Hormonal Activation of Genes Through Nongenomic

Total Page:16

File Type:pdf, Size:1020Kb

Hormonal Activation of Genes Through Nongenomic HORMONAL ACTIVATION OF GENES THROUGH NONGENOMIC PATHWAYS BY ESTROGEN AND STRUCTURALLY DIVERSE ESTROGENIC COMPOUNDS A Dissertation by XIANGRONG LI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2005 Major Subject: Toxicology HORMONAL ACTIVATION OF GENES THROUGH NONGENOMIC PATHWAYS BY ESTROGEN AND STRUCTURALLY DIVERSE ESTROGENIC COMPOUNDS A Dissertation by XIANGRONG LI Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: _______________________________ _______________________________ Stephen H. Safe Weston W. Porter (Chair of Committee) (Member) _______________________________ _______________________________ Robert C. Burghardt Timothy D.Phillips (Member) (Chair of Toxicology Faculty) _______________________________ _______________________________ Kirby C. Donnelly Glen A. Laine (Member) (Head of Department) May 2005 Major Subject: Toxicology iii ABSTRACT Hormonal Activation of Genes through Nongenomic Pathways by Estrogen and Structurally Diverse Estrogenic Compounds. (May 2005) Xiangrong Li, B.S., Wuhan University Chair of Advisory Committee: Dr. Stephen H. Safe Lactate dehydrogenase A (LDHA) is hormonally regulated in rodents, and increased expression of LDHA is observed during mammary gland tumorigenesis. The mechanisms of hormonal regulation of LDHA were investigated in breast cancer cells using a series of deletion and mutant reporter constructs derived from the rat LDHA gene promoter. Results of transient transfection studies showed that the -92 to -37 region of the LDHA promoter was important for basal and estrogen-induced transactivation, and mutation of the consensus CRE motif (-48/-41) within this region resulted in significant loss of basal activity and hormone-responsiveness. Gel mobility shift assays using nuclear extracts from MCF-7 cells indicated that CREB family proteins interacted with the CRE. Studies with kinase inhibitors showed that estrogen- induced activation of this CRE was dependent on protein kinase C, and these data show that LDHA is induced through a nongenomic (extranuclear) pathway of estrogen action. Estrogen activates several nongenomic pathways in MCF-7 cells, and this study investigated the effects of structurally diverse estrogenic compounds on activation of mitogen activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC), protein kinase A (PKA), and calcium/calmodulin-dependent protein kinase IV (CaMKIV). Activation of kinases was determined by specific substrate phosphorylation and transactivation assays that were diagnostic for individual kinases. The compounds investigated in this study include E2, diethylstilbestrol (DES), the phytoestrogen resveratrol, and the following synthetic xenoestrogens: bisphenol-A (BPA), nonylphenol, octylphenol, endosulfan, kepone, 2,2-bis(p-hydroxyphenyl)-1,1,1- trichloroethane (HPTE), and 2',3',4',5'-tetrachloro-4-biphenylol (HO-PCB-Cl4). With the iv exception of resveratrol, all the compounds activated PI3K and MAPK whereas activation of PKC by the xenoestrogens was structure-dependent and resveratrol, kepone and HO-PCB-Cl4 were inactive. Only minimal estrogen/xenoestrogen- dependent activation of PKA was observed. CaMKIV was activated only by E2 and DES, and HO-PCB-Cl4 was a potent inhibitor of CaMKIV-dependent activity. These results demonstrate that activation of nongenomic pathways by estrogenic compounds in MCF-7 cells is structure-dependent. v DEDICATION To my parents, Mingzhi Li and Jiayao Yu and my sister Ruohong Li vi ACKNOWLEDGMENTS First of all, I would like to thank my mentor, Dr. Stephen Safe, for his patience and guidance throughout my graduate career. I also wish to thank the other members of my committee: Dr. Robert Burghardt, Dr. Timothy Phillips, Dr. Kirby Donnelly, Dr. Weston Porter and Dr. Kenneth Ramos for their advice and support. I am grateful to my colleagues for their frendship and collaboration: Dr. Mark Wormke, Dr. Chunhua Qin, Dr. Renqin Duan, Dr. Matthew Stoner, Dr. Brad Saville, Dr. Thu Nguyen, and Dr. Fan Wang. I also like to thank Lorna Safe, Kim Daniel, and Kathy Mooney for their administrative help. vii TABLE OF CONTENTS Page ABSTRACT ................................................................................................................ iii DEDICATION ............................................................................................................. v ACKNOWLEDGMENTS ............................................................................................. vi TABLE OF CONTENTS ............................................................................................. vii LIST OF FIGURES ..................................................................................................... x LIST OF TABLES ....................................................................................................... xiii CHAPTER I INTRODUCTION ................................................................................. 1 1.1 Breast cancer................................................................................ 1 1.1.1 Incidence and mortality of breast cancer........................ 1 1.1.2 Classification of breast cancer ....................................... 2 1.1.2.1 Structure of the mammary gland ..................... 2 1.1.2.2 Clinical classification of breast cancer............. 3 1.1.2.3 TNM staging .................................................... 4 1.1.2.4 ER-positive and ER-negative cells .................. 5 1.1.3 Carcinogenesis............................................................... 6 1.1.4 Breast cancer risk factors............................................... 11 1.1.4.1 Age .................................................................. 11 1.1.4.2 Life time estrogen exposure ............................ 11 1.1.4.2.1 Estrogen promotes proliferation and suppresses apoptosis ....................... 12 1.1.4.2.2 Estrogen induces mutagenesis......... 15 1.1.4.2.3 Estrogen facilitates tumor invasion ... 15 1.1.4.2.4 Estrogen induces proliferation through paracrine pathways.............. 16 1.1.4.3 Lifestyle and environmental factors................. 16 1.1.4.4 Xenoestrogen hypothesis................................ 18 1.1.4.5 Genetic factors ................................................ 22 1.1.4.5.1 BRCA1.............................................. 22 1.1.4.5.2 BRCA2.............................................. 24 1.1.4.5.3 p53.................................................... 25 1.1.4.5.4 ATM .................................................. 27 1.1.4.5.5 PTEN ................................................ 28 1.1.4.5.6 STK11............................................... 28 1.1.5 Breast cancer treatment................................................. 29 1.1.5.1 Surgery and radiation ...................................... 30 1.1.5.2 Chemotherapy................................................. 31 viii CHAPTER Page 1.1.5.3 Endocrine therapy ........................................... 31 1.1.5.3.1 SERMs and antiestrogens ................ 31 1.1.5.3.2 Ovarian ablation and aromatase inhibitors............................................ 36 1.1.5.3.3 Progesterone .................................... 39 1.1.5.3.4 Estrogen therapy .............................. 39 1.1.5.3.5 Trastuzumab..................................... 40 1.2 Estrogen receptor ......................................................................... 40 1.2.1 The structure of estrogen receptor ................................ 40 1.2.2 The physiological functions of estrogen ......................... 43 1.2.2.1 Reproductive system and estrogen................. 43 1.2.2.2 Cardiovascular system and estrogen .............. 44 1.2.2.3 Bone and estrogen .......................................... 45 1.2.2.4 Nervous system and estrogen......................... 45 1.2.3 The genomic actions of estrogen receptor..................... 46 1.2.3.1 General transcription ....................................... 46 1.2.3.2 ER-mediated transcription............................... 49 1.2.3.3 Phosphorylation of estrogen receptor.............. 53 1.2.4 The nongenomic actions of estrogen receptor............... 54 1.2.4.1 Mitogen activated protein kinase (MAPK) ....... 54 1.2.4.2 Phosphatidylinositol 3- kinase (PI3K) .............. 58 1.2.4.3 Protein kinase A (PKA).................................... 63 1.2.4.4 Protein kinase C (PKC) ................................... 65 1.2.4.5 Calcium/calmodulin-dependent protein ........... kinase IV (CaMKIV) ......................................... 68 1.2.4.6 The nature of membrane associated estrogen-binding factor.................................... 72 1.3 Lactate dehydrogenase A (LDHA) ................................................ 74 1.4 Objectives ..................................................................................... 76 1.4.1 Identifying the E2-responsvie region of LDHA promoter .............................................................. 76 1.4.2 Identifying the mechanism of activation of CREB by estrogen ......................................................................... 77 1.4.3 Investigating the roles of ERα domains in kinase activation............................................................. 78 1.4.4 Investigating the roles of xenoestrogens in kinase activation............................................................
Recommended publications
  • 8329TFM-A Thermally Conductive Epoxy Adhesive
    8329TFM-A Thermally Conductive Epoxy Adhesive MG Chemicals UK Limited Version No: A-1.01 Issue Date:23/07/2018 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Revision Date: 17/03/2020 L.REACH.GBR.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING 1.1. Product Identifier Product name 8329TFM-A Synonyms SDS Code: 8329TFM-Part A; 8329TFM-25ML, 8329TFM-50ML Other means of identification Thermally Conductive Epoxy Adhesive 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Thermally conductive adhesive for bonding and thermal management Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Not Available Emergency telephone numbers +(44) 20 35147487 Not Available Other emergency telephone +(0) 800 680 0425 Not Available numbers SECTION 2 HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification according to H315 - Skin Corrosion/Irritation Category 2, H319 - Eye Irritation Category 2, H317 - Skin Sensitizer Category 1, H410 - Chronic Aquatic Hazard regulation (EC) No 1272/2008 Category 1 [CLP] [1] Legend: 1. Classified by Chemwatch; 2.
    [Show full text]
  • Eg Phd, Mphil, Dclinpsychol
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Equine laminitis pain and modulatory mechanisms at a potential analgesic target, the TRPM8 ion channel Ignacio Viñuela-Fernández Thesis presented for the degree of Doctor of Philosophy The College of Medicine and Veterinary Medicine The University of Edinburgh 2011 DECLARATION I hereby declare that the composition of this thesis and the work presented are my own, with the exception of the ATF-3 and NPY immunohistochemistry which was carried out by Emma Jones. The contribution of others is also appropriately credited. Some of the data included in this thesis have been published and are included in the Appendix. Ignacio Viñuela-Fernández i ACKNOWLEDGEMENTS This work was supported by a Scholarship from the Royal (Dick) Veterinary School at Edinburgh University. I would like to thank Professor Sue Fleetwood- Walker and Dr Rory Mitchell for their supervision, support and guidance throughout my PhD.
    [Show full text]
  • A Small Molecular Activator of Cardiac Hypertrophy Uncovered in a Chemical Screen for Modifiers of the Calcineurin Signaling Pathway
    A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway Erik Bush*†, Jens Fielitz‡, Lawrence Melvin*, Michael Martinez-Arnold‡, Timothy A. McKinsey*, Ryan Plichta*, and Eric N. Olson†‡ *Myogen, Incorporated, Westminster, CO 80021; and ‡Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148 Contributed by Eric N. Olson, January 5, 2004 The calcium, calmodulin-dependent phosphatase calcineurin, regu- ative roles for these proteins in the control of calcineurin activity. lates growth and gene expression of striated muscles. The activity of Overexpression of MCIP1 (also called Down syndrome critical calcineurin is modulated by a family of cofactors, referred to as region 1), for example, suppresses calcineurin signaling (12). In modulatory calcineurin-interacting proteins (MCIPs). In the heart, the contrast, MCIP1 also seems to potentiate calcineurin signaling, MCIP1 gene is activated by calcineurin and has been proposed to as demonstrated by the diminution of calcineurin activity in the fulfill a negative feedback loop that restrains potentially pathological hearts of MCIP1 knockout mice (13). Intriguingly, the MCIP1 calcineurin signaling, which would otherwise lead to abnormal car- gene is a target of NFAT and is up-regulated in response to diac growth. In a high-throughput screen for small molecules capable calcineurin signaling (15), which has been proposed to create a of regulating MCIP1 expression in muscle cells, we identified a unique negative feedback loop that dampens calcineurin activity, which 4-aminopyridine derivative exhibiting an embedded partial structural would otherwise lead to abnormal cardiac growth. motif of serotonin (5-hydroxytryptamine, 5-HT).
    [Show full text]
  • Pretty Scary 2 Unmasking Toxic Chemicals in Kids’ Makeup
    Prevention October 2016 Starts Here Campaign for Safe Cosmetics Pretty Scary 2 Unmasking toxic chemicals in kids’ makeup breastcancerfund.org 1 Acknowledgements Developed and published by the Breast Cancer Fund and spearheaded by their Campaign for Safe Cosmetics, this report was written by Connie Engel, Ph.D.; Janet Nudelman, MA; Sharima Rasanayagam, Ph.D.; Maija Witte, MPH; and Katie Palmer. Editing, messaging and vision were contributed by Denise Halloran and Erika Wilhelm. Sara Schmidt, MPH, MSW, coordinated the purchasing of products reviewed in this report and worked closely with partners to share the message. Thank you to James Consolantis, our contributing content specialist and Rindal&Co for design direction. WE ARE GRATEFUL FOR THE GENEROUS CONTRIBUTIONS FROM OUR FUNDERS: As You Sow Foundation, Jacob and Hilda Blaustein Foundation, Lisa and Douglas Goldman Foundation, Park Foundation, Passport Foundation, and the Serena Foundation. breastcancerfund.org 2 Our partners in purchasing products Pam Miller, Alaska Community Action on Toxics, Alaska Brooke Sarmiento, BEE-OCH Organics, Colorado Sara Schmidt, Breast Cancer Fund, California Susan Eastwood, Clean Water Action, Connecticut Anne Hulick, Clean Water Action, Connecticut Johnathan Berard, Clean Water Action, Rhode Island Lauren Carson, Clean Water Action, Rhode Island Cindy Luppi, Clean Water Action, Massachusetts Kadineyse Ramize Peña, Clean Water Action, Massachusetts Elizabeth Saunders, Clean Water Action, Massachusetts Sara Lamond, Fig & Flower, Georgia Beverly Johnson,
    [Show full text]
  • Thesis for Word XP
    From THE INSTITUTE OF ENVIRONMENTAL MEDICINE Karolinska Institutet, Stockholm, Sweden DIETARY CADMIUM EXPOSURE AND THE RISK OF HORMONE-RELATED CANCERS Bettina Julin Stockholm 2012 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Larserics Digital Print AB, 2012 © Bettina Julin, 2012 ISBN 978-91-7457-710-5 ABSTRACT The toxic metal cadmium has been widely dispersed into the environment mainly through anthropogenic activities. Even in industrially non-polluted areas, farmland and consequently foods are, to a varying degree, contaminated. Food is the main source of exposure besides tobacco smoking. Cadmium accumulates in the body, particularly in the kidney where it may cause renal tubular damage. Recently, cadmium was discovered to possess endocrine disrupting properties, mainly mimicking the in vivo- effects of estrogen. The metal is classified as a human carcinogen by the International Agency for Research on Cancer based on lung cancer studies of occupational inhalation. It is, however, not clear whether cadmium exposure via the diet may cause cancer. Possible health consequences related to estrogenic effects such as increased risk of hormone-related cancers are virtually unexplored. The aims of this thesis were to: 1) estimate the dietary exposure to cadmium, 2) estimate cadmium’s toxicokinetic variability using a population model and to establish the link between urinary cadmium concentrations (a biomarker of accumulated kidney cadmium) and the corresponding long-term dietary exposure to cadmium in the population, 3) evaluate the comparability between food frequency questionnaire (FFQ)-based estimates of dietary cadmium exposure and urinary cadmium concentrations and 4) prospectively assess the association between dietary cadmium exposure and incidence of hormone-related cancers (endometrial, breast, ovarian and prostate cancers) in two population-based cohorts consisting of around 60 000 Swedish women and 40 000 men.
    [Show full text]
  • Metalloestrogens: an Emerging Class of Inorganic Xenoestrogens with Potential to Add to the Oestrogenic Burden of the Human Breast
    JOURNAL OF APPLIED TOXICOLOGY METALLOESTROGENS J. Appl. Toxicol. (In press) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/jat.1135 Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast P. D. Darbre* School of Biological Sciences, The University of Reading, Reading RG6 6AJ, UK Received 28 October 2005; Revised 6 December 2005; Accepted 6 December 2005 ABSTRACT: Many compounds in the environment have been shown capable of binding to cellular oestrogen receptors and then mimicking the actions of physiological oestrogens. The widespread origin and diversity in chemical structure of these environmental oestrogens is extensive but to date such compounds have been organic and in particular phenolic or carbon ring structures of varying structural complexity. Recent reports of the ability of certain metal ions to also bind to oestrogen receptors and to give rise to oestrogen agonist responses in vitro and in vivo has resulted in the realisation that environmental oestrogens can also be inorganic and such xenoestrogens have been termed metalloestrogens. This report highlights studies which show metalloestrogens to include aluminium, antimony, arsenite, barium, cadmium, chro- mium (Cr(II)), cobalt, copper, lead, mercury, nickel, selenite, tin and vanadate. The potential for these metal ions to add to the burden of aberrant oestrogen signalling within the human breast is discussed. Copyright © 2006 John Wiley & Sons, Ltd. KEY WORDS: oestrogen; metalloestrogen; environmental oestrogen; xenoestrogen; cadmium; aluminium; smoking; antiperspi- rant; breast cancer Introduction endocrine disruption in wildlife are being measured (Matthiessen, 2003) but the impact on human health re- Over recent years, many compounds in the environment mains a subject for research (Darbre, 2006a).
    [Show full text]
  • Possible Involvement in Breast Cancer
    Toxics 2015, 3, 390-413; doi:10.3390/toxics3040390 OPEN ACCESS toxics ISSN 2305-6304 www.mdpi.com/journal/toxics Review Nanotoxicology and Metalloestrogens: Possible Involvement in Breast Cancer David R. Wallace Oklahoma State University Center for Health Sciences, Department of Pharmacology & Physiology, Tulsa, OK 74107-1898, USA; E-Mail: [email protected]; Tel.: +1-918-561-1407; Fax: +1-918-561-5729 Academic Editors: Laura Braydich-Stolle and Saber M. Hussain Received: 14 July 2015 / Accepted: 23 October 2015 / Published: 28 October 2015 Abstract: As the use of nanotechnology has expanded, an increased number of metallic oxides have been manufactured, yet toxicology testing has lagged significantly. Metals used in nano-products include titanium, silicon, aluminum, silver, zinc, cadmium, cobalt, antimony, gold, etc. Even the noble metals, platinum and cerium, have been used as a treatment for cancer, but the toxicity of these metals is still unknown. Significant advances have been made in our understanding and treatment of breast cancer, yet millions of women will experience invasive breast cancer in their lifetime. The pathogenesis of breast cancer can involve multiple factors; (1) genetic; (2) environmental; and (3) lifestyle-related factors. This review focuses on exposure to highly toxic metals, (“metalloestrogens” or “endocrine disruptors”) that are used as the metallic foundation for nanoparticle production and are found in a variety of consumer products such as cosmetics, household items, and processed foods, etc. The linkage between well-understood metalloestrogens such as cadmium, the use of these metals in the production of nanoparticles, and the relationship between their potential estrogenic effects and the development of breast cancer will be explored.
    [Show full text]
  • NIH Public Access Author Manuscript Neuropharmacology
    NIH Public Access Author Manuscript Neuropharmacology. Author manuscript; available in PMC 2014 April 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Neuropharmacology. 2013 April ; 67C: 223–232. doi:10.1016/j.neuropharm.2012.09.022. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction Changhai Cui1,*, Antonio Noronha1, Hitoshi Morikawa2, Veronica A. Alvarez3, Garret D. Stuber4, Karen K. Szumlinski5, Thomas L. Kash6, Marisa Roberto7, and Mark V. Wilcox3 1Division of Neuroscience and Behavior, NIAAA/NIH, Bethesda, MD 20892 2Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX 78712 3Laboratory for Integrative Neuroscience, NIAAA/NIH, Bethesda, MD 20892 4Departments of Psychiatry & Cell biology and Physiology, UNC School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599 5Department of Psychology and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA 93106-9660 6Department of Pharmacology, UNC School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599 7Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037 Abstract Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross- talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence.
    [Show full text]
  • Cross-Talk Between Insulin and Serotonin
    Cross-talk between insulin and serotonin signaling in the brain : Involvement of the PI3K/Akt pathway and behavioral consequences in models of insulin resistance Ioannis Papazoglou To cite this version: Ioannis Papazoglou. Cross-talk between insulin and serotonin signaling in the brain : Involvement of the PI3K/Akt pathway and behavioral consequences in models of insulin resistance. Agricultural sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA11T039. tel-01171549 HAL Id: tel-01171549 https://tel.archives-ouvertes.fr/tel-01171549 Submitted on 5 Jul 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS-SUD ÉCOLE DOCTORALE : "Signalisations et Réseaux intégratifs en Biologie" Laboratoire de Neuroendocrinologie Moléculaire de la Prise Alimentaire DISCIPLINE : Neuroendocrinologie THÈSE DE DOCTORAT Soutenue le 4 juillet 2013 par Ioannis Papazoglou “Cross-talk between insulin and serotonin signaling in the brain: Involvement of the PI3K/Akt pathway and behavioral consequences in models of insulin resistance” “Dialogue entre les voies de signalisation de l’insuline et de la sérotonine dans le cerveau: Implication de la voie PI3K/Akt et conséquences comportementales dans des modèles d’insulino-résistance” Directeur de Thèse Prof. Mohammed Taouis Université Paris-Sud Composition du jury: Présidente Prof.
    [Show full text]
  • How Metals in the Environment Could Be Increasing the Risk of Breast Cancer
    How Metals in the Environment Could Be Increasing the Risk of Breast Cancer Summer Research Project by Kate Bohigian Breast Tumor Outline of Presentation 1. Overview 2. Breast Cancer: Non-Invasive vs Invasive 3. Risk Factors of Breast Cancer 4. Estrogen Receptor Positive Breast Cancer 5. Environmental Estrogens 6. Metalloestrogens 7. Metalloestrogens Bind to Estrogen Receptors 8. Cadmium (Example of a Metalloestrogen) 9. Conclusion Breast Cancer: Non-Invasive vs Invasive Non-Invasive Invasive Cancer cells are localized in Cancer cells have left original site lobule or milk duct Risk Factor of Breast Cancer Mammograms showing different densities of cells in the breast High Risk Estrogen Receptor Positive Breast Cancer Environmental Estrogens Phytoestrogens: come Xenoestrogens: come Metalloestrogens: from food from chemicals come from metals Metalloestrogens Sources of Metalloestrogens: Metalloestrogens can trigger cells to become cancerous and decrease their response to medication Metalloestrogens Bind to Estrogen Receptors Cd2+, Cu2+, Se2-, Zn2+, 2+ 2+ 2+ 2+ Co , Cr , Pb , Hg or Ni2+ Cellular Division Cadmium → Estrogen → Increased Risk of Cancer Breast Tumor Conclusion Risk Factor Example of Estrogen Molecule Works Cited Akram, Muhammad et al. "Awareness and current knowledge of breast cancer." Biological research vol. 50,1 33. 2 Oct. 2017, doi:10.1186/s40659-017-0140-9 Byrne, Celia et al. "Metals and breast cancer." Journal of mammary gland biology and neoplasia vol. 18,1 (2013): 63-73. doi:10.1007/s10911-013-9273-9 "Cadmium and Other Metals." Breast Cancer Prevention Partners, 2019, www.bcpp.org/resource/cadmium-and-other-metals/. Accessed 1 Sept. 2020. Florea, Ana-Maria, and Dietrich Büsselberg.
    [Show full text]
  • European Society for Paediatric Research Annual Meeting Abstracts Bilbao, Spain September 27–30, 2003
    0031-3998/03/5404-0557 PEDIATRIC RESEARCH Vol. 54, No. 4, 2003 Copyright © 2003 International Pediatric Research Foundation, Inc. Printed in U.S.A. EUROPEAN SOCIETY FOR PAEDIATRIC RESEARCH ANNUAL MEETING ABSTRACTS BILBAO, SPAIN SEPTEMBER 27–30, 2003 0008NEO 0011NEO PRESCHOOL OUTCOME IN CHILDREN BORN VERY PREMATURELY EFFICACY OF ERYTHROPOITIN IN PREMATURE INFANTS AND CARED FOR ACCORDING TO NIDCAP Adnan Amin, Daifulah Alzahrani Bjo¨rn Westrup1, Birgitta Bo¨hm1, Hugo Lagercrantz1, Karin Stjernqvist2 Alhada Military Hospital City:Taif, Saudi Arabia 1Neonatal Programme, Dept. of Woman and Child Health, Astrid Lindgren Children’s Hospital, Objective: To identify the effect of early of parentral recombinant human erythropoitin (r-HuEPO) Karolinska Institute, Stockholm, Sweden;2Depts. of Psychology and of Paediatrics, University of and iron administration on blood transfusion requirement of premature infants. Methods: In a Lund, Sweden City: Stockholm and Lund, Sweden controlled clinical trial conducted at the Neonatal Intensive Care Unit, Al-Hada Military Hospital, Background/aim: Care based on the Newborn Individualized Developmental Care and Assess- Taif, Kingdom of Saudi Arabia over a 16 month period. We assigned 20 very low birth weight infants ment Program (NIDCAP) has been reported to exert a positive impact on the development of (VLBW) with gestational age of (mean Ϯ SEM 28.4 Ϯ 0.5 weeks and birth weight of (mean Ϯ SEM prematurely born infants. The aim of the present investigation was to determine the effect of such care 1031 Ϯ 42 gm), to receive either intravenous (r-HuEPO 200 U/kg/day) and iron 1mg/kg/day or on the development at preschool age of children born with a gestational age of less than 32 weeks.
    [Show full text]
  • 8329TCM-A Thermally Conductive Epoxy Adhesive (Part A)
    8329TCM-A Thermally Conductive Epoxy Adhesive (Part A) MG Chemicals UK Limited Version No: A-2.00 Issue Date: 13/05/2021 Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758 Revision Date: 13/05/2021 L.REACH.GB.EN SECTION 1 Identification of the substance / mixture and of the company / undertaking 1.1. Product Identifier Product name 8329TCM-A Synonyms SDS Code: 8329TCM-A; 8329TCM-6ML, 8329TCM-50ML, 8329TCM-200ML | UFI:ATE0-C0S2-J00S-W38T Other means of identification Thermally Conductive Epoxy Adhesive (Part A) 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Thermally conductive adhesive for bonding and thermal management Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Emergency telephone +(44) 20 35147487 numbers Other emergency telephone +(0) 800 680 0425 numbers SECTION 2 Hazards identification 2.1. Classification of the substance or mixture Classification according to H315 - Skin Corrosion/Irritation Category 2, H319 - Eye Irritation Category 2, H317 - Skin Sensitizer Category 1, H410 - Chronic Aquatic Hazard regulation (EC) No 1272/2008 Category 1 [CLP] and amendments [1] Legend: 1.
    [Show full text]