain and snow and, therefore, have more avail- History and Timing of Sedimentation Events. The geo- able water. In fact, it has been demonstrated that stream morphic characteristics of the valley bottoms, including discharge and flow duration are proportional to and can be those in the vicinity of meadow complexes, largely reflect estimated by the size of the drainage basin and the percent- erosional and depositional events that occurred during the age of the drainage basin that is located at elevations above late Holocene (approximately 4500 years BP to the pres- 3050 m (Hess 2002). ent). The geomorphic history of the basins was documented The highest elevations within the six mountain ranges primarily by examining and dating alluvial stratigraphic de- in the study area (Shoshone, Toiyabe, Toquima, Monitor, posits in approximately 30 upland watersheds spread across Roberts, and Hot Creek Ranges) occur in the central and the central Great Basin (Miller and others 2001, 2004). The southern portions of the Toiyabe, southern Toquima, and most detailed studies occurred in the Big Creek, Barley, central Monitor Ranges (fig. 1.2). The highest annual USDA Forest Service Gen. Tech. Rep. RMRS-GTR-258. 2011. 11 Kingston, San Juan, Cottonwood, and Indian Valley basins in deposits 0.5 to 2 m thick. In addition, stratigraphic profiles (fig 1.7). Results indicated that while sediment was always revealed that sediment that was eroded from the hillslopes being produced, transported, stored, and exported from was routed through low-order tributaries to the side-valley the upland basins, significant temporal variations in sedi- fans causing fan progradation. Fan sediments were then ment production and transport dynamics occurred during eroded and routed down higher-order channels and axial the late Holocene often in response to discrete changes in valleys resulting in contemporaneous deposition along climate. During the Neoglacial (4500 to 2500 years BP), a major trunk streams. The process created an interfingering period of cooler, moister conditions and relatively high veg- relationship between fan and axial valley deposits (fig. 2.1) etation abundance, the landscape was relatively stable and (Miller and others 2001). This alternating sequence of de- little sediment was transported to alluvial fans located at the position and erosion allowed much of the coarser sediment mouth of tributaries (called side-valley alluvial fans) or to (cobbles and boulders) to be stored in side-valley fans and the alluvial valley floor (Chambers and others 1998; Miller more of the finer-grained materials (pebbles, sand, silt, and and others 2001). As a result, soils formed in the stable val- clay) to be redeposited along the axial drainage system. ley fill and alluvial fan deposits (Miller and others 2001). A product of fan progradation into the axial valleys was Landscape stability changed, however, with the onset of the a reduction of channel gradients immediately upstream. The post-Neoglacial drought that began in this area approximate- reduced gradients appear to have further promoted accumu- ly 2600 years BP. The post-Neoglacial drought was a time lation of sediment along the axial valley (fig. 2.2). In some of relative aridity, during which upland vegetation changed cases, radial fan profiles indicate that fan deposits traversed substantially toward dryland assemblages. Available paleo- the entire width of the valley, effectively blocking down- ecological data (primarily from woodrat middens) indicate valley movement of water and sediment. Although these that the number of plant taxa present decreased from a rel- blockages were probably breached rapidly, they may have atively high level to the lowest levels observed during the promoted sediment aggradation temporarily by reducing Holocene (Miller and others 2001; Tausch and others 2004). downstream flow velocities. The decrease in vegetation cover apparently led to erosional Since about 1980 years BP, the stream systems through- stripping of hillslope sediment when infrequent but intense out the region have undergone periods of stability that were rainfall events occurred. The eroded sediment was redepos- separated by episodes of channel incision. Interestingly, in- ited on side-valley alluvial fans and throughout the valley cision appears to have begun prior to the end of more typical network from approximately 2580+70 to 1980+60 years BP. moisture conditions during the Holocene (Tausch and others A high frequency of wildfires also may have accompanied 2004). Miller and others (2001, 2004) argue that the onset of the drought, as indicated by a large amount of charcoal in incision was related to depletion of fine-grained sediment on alluvial deposits that were created during the time period. hillslopes and reduced sediment loading to the axial valley, Presumably, destruction of vegetation by wildfires facili- an argument that is supported by a general increase in grain tated soil erosion and sediment accumulation in the valleys. size of the valley-fill deposits through time. The inability of The sediment that was generated during the post- the current hydrologic regime to move sediment from the Neoglacial drought buried the soils that had developed in hillslopes likely produced the current tendency for modern earlier deposits. Thus, a paleosol dated to approximately channels to incise in response to natural or anthropogenic 3500 years BP can be found at the base of most post- disturbances. Neoglacial deposits throughout the region and marks the The depositional history of the upland basins led to a beginning of widespread sedimentation. Stratigraphic data rather simple stratigraphic sequence
Recommended publications
  • Alluvial Fans in the Death Valley Region California and Nevada
    Alluvial Fans in the Death Valley Region California and Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 Alluvial Fans in the Death Valley Region California and Nevada By CHARLES S. DENNY GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 A survey and interpretation of some aspects of desert geomorphology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publications as follows: Denny, Charles Storrow, 1911- Alluvial fans in the Death Valley region, California and Nevada. Washington, U.S. Govt. Print. Off., 1964. iv, 61 p. illus., maps (5 fold. col. in pocket) diagrs., profiles, tables. 30 cm. (U.S. Geological Survey. Professional Paper 466) Bibliography: p. 59. 1. Physical geography California Death Valley region. 2. Physi­ cal geography Nevada Death Valley region. 3. Sedimentation and deposition. 4. Alluvium. I. Title. II. Title: Death Valley region. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Page Abstract.. _ ________________ 1 Shadow Mountain fan Continued Introduction. ______________ 2 Origin of the Shadow Mountain fan. 21 Method of study________ 2 Fan east of Alkali Flat- ___-__---.__-_- 25 Definitions and symbols. 6 Fans surrounding hills near Devils Hole_ 25 Geography _________________ 6 Bat Mountain fan___-____-___--___-__ 25 Shadow Mountain fan..______ 7 Fans east of Greenwater Range___ ______ 30 Geology.______________ 9 Fans in Greenwater Valley..-----_____. 32 Death Valley fans.__________--___-__- 32 Geomorpholo gy ______ 9 Characteristics of fans.._______-___-__- 38 Modern washes____.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • Landforms & Bodies of Water
    Name Date Landforms & Bodies of Water - Vocab Cards hill noun a raised area of land smaller than a mountain. We rode our bikes up and down the grassy hill. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: island noun a piece of land surrounded by water on all sides. Marissa's family took a vacation on an island in the middle of the Pacific Ocean. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: 1 lake noun a large body of fresh or salt water that has land all around it. The lake freezes in the wintertime and we go ice skating on it. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: landform noun any of the earth's physical features, such as a hill or valley, that have been formed by natural forces of movement or erosion. I love canyons and plains, but glaciers are my favorite landform. Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: 2 mountain noun a land mass with great height and steep sides. It is much higher than a hill. Someday I'm going to hike and climb that tall, steep mountain. Synonyms: peak Use this word in a sentence or give an example Draw this vocab word or an example of it: to show you understand its meaning: ocean noun a part of the large body of salt water that covers most of the earth's surface.
    [Show full text]
  • Fan-Deltas and Braid Deltas: Varieties of Coarse-Grained Deltas
    Fan-deltas and braid deltas: Varieties of coarse-grained deltas John g. Mcpherson \ ,,,.,„ , , GANAPATHY SHANMUGAM > Mob" Research and Development Corporation, Dallas Research Laboratory, P.O. Box 819047 RICHARD J. MOIOLA J Dallas, Texas 75381 ABSTRACT delta sediments; they lack a muddy matrix; ening of the definition of fan-delta to the point of they display size grading and bar migration; confusion over its meaning and sedimentologic Two types of coarse-grained deltas are they commonly have a sheet geometry with implications. The term "fan-delta" is widely recognized: fan-deltas and braid deltas. Fan- high lateral continuity (tens to hundreds of used to describe depositional settings embracing deltas are gravel-rich deltas formed where an square kilometres); and they exhibit moderate a range of coarse-grained delta types other than alluvial fan is deposited directly into a stand- to high porosity and permeability. Valuable that of the fan-delta originally described by ing body of water from an adjacent highland. paleogeographic and tectonic information Holmes (1965). Many descriptions in the litera- They occupy a space between the highland concerning the proximity of highlands and ture of ancient fan-delta sequences contain no (usually a fault-bounded margin) and the major fault zones may be misinterpreted or evidence of the required presence of an alluvial standing body of water. In contrast, braid lost if these two coarse-grained deltaic sys- fan; instead they consist of deltaic deposits com- deltas (here introduced) are gravel-rich deltas tems are not differentiated. prising multilateral channel conglomerates and that form where a braided fluvial system pro- sandstones deposited from braided fluvial dis- grades into a standing body of water.
    [Show full text]
  • The Destiny of Orogen-Parallel Streams in the Eastern Alps: the Salzach–Enns Drainage System
    Earth Surf. Dynam., 8, 69–85, 2020 https://doi.org/10.5194/esurf-8-69-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. The destiny of orogen-parallel streams in the Eastern Alps: the Salzach–Enns drainage system Georg Trost1, Jörg Robl2, Stefan Hergarten3, and Franz Neubauer2 1Department of Geoinformatics, Paris Lodron University of Salzburg, 5020 Salzburg, Austria 2Department of Geography and Geology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria 3Institute of Earth and Environmental Sciences, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany Correspondence: Georg Trost ([email protected]) Received: 1 August 2019 – Discussion started: 7 August 2019 Revised: 7 November 2019 – Accepted: 3 January 2020 – Published: 28 January 2020 Abstract. The evolution of the drainage system in the Eastern Alps is inherently linked to different tectonic stages of the alpine orogeny. Crustal-scale faults imposed eastward-directed orogen-parallel flow on major rivers, whereas late orogenic surface uplift increased topographic gradients between the foreland and range and hence the vulnerability of such rivers to be captured. This leads to a situation in which major orogen-parallel alpine rivers such as the Salzach River and the Enns River are characterized by elongated east–west-oriented catchments south of the proposed capture points, whereby almost the entire drainage area is located west of the capture point. To determine the current stability of drainage divides and to predict the potential direction of divide migration, we analysed their geometry at catchment, headwater and hillslope scale covering timescales from millions of years to the millennial scale.
    [Show full text]
  • Hydrogeomorphic Processes and Torrent Control Works on a Large Alluvial Fan in the Eastern Italian Alps
    Nat. Hazards Earth Syst. Sci., 10, 547–558, 2010 www.nat-hazards-earth-syst-sci.net/10/547/2010/ Natural Hazards © Author(s) 2010. This work is distributed under and Earth the Creative Commons Attribution 3.0 License. System Sciences Hydrogeomorphic processes and torrent control works on a large alluvial fan in the eastern Italian Alps L. Marchi1, M. Cavalli1, and V. D’Agostino2 1Consiglio Nazionale delle Ricerche – Istituto di Ricerca per la Protezione Idrogeologica (CNR IRPI), Padova, Italy 2Dipartimento Territorio e Sistemi Agroforestali, Universita` di Padova, Legnaro (Padova), Italy Received: 17 November 2009 – Revised: 26 February 2010 – Accepted: 8 March 2010 – Published: 23 March 2010 Abstract. Alluvial fans are often present at the outlet of 1 Introduction small drainage basins in alpine valleys; their formation is due to sediment transport associated with flash floods and Alluvial fans at the outlet of small, high-gradient drainage debris flows. Alluvial fans are preferred sites for human set- basins are a common feature of alpine valleys. Although de- tlements and are frequently crossed by transport routes. In bris flows commonly dominate the formation and develop- order to reduce the risk for economic activities located on or ment of these alluvial fans, also bedload and hyperconcen- near the fan and prevent loss of lives due to floods and de- trated flows contribute to the transfer of sediment from the bris flows, torrent control works have been extensively car- drainage basin to the alluvial fan and its distribution on the ried out on many alpine alluvial fans. Hazard management fan surface. These flow processes result in major risk when on alluvial fans in alpine regions is dependent upon reliable they encroach settlements and transport routes, which are of- procedures to evaluate variations in the frequency and sever- ten present on the alluvial fans of the European Alps.
    [Show full text]
  • Dayton Valley Development Guidelines Final Draft
    FINAL DRAFT Dayton Valley Development Guidelines Supplement to the Dayton Valley Area Drainage Master Plan prepared for August Lyon County | Storey County | 2019 Carson Water Subconservancy District i FINAL DRAFT Table of Contents 1 Introduction .......................................................................................................................................... 1 1.1 Background and Rationale ............................................................................................................ 3 1.1.1 More Frequent Flooding ....................................................................................................... 3 1.1.2 Larger Flood Peaks ................................................................................................................ 3 1.1.3 Scour and Erosion ................................................................................................................. 3 1.1.4 Flow Diversion ....................................................................................................................... 3 1.1.5 Flow Concentration ............................................................................................................... 3 1.1.6 Expanded Floodplains ........................................................................................................... 3 1.1.7 Reduced Surface Storage ...................................................................................................... 3 1.1.8 Decreased Ground Water Recharge ....................................................................................
    [Show full text]
  • Moving Water Shapes Land
    KEY CONCEPT Moving water shapes land. BEFORE, you learned NOW, you will learn •Erosion is the movement of • How moving water shapes rock and soil Earth’s surface • Gravity causes mass movements • How water moving under- of rock and soil ground forms caves and other features VOCABULARY EXPLORE Divides drainage basin p. 579 How do divides work? divide p. 579 floodplain p. 580 PROCEDURE MATERIALS alluvial fan p. 581 •sheet of paper 1 Fold the sheet of paper in thirds and tape delta p. 581 • tape it as shown to make a “ridge.” sinkhole p. 583 •paper clips 2 Drop the paper clips one at a time directly on top of the ridge from a height of about 30 cm. Observe what happens and record your observations. WHAT DO YOU THINK? How might the paper clips be similar to water falling on a ridge? Streams shape Earth’s surface. If you look at a river or stream, you may be able to notice something about the land around it. The land is higher than the river. If a river is running through a steep valley, you can easily see that the river is the low point. But even in very flat places, the land is sloping down to the river, which is itself running downhill in a low path through the land. NOTE-TAKING STRATEGY Running water is the major force shaping the landscape over most A main idea and detail of Earth. From the broad, flat land around the lower Mississippi River notes chart would be a good strategy to use for to the steep mountain valleys of the Himalayas, water running downhill taking notes about streams changes the land.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • IASC Workshop on the Dynamics and Mass Budget of Arctic Glaciers
    IASCIASC Workshop Workshop onon the the dynamics dynamics and and mass mass budgetbudget of of Arctic Arctic glaciers glaciers AbstractsAbstracts andand Programme Programme IASCIASC Workshop, Workshop, 26-28 26-28 February February 2013, 2013, ObergurglObergurgl (Austria) (Austria) IASC Network on Arctic Glaciology IASC Workshop on the dynamics and mass budget of Arctic glaciers Abstracts and program IASC Workshop & Network on Arctic Glaciology annual meeting, 26-28 February 2013, Obergurgl (Austria) Organised by C.H. Tijm-Reijmer Network on Arctic Glaciology ISBN: 978-90-393-6003-3 Contents Preface ............................................. 5 Program ............................................ 6 Posters ............................................. 10 Participants ......................................... 11 Minutes of the Open Forum Meeting ........................ 13 Report of the Open Session on Tidewater Glaciers ............. 17 Abstracts ........................................... 20 Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments . 20 A.P. Ahlstrøm, S.B. Andersen, M.L. Andersen, H. Machguth, F.M. Nick, I. Joughin, C.H. Reijmer, R.S.W. van de Wal, J.P. Merryman Boncori, J.E. Box, M. Citterio, D. van As, R.S. Fausto and A. Hubbard Homogenization of a long term mass balance record . 20 L.M. Andreassen Projections of 21st century contribution of Alaska glaciers to rising sea level 21 A.C. Beedlow V. Radic,´ A.K. Bliss, R. Hock, A.A Arendt, J.L. Rich, D.F. Hill, D.F., S.E Calos, and J.G. Cogley Five consecutive years of mass balance observations to understand glacier reaction to present climate change (Austre Lovénbreen, Spitsbergen, 79◦N) 22 E. Bernard, F. Tolle, J.M. Friedt, Ch. Marlin and M.
    [Show full text]
  • Deciphering the Origin of Cyclical Gravel Front and Shoreline Progradation and Retrogradation in the Stratigraphic Record
    Deciphering the origin of cyclical gravel front and shoreline progradation and retrogradation in the stratigraphic record John J. Armitage1, Peter A. Burgess2, Gary J. Hampson3, and Philip A. Allen3 1Department of Earth Science, Royal Holloway, University of London, Egham, UK; Now at Institut de Physique du Globe de Paris, 1 rue Jussieu, Paris, 75005, France; e-mail: [email protected] 2Department of Earth Science, Royal Holloway, University of London, Egham, UK 3Department of Earth Science and Engineering, Imperial College London, London, UK May 4, 2016 1 1 Abstract 2 Nearly all successions of near-shore strata exhibit cyclical movements of the shoreline, which 3 have commonly been attributed to cyclical oscillations in relative sea level (combining eustasy 4 and subsidence) or, more rarely, to cyclical variations in sediment supply. It has become accepted 5 that cyclical change in sediment delivery from source catchments may lead to cyclical movement 6 of boundaries such as the gravel front, particularly in the proximal segments of sediment routing 7 systems. In order to quantitatively assess how variations in sediment transport as a consequence 8 of change in relative sea-level and surface run-off control stratigraphic architecture, we develop a 9 simple numerical model of sediment transport and explore the sensitivity of moving boundaries 10 within the sediment routing system to change in upstream (sediment flux, precipitation rate) and 11 downstream (sea level) controls. We find that downstream controls impact the shoreline and sand 12 front, while the upstream controls can impact the whole system depending on the amplitude of 13 change in sediment flux and precipitation rate.
    [Show full text]