Application of randomized sampling schemes to curvelet-based sparsity-promoting seismic data recovery Reza Shahidi1 (
[email protected]), Gang Tang12 (
[email protected]), Jianwei Ma3 (
[email protected]) and Felix J. Herrmann1 (
[email protected]) 1Seismic Laboratory for Imaging and Modeling, Department of Earth and Ocean Sciences, The University of British Columbia, 6339 Stores Road, Vancouver, BC, Canada, V6T 1Z4 2Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, China 3Institute of Applied Mathematics, Harbin Institute of Technology, Harbin, China 1 ABSTRACT Reconstruction of seismic data is routinely used to improve the quality and resolu- tion of seismic data from incomplete acquired seismic recordings. Curvelet-based Recovery by Sparsity-promoting Inversion, adapted from the recently-developed theory of compressive sensing, is one such kind of reconstruction, especially good for recovery of undersampled seismic data. Like traditional Fourier-based methods, it performs best when used in conjunction with randomized subsampling, which converts aliases from the usual regular periodic subsampling into easy-to-eliminate noise. By virtue of its ability to control gap size, along with the random and irregular nature of its sampling pattern, jittered (sub)sampling is one proven method that has been used successfully for the determination of geophone positions along a seismic line. In this paper, we extend jittered sampling to two-dimensional acquisition design, a more difficult problem, with both underlying Cartesian, and hexagonal grids. We also study what we term separable and non-separable two-dimensional jittered samplings. We find hexagonal jittered sam- pling performs better than Cartesian jittered sampling, while fully non-separable jittered sampling performs better than separable jittered sampling.