ARRAY SET ADDRESSING: ENABLING EFFICIENT HEXAGONALLY SAMPLED IMAGE PROCESSING by NICHOLAS I. RUMMELT a DISSERTATION PRESENTED TO

Total Page:16

File Type:pdf, Size:1020Kb

ARRAY SET ADDRESSING: ENABLING EFFICIENT HEXAGONALLY SAMPLED IMAGE PROCESSING by NICHOLAS I. RUMMELT a DISSERTATION PRESENTED TO ARRAY SET ADDRESSING: ENABLING EFFICIENT HEXAGONALLY SAMPLED IMAGE PROCESSING By NICHOLAS I. RUMMELT A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 1 °c 2010 Nicholas I. Rummelt 2 To my beautiful wife and our three wonderful children 3 ACKNOWLEDGMENTS Thanks go out to my family for their support, understanding, and encouragement. I especially want to thank my advisor and committee chair, Joseph N. Wilson, for his keen insight, encouragement, and excellent guidance. I would also like to thank the other members of my committee: Paul Gader, Arunava Banerjee, Jeffery Ho, and Warren Dixon. I would like to thank the Air Force Research Laboratory (AFRL) for generously providing the opportunity, time, and funding. There are many people at AFRL that played some role in my success in this endeavor to whom I owe a debt of gratitude. I would like to specifically thank T.J. Klausutis, Ric Wehling, James Moore, Buddy Goldsmith, Clark Furlong, David Gray, Paul McCarley, Jimmy Touma, Tony Thompson, Marta Fackler, Mike Miller, Rob Murphy, John Pletcher, and Bob Sierakowski. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................. 4 LIST OF TABLES ...................................... 7 LIST OF FIGURES ..................................... 8 ABSTRACT ......................................... 10 CHAPTER 1 INTRODUCTION AND BACKGROUND ...................... 11 1.1 Introduction ................................... 11 1.2 Background ................................... 11 1.3 Recent Related Research ........................... 15 1.4 Recent Related Academic Research ..................... 16 1.5 Hexagonal Image Formation and Display Considerations ......... 17 1.5.1 Converting from Rectangularly Sampled Images .......... 17 1.5.2 Hexagonal Imagers ........................... 19 1.5.3 Displaying Hexagonal Images ..................... 21 2 ARRAY SET ADDRESSING (ASA) ......................... 24 2.1 Forming an Array Set from a Hexagonal Grid ................ 24 2.2 Neighborhoods ................................. 26 2.3 Forms of Array Sets .............................. 26 2.4 Efficient and Compact Storage in Digital Memory .............. 27 2.5 Converting Between Cartesian Coordinates and ASA ........... 28 2.6 Distance Measures Using ASA ........................ 34 2.6.1 Euclidean Distance ........................... 34 2.6.2 City-Block Distance ........................... 34 2.7 Vector Arithmetic ................................ 36 2.7.1 Proof of the Associativity of Addition ................. 37 2.7.2 Proof of Distributivity of Scalar Multiplication (w.r.t. Scalar Addition) 39 2.7.3 Proof of Compatibility of Scalar Multiplication (with Multiplication of Scalars) ................................ 41 2.8 Comparison of ASA to Spiral Addressing .................. 42 3 BASIC IMAGE PROCESSING OPERATIONS ................... 44 3.1 Convolution ................................... 44 3.2 Gradient Estimation .............................. 46 3.3 Edge Detection ................................. 51 3.3.1 Gradient-Based Edge Detector .................... 51 3.3.2 Laplacian of Gaussian (LoG) Edge Detector ............. 52 5 3.3.3 Canny Edge Detector ......................... 57 3.4 Downsampling ................................. 66 4 TRANSFORMS .................................... 68 4.1 Fourier Transforms ............................... 68 4.1.1 The Hexagonal Discrete Fourier Transform (HDFT) ......... 68 4.1.2 The Hexagonal Fast Fourier Transform (HFFT) ........... 69 4.1.3 The Hexagonal Discrete-Space Fourier Transform (HDSFT) .... 79 4.2 The Z Transform ................................ 80 4.3 Wavelet Transforms .............................. 81 5 QUANTITATIVE COMPARISON USING REAL IMAGES ............. 89 6 CONCLUSION .................................... 92 6.1 Summary of Accomplishments ........................ 92 6.2 Significance of Accomplishments ....................... 94 6.3 Final Thought - Rectangular Component Conjecture ............ 94 APPENDIX A PROOFS OF ASA Z-MODULE PROPERTIES .................. 96 A.1 Preliminaries .................................. 96 A.1.1 Domains ................................. 96 A.1.2 Identities ................................. 96 A.2 Commutativity of Addition ........................... 96 A.3 Identity Element of Addition .......................... 97 A.4 Inverse Elements of Addition ......................... 97 A.5 Distributivity of Scalar Multiplication (w.r.t. Vector Addition) ......... 97 A.6 Identity Element of Scalar Multiplication ................... 99 B PYTHON SOURCE CODE FOR ASA TO HIP RUNTIME COMPARISON .... 100 REFERENCES ....................................... 108 BIOGRAPHICAL SKETCH ................................ 113 6 LIST OF TABLES Table page 2-1 Forms of Array Sets ................................. 27 2-2 Average Number of Operations Executed (Yang vs. Hybrid) ........... 29 2-3 Properties of Array Set Addressing (ASA) Vectors ................ 37 2-4 Run Time Comparison Between ASA and HIP (¹s, mean (std)) ......... 43 2-5 Complexity Comparison Between ASA and HIP .................. 43 4-1 Computations Required for Hexagonal Fast Fourier Transform Arrays ..... 74 7 LIST OF FIGURES Figure page 1-1 Retesselating a Source Image ........................... 18 1-2 Example of Converting a Source Image ...................... 19 1-3 Trapezoidal Image Sensor Design ......................... 20 1-4 Depiction of “Brick Wall” Display Technique .................... 21 1-5 Four Common Displays and Two Potential Hexagonal Red-Green-Blue (RGB) Displays ........................................ 23 2-1 Hexagonal Grid Spacing ............................... 25 2-2 Example of Separating the Hexagonal Grid into an Array Set .......... 25 2-3 Determining the Neighbors of a Given Pixel .................... 26 2-4 Storage of Array Set Addressing (ASA) Addresses ................ 28 2-5 Representation of xs -ys Space ........................... 30 2-6 Resolving the Boundary Case ............................ 31 3-1 ASA Convolution Example .............................. 45 3-2 Comparison of Nearest Neighbor Neighborhood Sizes .............. 45 3-3 Example of Fitting a Plane to a Hexagonal Neighborhood ............ 47 3-4 Hexagonal Neighborhood Indexing ......................... 47 3-5 Convolution Masks for Local Gradient Estimation ................. 50 3-6 Example 1 of Gradient-Based Edge Detection ................... 53 3-7 Example 2 of Gradient-Based Edge Detection ................... 54 3-8 Example 3 of Gradient-Based Edge Detection ................... 55 3-9 Example 1 of Laplacian of Gaussian (LoG)-Based Edge Detection ....... 58 3-10 Example 2 of LoG-Based Edge Detection ..................... 59 3-11 Example 3 of LoG-Based Edge Detection ..................... 60 3-12 Quantization Directions of Canny Edge Detector ................. 62 3-13 Example 1 of Canny Edge Detection ........................ 63 3-14 Example 2 of Canny Edge Detection ........................ 64 8 3-15 Example 3 of Canny Edge Detection ........................ 65 3-16 Downsampling with ASA ............................... 67 4-1 Standard Fast Fourier Transform (FFT) Butterfly Diagram - Full Computation . 75 4-2 Standard FFT Butterfly Diagram - Reduced Computation ............ 75 4-3 Non-Standard Transform 1 (NST1) Butterfly Diagram - Full Computation .... 76 4-4 NST1 Butterfly Diagram - Reduced Computation ................. 76 4-5 Non-Standard Transform 2 (NST2) Butterfly Diagram - Full Computation .... 77 4-6 NST2 Butterfly Diagram - Reduced Computation ................. 77 4-7 Non-Standard Transform 3 (NST3) Butterfly Diagram - Full Computation .... 78 4-8 NST3 Butterfly Diagram - Reduced Computation ................. 78 4-9 Idealized Wavelet Transform Regions of Support (Hexagonal vs. Rectangular) 83 4-10 Wavelet Transform Analysis Filter Bank ...................... 84 4-11 Wavelet Transform Synthesis Filter Bank ...................... 85 4-12 Lilies Image (Hexagonally Sampled) ........................ 86 4-13 Hexagonal Discrete Wavelet Transform of Lilies Image .............. 87 5-1 Trapezoidal Imager .................................. 89 5-2 Example of a Radial Sine Wave (Left) and its Fourier Transform (Right) .... 90 5-3 Experimental Results ................................ 91 9 Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy ARRAY SET ADDRESSING: ENABLING EFFICIENT HEXAGONALLY SAMPLED IMAGE PROCESSING By Nicholas I. Rummelt December 2010 Chair: Joseph N. Wilson Major: Computer Engineering It has long been known that there are numerous advantages to sampling images hexagonally rather than rectangularly. However, due to various shortcomings of the addressing schemes, hexagonal sampling for digital images has not been embraced by the mainstream digital imaging community. The idea of using hexagonal sampling for digital imaging applications has been around since the early 1960s, yet no efficient addressing method for hexagonal grids has been developed in that time. This disser- tation introduces a new hexagonal addressing technique called array set addressing (ASA), that solves the problems exhibited by other methods. This new approach uses three coordinates to represent the hexagonal grid as a pair of rectangular arrays. This representation supports efficient linear algebra and image processing
Recommended publications
  • Balanced Ternary Arithmetic on the Abacus
    Balanced Ternary Arithmetic on the Abacus What is balanced ternary? It is a ternary number system where the digits of a number are powers of three rather than powers of ten, but instead of adding multiples of one or two times various powers of three to make up the desired number, in balanced ternary some powers of three are added and others are subtracted. Each power of three comprisising the number is represented by either a +, a -, or 0, to show that the power of three is either added, subtracted, or not present in the number. There are no multiples of a power of three greater than +1 or -1, which greatly simplifies multiplication and division. Another advantage of balanced ternary is that all integers can be represented, both positive and negative, without the need for a separate symbol to indicate plus or minus. The most significant ternary digit (trit) of any positive balanced ternary number is + and the most significant trit of any negative number is -. Here is a list of a few numbers in decimal, ternary, and balanced ternary: Decimal Ternary Balanced ternary ------------------------------------------------- -6 - 20 - + 0 (-9+3) -5 - 12 - + + (-9+3+1) -4 - 11 - - ( -3-1) -3 - 10 - 0 etc. -2 - 2 - + -1 - 1 - 0 0 0 1 1 + 2 2 + - 3 10 + 0 4 11 + + 5 12 + - - 6 20 + - 0 Notice that the negative of a balanced ternary number is formed simply by inverting all the + and - signs in the number. Thomas Fowler in England, about 1840, built a balanced ternary calculating machine capable of multiplying and dividing balanced ternary numbers.
    [Show full text]
  • Hexagonal Structure for Intelligent Vision
    © 2005 IEEE. Reprinted, with permission, from Xiangjian He, Hexagonal Structure for Intelligent Vision . Information and Communication Technologies, 2005. ICICT 2005. First International Conference on, August 2005. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Technology, Sydney's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs- [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it HEXAGONAL STRUCTURE FOR INTELLIGENT VISION Xiangjian He and Wenjing Jia Computer Vision Research Group Faculty of Information Technology University of Technology, Sydney Australia Abstract: greater angular resolution, and a reduced need of storage Using hexagonal grids to represent digital images has and computation in image processing operations. been studied for more than 40 years. Increased processing In spite of its numerous advantages, hexagonal grid has so capabilities of graphic devices and recent improvements in far not yet been widely used in computer vision and CCD technology have made hexagonal sampling graphics field. The main problem that limits the use of attractive for practical applications and brought new hexagonal image structure is believed due to lack of interests on this topic. The hexagonal structure is hardware for capturing and displaying hexagonal-based considered to be preferable to the rectangular structure images.
    [Show full text]
  • VSI Openvms C Language Reference Manual
    VSI OpenVMS C Language Reference Manual Document Number: DO-VIBHAA-008 Publication Date: May 2020 This document is the language reference manual for the VSI C language. Revision Update Information: This is a new manual. Operating System and Version: VSI OpenVMS I64 Version 8.4-1H1 VSI OpenVMS Alpha Version 8.4-2L1 Software Version: VSI C Version 7.4-1 for OpenVMS VMS Software, Inc., (VSI) Bolton, Massachusetts, USA C Language Reference Manual Copyright © 2020 VMS Software, Inc. (VSI), Bolton, Massachusetts, USA Legal Notice Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license. The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein. HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise. Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or other countries. Kerberos is a trademark of the Massachusetts Institute of Technology.
    [Show full text]
  • Multidimensional Sampling Dr
    Multidimensional Sampling Dr. Vishal Monga Motivation for the General Case for Sampling We need the more general case to treat three important applications. 1. Human Vision System: the human vision system is a nonlinear, spatially- varying, non-uniformly sampled system. Rods and cones on the retina, which spatially sample are not arranged in rows and columns. a. Hexagonal Sampling: when modeled as a linear shift-invariant system, the human visual system is circularly bandlimited (lowpass in radial frequency). The optimal uniform sampling grid is hexagonal. Optimal means that we need the fewest discrete-time samples to sample the continuous-space analog signal without aliasing. b. Foveated grid: This is based on the fovea in the retina. When you focus on an object, you sample the object at a high resolution, and the resolution falls off away from the point-of-focus. Shown below is a simple example of a foveated grid. The grid is a 4 x 4 uniform sampling with each of the middle four grids subdivided into 4 x 4 grids themselves. The point of focus is at the middle of the grid. We can convert this grid to a uniform grid in several ways. For example, we could start with a rectangular grid and keep the resolution at the point-of-focus. Then, away from the point-of-focus, we can average the pixel values in increasingly larger blocks of samples. This approach allows the use a foveated grid while maintaining compatibility with systems that require rectangular sampling (e.g. image and video compression standards). 2. Television 650 samples /row 362.5 rows /interlace 2 interlaces /frame 30 frames /sec No two samples taken at the same instant of time Can signals be sampled this way without losing information? How can we handle a.
    [Show full text]
  • Basic Digit Sets for Radix Representation
    LrBRAJ7T LIBRARY r TECHNICAL REPORT SECTICTJ^ Kkl B7-CBT SSrTK*? BAVAI PC "T^BADUATB SCSOp POSTGilADUAIS SCSftQl NPS52-78-002 . NAVAL POSTGRADUATE SCHOOL Monterey, California BASIC DIGIT SETS FOR RADIX REPRESENTATION David W. Matula June 1978 a^oroved for public release; distribution unlimited. FEDDOCS D 208.14/2:NPS-52-78-002 NAVAL POSTGRADUATE SCHOOL Monterey, California Rear Admiral Tyler Dedman Jack R. Bor sting Superintendent Provost The work reported herein was supported in part by the National Science Foundation under Grant GJ-36658 and by the Deutsche Forschungsgemeinschaft under Grant KU 155/5. Reproduction of all or part of this report is authorized. This report was prepared by: UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER NPS52-78-002 4. TITLE (and Subtitle) 5. TYPE OF REPORT ft PERIOD COVERED BASIC DIGIT SETS FOR RADIX REPRESENTATION Final report 6. PERFORMING ORG. REPORT NUMBER 7. AUTHORS 8. CONTRACT OR GRANT NUM8ERfa; David W. Matula 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA ft WORK UNIT NUMBERS Naval Postgraduate School Monterey, CA 93940 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Naval Postgraduate School June 1978 Monterey, CA 93940 13. NUMBER OF PAGES 33 14. MONITORING AGENCY NAME ft AODRESSf// different from Controlling Olllce) 15. SECURITY CLASS, (ot thta report) Unclassified 15«. DECLASSIFI CATION/ DOWN GRADING SCHEDULE 16. DISTRIBUTION ST ATEMEN T (of thta Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the mbatract entered In Block 20, if different from Report) 18.
    [Show full text]
  • Part I Number Representation
    Part I Number Representation Parts Chapters 1. Numbers and Arithmetic 2. Representing Signed Numbers I. Number Representation 3. Redundant Number Systems 4. Residue Number Systems 5. Basic Addition and Counting 6. Carry-Lookahead Adders II. Addition / Subtraction 7. Variations in Fast Adders 8. Multioperand Addition 9. Basic Multiplication Schemes 10. High-Radix Multipliers III. Multiplication 11. Tree and Array Multipliers 12. Variations in Multipliers 13. Basic Division Schemes 14. High-Radix Dividers IV . Division Elementary Operations Elementary 15. Variations in Dividers 16. Division by Convergence 17. Floating-Point Reperesentations 18. Floating-Point Operations V. Real Arithmetic 19. Errors and Error Control 20. Precise and Certifiable Arithmetic 21. Square-Rooting Methods 22. The CORDIC Algorithms VI. Function Evaluation 23. Variations in Function Evaluation 24. Arithmetic by Table Lookup 25. High-Throughput Arithmetic 26. Low-Power Arithmetic VII. Implementation Topics 27. Fault-Tolerant Arithmetic 28. Past,Reconfigurable Present, and Arithmetic Future Appendix: Past, Present, and Future Mar. 2015 Computer Arithmetic, Number Representation Slide 1 About This Presentation This presentation is intended to support the use of the textbook Computer Arithmetic: Algorithms and Hardware Designs (Oxford U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated regularly by the author as part of his teaching of the graduate course ECE 252B, Computer Arithmetic, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Unauthorized uses are strictly prohibited. © Behrooz Parhami Edition Released Revised Revised Revised Revised First Jan. 2000 Sep. 2001 Sep. 2003 Sep. 2005 Apr. 2007 Apr.
    [Show full text]
  • Hexagonal QMF Banks and Wavelets
    Hexagonal QMF Banks and Wavelets A chapter within Time-Frequency and Wavelet Transforms in Biomedical Engineering, M. Akay (Editor), New York, NY: IEEE Press, 1997. Sergio Schuler and Andrew Laine Computer and Information Science and Engineering Department UniversityofFlorida Gainesville, FL 32611 2 Hexagonal QMF Banks and Wavelets Sergio Schuler and Andrew Laine Department of Computer and Information Science and Engineering University of Florida Gainesville, FL 32611 Introduction In this chapter weshalllay bare the theory and implementation details of hexagonal sampling systems and hexagonal quadrature mirror lters (HQMF). Hexagonal sampling systems are of particular interest b ecause they exhibit the tightest packing of all regular two-dimensional sampling systems and for a circularly band-limited waveform, hexagonal sampling requires 13.4 p ercentfewer samples than rectangular sampling [1]. In addition, hexagonal sampling systems also lead to nonseparable quadrature mirror lters in which all basis functions are lo calized in space, spatial frequency and orientation [2]. This chapter is organized in two sections. Section I describ es the theoretical asp ects of hexagonal sampling systems while Section I I covers imp ortant implementation details. I. Hexagonal sampling system This section presents the theoretical foundation of hexagonal sampling systems and hexagonal quadrature mirror lters. Most of this material has app eared elsewhere in [1], [3], [4], [5], [2], [6] but is describ ed here under a uni ed notation for completeness. In addition, it will provide continuity and a foundation for the original material that follows in Section I I. The rest of the section is organized as follows. Section I-A covers the general formulation of a hexagonal sampling system.
    [Show full text]
  • A Combinatorial Approach to Binary Positional Number Systems
    Acta Math. Hungar. DOI: 10.1007/s10474-013-0387-8 A COMBINATORIAL APPROACH TO BINARY POSITIONAL NUMBER SYSTEMS A. VINCE Department of Mathematics, University of Florida, Gainesville, FL, USA e-mail: avince@ufl.edu (Received June 14, 2013; revised August 13, 2013; accepted August 22, 2013) Abstract. Although the representation of the real numbers in terms of a base and a set of digits has a long history, new questions arise even in the binary case – digits 0 and 1. A binary positional√ number system (binary radix system) with base equal to the golden ratio (1 + 5)/2 is fairly well known. The main result of this paper is a construction of infinitely many binary radix systems, each one constructed combinatorially from a single pair of binary strings. Every binary radix system that satisfies even a minimal set of conditions that would be expected of a positional number system, can be constructed in this way. 1. Introduction The terms positional number system, radix system,andβ-expansion that appear in the literature all refer to the representation of real numbers in terms of a given base or radix B and a given finite set D of digits. Histori- cally the base is 10 and the digit set is {0, 1, 2,...,9} or, in the binary case, the base is 2 and the digit set is {0, 1}. Alternative choices for the set of dig- its goes back at least to Cauchy, who suggested the use of negative digits in base 10, for example D = {−4, −3,...,4, 5}.Thebalanced ternary system is a base 3 system with digit set D = {−1, 0, 1} discussed by Knuth in [10].
    [Show full text]
  • DCT Coding of Nonrectangularly Sampled Images Emre Giinduzhan, A
    IEEE SIGNAL PROCESSING LETTERS, VOL. 1, NO. 9, SEPTEMBER 1994 131 DCT Coding of Nonrectangularly Sampled Images Emre Giinduzhan, A. Enis Cetin, and A Murat Tekalp ... Abstmct-Discrete cosine transform (DCT) coding is widely used for compression of re.ctangularly sampled images. In this .... ................ letter, we address efficient DCT coding of "rectangularly sam- ... ....... pled images. To eKect, we discuss efecient method for .......... this an -....__ -._. the computation of the DCT on nomctanpb sampling grids .. ..........~--__ using the Smith-normal &"position. Sim- results are provided. .... .......... I. INTRODUCTION ...I.. ...... ... N DIGITAL representation of multidimensional (M-D) .... Isignals, various sampling structures can be used that are usually in the form of a lattice or a union of coset of a N=[; :]=[2-1]r-110312 '1 lattice [ 11. Rectangular sampling grids (orthogonal lattices) are the most commonly used lattice smcture. It is well Fig. 1. Coordinate transformation in a hexagonal lattice. known that the sampling efficiency of e depends on the region of support of the spectrum malog signal [2]r [3]. In still images, a 2-D nonreckuguhr sampling grid is first transformed onto a new coordinate system, where it is may require. a smaller number of sampks'per unit area than rectangularly periodic. Rectangular M-D DCT of the trans- a rectangular grid. In video, interlaced sampling grids (3-D formed sequence is computed in the new coordinates, and the nonrectangular @ids) are widely used for reduced flickering result is transformed back to the original coordinates. A short without increasing the transmission bandwidth. review of the notation and the Smith-normal decomposition Most algorithm currently used for processing and compres- is given in Section 11.
    [Show full text]
  • Introduction to Computer Data Representation
    Introduction to Computer Data Representation Peter Fenwick The University of Auckland (Retired) New Zealand Bentham Science Publishers Bentham Science Publishers Bentham Science Publishers Executive Suite Y - 2 P.O. Box 446 P.O. Box 294 PO Box 7917, Saif Zone Oak Park, IL 60301-0446 1400 AG Bussum Sharjah, U.A.E. USA THE NETHERLANDS [email protected] [email protected] [email protected] Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement to the terms and conditions set forth in this License Agreement. This work is protected under copyright by Bentham Science Publishers to grant the user of this eBook/chapter, a non- exclusive, nontransferable license to download and use this eBook/chapter under the following terms and conditions: 1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it available for others to copy or download. For a multi-user license contact [email protected] 2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright. You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or in part, without the prior written permission from Bentham Science Publishers. 3. The user may print one or more copies/pages of this eBook/chapter for their personal use.
    [Show full text]
  • A New Family of Rotation-Covariant Wavelets on the Hexagonal Lattice
    A new family of rotation-covariant wavelets on the hexagonal lattice Laurent Condata, Brigitte Forster-Heinleina and Dimitri Van De Villeb aGSF - National Research Center for Environment and Health, 85764 Neuherberg, Germany bBiomedical Imaging Group (BIG), EPFL, CH-1015 Lausanne, Switzerland ABSTRACT We present multiresolution spaces of complex rotation-covariant functions, deployed on the 2-D hexagonal lattice. The designed wavelets, which are complex-valued, provide an important phase information for image analysis, which is missing in the discrete wavelet transform with real wavelets. Moreover, the hexagonal lattice allows to build wavelets having a more isotropic magnitude than on the Cartesian lattice. The associated filters, fully characterized in the Fourier domain, yield an efficient FFT-based implementation. Keywords: Complex wavelets, 2-D lattices, hexagonal sampling, multiresolution, scaling functions, rotation- covariance 1. INTRODUCTION Multiresolution analysis and the discrete wavelet transform (DWT) have proved to form a powerful framework in a wide range of signal processing applications. When applied to 2-D signals and images defined on the traditional Cartesian lattice, the most frequently used DWT are separable; their basis functions and filters are simply tensor products of the 1-D ones, which makes the implementation simple. The downside, however, is that these decompositions tend to privilege the vertical and horizontal directions. They also create a “diagonal” cross-term that does not have a straightforward directional interpretation. So, the need exists for transforms able to correct this deficiency of the separable transforms and to capture the regularity of 1-D singularities having arbitrary orientations, like edges in the images. Non-separable wavelets, by contrast, offer more freedom and can be better tuned to provide more isotropy.
    [Show full text]
  • Application of Randomized Sampling Schemes to Curvelet-Based Sparsity
    Application of randomized sampling schemes to curvelet-based sparsity-promoting seismic data recovery Reza Shahidi1 ([email protected]), Gang Tang12 ([email protected]), Jianwei Ma3 ([email protected]) and Felix J. Herrmann1 ([email protected]) 1Seismic Laboratory for Imaging and Modeling, Department of Earth and Ocean Sciences, The University of British Columbia, 6339 Stores Road, Vancouver, BC, Canada, V6T 1Z4 2Research Institute of Petroleum Exploration and Development, PetroChina, Beijing, China 3Institute of Applied Mathematics, Harbin Institute of Technology, Harbin, China 1 ABSTRACT Reconstruction of seismic data is routinely used to improve the quality and resolu- tion of seismic data from incomplete acquired seismic recordings. Curvelet-based Recovery by Sparsity-promoting Inversion, adapted from the recently-developed theory of compressive sensing, is one such kind of reconstruction, especially good for recovery of undersampled seismic data. Like traditional Fourier-based methods, it performs best when used in conjunction with randomized subsampling, which converts aliases from the usual regular periodic subsampling into easy-to-eliminate noise. By virtue of its ability to control gap size, along with the random and irregular nature of its sampling pattern, jittered (sub)sampling is one proven method that has been used successfully for the determination of geophone positions along a seismic line. In this paper, we extend jittered sampling to two-dimensional acquisition design, a more difficult problem, with both underlying Cartesian, and hexagonal grids. We also study what we term separable and non-separable two-dimensional jittered samplings. We find hexagonal jittered sam- pling performs better than Cartesian jittered sampling, while fully non-separable jittered sampling performs better than separable jittered sampling.
    [Show full text]