Introduction to Computer Data Representation

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Computer Data Representation Introduction to Computer Data Representation Peter Fenwick The University of Auckland (Retired) New Zealand Bentham Science Publishers Bentham Science Publishers Bentham Science Publishers Executive Suite Y - 2 P.O. Box 446 P.O. Box 294 PO Box 7917, Saif Zone Oak Park, IL 60301-0446 1400 AG Bussum Sharjah, U.A.E. USA THE NETHERLANDS [email protected] [email protected] [email protected] Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement to the terms and conditions set forth in this License Agreement. This work is protected under copyright by Bentham Science Publishers to grant the user of this eBook/chapter, a non- exclusive, nontransferable license to download and use this eBook/chapter under the following terms and conditions: 1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it available for others to copy or download. For a multi-user license contact [email protected] 2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright. You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or in part, without the prior written permission from Bentham Science Publishers. 3. The user may print one or more copies/pages of this eBook/chapter for their personal use. The user may not print pages from this eBook/chapter or the entire printed eBook/chapter for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained from the publisher for such requirements. Requests must be sent to the permissions department at E-mail: [email protected] 4. The unauthorized use or distribution of copyrighted or other proprietary content is illegal and could subject the purchaser to substantial money damages. The purchaser will be liable for any damage resulting from misuse of this publication or any violation of this License Agreement, including any infringement of copyrights or proprietary rights. 5. The following DRM (Digital Rights Management) policy is applicable on this eBook for the non-library / personal / single-user. Library / institutional / multi-users will get a DRM free copy and they may implement their own institutional DRM policy. • 25 ‘Copy’ commands can be executed every 7 days. The text selected for copying cannot extend to more than one single page. • 25 pages can be printed every 7 days. • eBook files are not transferable to multiple computer/devices. If you wish to use the eBook on another device, you must send a request to [email protected] along with the original order number that you received when the order was placed. Warranty Disclaimer: The publisher does not guarantee that the information in this publication is error-free, or warrants that it will meet the users’ requirements or that the operation of the publication will be uninterrupted or error-free. This publication is provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of this publication is assumed by the user. In no event will the publisher be liable for any damages, including, without limitation, incidental and consequential damages and damages for lost data or profits arising out of the use or inability to use the publication. The entire liability of the publisher shall be limited to the amount actually paid by the user for the eBook or eBook license agreement. Limitation of Liability: Under no circumstances shall Bentham Science Publishers, its staff, editors and authors, be liable for any special or consequential damages that result from the use of, or the inability to use, the materials in this site. eBook Product Disclaimer: No responsibility is assumed by Bentham Science Publishers, its staff or members of the editorial board for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products instruction, advertisements or ideas contained in the publication purchased or read by the user(s). Any dispute will be governed exclusively by the laws of the U.A.E. and will be settled exclusively by the competent Court at the city of Dubai, U.A.E. You (the user) acknowledge that you have read this Agreement, and agree to be bound by its terms and conditions. Permission for Use of Material and Reproduction Permission Information for Users Outside the USA: Bentham Science Publishers grants authorization for individuals to photocopy copyright material for private research use, on the sole basis that requests for such use are referred directly to the requestor's local Reproduction Rights Organization (RRO). The copyright fee is US $25.00 per copy per article exclusive of any charge or fee levied. In order to contact your local RRO, please contact the International Federation of Reproduction Rights Organisations (IFRRO), Rue Joseph II, 9-13 I000 Brussels, Belgium; Tel: +32 2 234 62 60; Fax: +32 2 234 62 69; E-mail: [email protected]; url: www.ifrro.org This authorization does not extend to any other kind of copying by any means, in any form, and for any purpose other than private research use. Permission Information for Users in the USA: Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Bentham Science Publishers for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Services, provided that the appropriate fee of US $25.00 per copy per chapter is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers MA 01923, USA. Refer also to www.copyright.com To Brenda CONTENTS Foreword i Preface iii CHAPTERS Introduction and Overview 1 1. Numbers and Computers 5 2. Binary and Other Representations 17 3. Signed, and Other, Representations 29 4. Basic Arithmetic and Logic 45 5. Computer Arithmetic 77 6. Floating-Point Representations 103 7. Logarithmic Representations 127 8. Characters and Text 133 9. Universal (Variable Length) Codes 159 10. Checksums and Error Control 191 11. Miscellaneous Topics 219 12. Concluding Comments 249 Bibliography 251 Index 259 i Foreword It is my great pleasure to recommend this excellent book written by my friend and colleague, Professor Peter Fenwick. During the eleven years I have known him, we have had many a discussion, often touching on topics covered here. Though this is the closest we have come to a collaboration I have little doubt that had we met earlier in our careers we would have collaborated extensively. A major contribution of this book is to bring a historical perspective to many topics that are so widely accepted that it might not be obvious there were choices to be made. The binary representation of numbers was so obvious even in the 1940s that Burks, Goldstine and von Neumann are said to have \adopted it seemingly without discussion". But Burks et al considered floating point representation, then argued against supporting it. Long ago I heard it claimed that von Neumann believed any mathematician "worth his salt" should be able to specify floating point computations using only integers. In any case, floating point only came into its own in the 1980s, with the broad acceptance of the IEEE standards. Professor Fenwick shows great insight into why it took decades to get right something as basic as the representation of numbers. A second important contribution is discussion of the introduction of redundancy to increase reliability in the presence of errors: check sums and variable-length (universal) codes. While simple check sums are frequently discussed, I know of no comparable source for a general discussion of Universal codes, an important but somewhat obscure subject. I agree with Professor Fenwick's quote, that \everybody thinks they know" about these topics, but there are big holes, even today. Surely most of us have superficial knowledge that fails us when we really need to work through the details. This book covers a huge range of material, thoroughly and concisely. I have taught a good bit of the material, but I learned much, even in areas where I claim some expertise. The book displays a deep understanding of the many and varied requirements for digital representation of information, from the obvious integers and floating point, to Zeckendorf representations and Gray codes; from 2's complement to logarithmic arithmetic; from Elias and Levenstein codes to Rice and Golomb codes and on to Ternary Comma and Fibonacci codes. ii In addition to the plethora of ways to represent numbers, it also covers represen- tation of characters and strings. While the book will serve very well as a reference, it is also fascinating reading. Many pages are devoted to obscure topics, interesting largely because of their place in history, but outside the domain of a classic textbook on computer organization or architecture. These are perhaps the most important sections, precisely because they had to be understood and discarded to get us where we are now. This book definitely does not qualify for the subtitle, \Data Representation for Dummies". While it quickly surveys common forms of representation, the pace and breadth will bewilder the true novice. On occasions, it uses terms unfamiliar (at least to an American), requiring another source.
Recommended publications
  • Data Representation
    Chapter 4 – Data Representation The focus of this chapter is the representation of data in a digital computer. We begin with a review of several number systems (decimal, binary, octal, and hexadecimal) and a discussion of methods for conversion between the systems. The two most important methods are conversion from decimal to binary and binary to decimal. The conversions between binary and each of octal and hexadecimal are quite simple. Other conversions, such as hexadecimal to decimal, are often best done via binary. After discussion of conversion between bases, we discuss the methods used to store integers in a digital computer: one’s complement and two’s complement arithmetic. This includes a characterization of the range of integers that can be stored given the number of bits allocated to store an integer. The most common integer storage formats are 16, 32, and 64 bits. The next topic for this chapter is the storage of real (floating point) numbers. This discussion will mention the standard put forward by the Institute of Electrical and Electronic Engineers, the IEEE Standard 754 for floating point numbers, but will focus on the base–16 format used by IBM Mainframes. The chapter closes with a discussion of codes for storing characters, focusing on the EBCDIC system used on IBM mainframes. Number Systems There are four number systems of possible interest to the computer programmer: decimal, binary, octal, and hexadecimal. Each system is characterized by its base or radix, always given in decimal, and the set of permissible digits. Note that the hexadecimal numbering system calls for more than ten digits, so we use the first six letters of the alphabet.
    [Show full text]
  • Balanced Ternary Arithmetic on the Abacus
    Balanced Ternary Arithmetic on the Abacus What is balanced ternary? It is a ternary number system where the digits of a number are powers of three rather than powers of ten, but instead of adding multiples of one or two times various powers of three to make up the desired number, in balanced ternary some powers of three are added and others are subtracted. Each power of three comprisising the number is represented by either a +, a -, or 0, to show that the power of three is either added, subtracted, or not present in the number. There are no multiples of a power of three greater than +1 or -1, which greatly simplifies multiplication and division. Another advantage of balanced ternary is that all integers can be represented, both positive and negative, without the need for a separate symbol to indicate plus or minus. The most significant ternary digit (trit) of any positive balanced ternary number is + and the most significant trit of any negative number is -. Here is a list of a few numbers in decimal, ternary, and balanced ternary: Decimal Ternary Balanced ternary ------------------------------------------------- -6 - 20 - + 0 (-9+3) -5 - 12 - + + (-9+3+1) -4 - 11 - - ( -3-1) -3 - 10 - 0 etc. -2 - 2 - + -1 - 1 - 0 0 0 1 1 + 2 2 + - 3 10 + 0 4 11 + + 5 12 + - - 6 20 + - 0 Notice that the negative of a balanced ternary number is formed simply by inverting all the + and - signs in the number. Thomas Fowler in England, about 1840, built a balanced ternary calculating machine capable of multiplying and dividing balanced ternary numbers.
    [Show full text]
  • Bits and Bytes and Words, Oh My!
    Bits and Bytes and Words, Oh My! Let’s get down to the real ni8y gri8y • CIS 211 In principle you already know ... Computer memory is binary (base 2) Everything: instrucEons, numbers, strings, ... memory is just one big array of binary numbers If I ask you what 01101011101010 represents, the only correct answer is “it depends” 0 = False = 0 volts; 1 = True = 5 volts (maybe) • CIS 211 CPU and Memory Main Memory CPU Address ALU Reg Reg Reg Values Reg Reg Reg Reg Reg Reg Other buses • CIS 211 CPU and Memory (simplified*) Main Memory CPU Address ALU Reg Reg Reg Values Reg Reg Reg Reg Reg Reg Other buses • CIS 211 (*with several useful lies) CPU and Memory CPU places a memory address on the address bus CPU may place a value on the data base and assert a “write” line (wire) or assert a “read” line and read a value from the data bus Main Memory CPU Address ALU Reg Reg Reg Values Reg Reg Reg Reg Reg Reg Other buses • CIS 211 A few terms: • A bit is a single binary digit • A byte is 8 binary digits • Most computer memory is “byte addressed”; a byte is the smallest addressable unit • What’s half a byte? (4 bits)? • A “word” is a sequence of bytes • Usually 4 bytes (32 bits) or 8 bytes (64 bits) depending on the computer (see next slide) 1 = True = 5 volts ; 0 = False = 0 volts (or 3.3 volts) • CIS 211 Typical byte-addressed memory 15 0 1 0 1 0 0 0 1 with 32-bit words 14 0 0 1 0 0 1 0 0 13 1 1 0 0 1 1 1 0 12 0 0 0 1 1 0 0 0 11 0 1 0 0 1 1 0 0 10 0 0 0 0 0 0 0 0 9 0 0 0 1 1 0 0 0 8 0 0 0 0 0 1 1 0 7 0 0 0 0 0 0 0 0 6 0 0 1 1 1 0 0 1 5 0 1 1 0 0 1 1
    [Show full text]
  • Endian: from the Ground up a Coordinated Approach
    WHITEPAPER Endian: From the Ground Up A Coordinated Approach By Kevin Johnston Senior Staff Engineer, Verilab July 2008 © 2008 Verilab, Inc. 7320 N MOPAC Expressway | Suite 203 | Austin, TX 78731-2309 | 512.372.8367 | www.verilab.com WHITEPAPER INTRODUCTION WHat DOES ENDIAN MEAN? Data in Imagine XYZ Corp finally receives first silicon for the main Endian relates the significance order of symbols to the computers chip for its new camera phone. All initial testing proceeds position order of symbols in any representation of any flawlessly until they try an image capture. The display is kind of data, if significance is position-dependent in that regularly completely garbled. representation. undergoes Of course there are many possible causes, and the debug Let’s take a specific type of data, and a specific form of dozens if not team analyzes code traces, packet traces, memory dumps. representation that possesses position-dependent signifi- There is no problem with the code. There is no problem cance: A digit sequence representing a numeric value, like hundreds of with data transport. The problem is eventually tracked “5896”. Each digit position has significance relative to all down to the data format. other digit positions. transformations The development team ran many, many pre-silicon simula- I’m using the word “digit” in the generalized sense of an between tions of the system to check datapath integrity, bandwidth, arbitrary radix, not necessarily decimal. Decimal and a few producer and error correction. The verification effort checked that all other specific radixes happen to be particularly useful for the data submitted at the camera port eventually emerged illustration simply due to their familiarity, but all of the consumer.
    [Show full text]
  • Ill[S ADJUSTMENTS
    B249 DATA TRANSMISSION CONTROL UNIT INTRODUCTION AND OPERATION Burroughs FUNCTIONAL DETAIL FIELD ENGINEERING CIRCUIT DETAIL lJrn~[}{] ~ D~ill[s ADJUSTMENTS MAINTENANCE ~ ill ~ OD ill [S PROCEDURES INST ALLAT ION PROCEDURES RELIABILITY IMPROVEMENT NOTICES OPTIONAL FEATURES MODIFICATIONS (BRANCH LIBRARIES) Printed in U.S. America 9-15-66 Form 1026259 Burroughs - B249 Data Transmission ~echnical Manual I N D E X INTRODUCTION & OPERATION - SECTION I Page No. B249 Data Transmission Control Unit - General Descript ion . 1 Glossary - Data Transmission Terminal Unit and MCU. 5 Glossary - DTCU & System . 3 Physical De$cr1ption . 2 FUNCTIONAL DETAIL - SECTION II B300 Active Interrogate. · . · . · · 57 B300 Data Communications Read. · · . · · · · 62 B300 Data Communications Write · · . 78 B300 Passive Interrogate · · 49 VB300 Passive Interrogate - ITU (B486) Mode · . 92 v13300 Read - ITU (B486) Mode. · · . · · . · . 95 V'B300 Write - ITU (13486) Mode · · . · · 108 B5500 Data Communications Interrogate. · . 1 B5500 Data Communications Read . · 9 B5500 Data Communications Write. · 21 CIRCUIT DETAIL - SECTION III "AU Register Load - (Normal & Reverse) 1 Clock Control. ... 11 Scan . 3 Translator . 4 ADJUSTMENTS - SECTION IV Clock Adjustments ..... 1 Variable Bias Adjustment . 1 MAINTENANCE PROCEDURES - SECTION V Maintenance Panel ... 1 INSTALLATION PROCEDURES - SECTION VI DTCU Installation. 1 Pluggable Options. 2 Power ON . 3 Special Inquiry Terminal Connection .. 2 NOTE: Pages for Sections VII, VIII and IX will be furnished when applicable. Printed in U. S. America Revised 4/1/67 For Form 1026259 Burroughs - B249 Data Transmission Technical Manual Sec, I Page 1 Introduction & Operation B249 DATA TRANSMISSION CONTROL UNIT - GENERAL DESCRIPTION The B249 DTCU is required when: 1. More than one B487 DTTU is used on a single Processing System.
    [Show full text]
  • How Many Bits Are in a Byte in Computer Terms
    How Many Bits Are In A Byte In Computer Terms Periosteal and aluminum Dario memorizes her pigeonhole collieshangie count and nagging seductively. measurably.Auriculated and Pyromaniacal ferrous Gunter Jessie addict intersperse her glockenspiels nutritiously. glimpse rough-dries and outreddens Featured or two nibbles, gigabytes and videos, are the terms bits are in many byte computer, browse to gain comfort with a kilobyte est une unité de armazenamento de armazenamento de almacenamiento de dados digitais. Large denominations of computer memory are composed of bits, Terabyte, then a larger amount of nightmare can be accessed using an address of had given size at sensible cost of added complexity to access individual characters. The binary arithmetic with two sets render everything into one digit, in many bits are a byte computer, not used in detail. Supercomputers are its back and are in foreign languages are brainwashed into plain text. Understanding the Difference Between Bits and Bytes Lifewire. RAM, any sixteen distinct values can be represented with a nibble, I already love a Papst fan since my hybrid head amp. So in ham of transmitting or storing bits and bytes it takes times as much. Bytes and bits are the starting point hospital the computer world Find arrogant about the Base-2 and bit bytes the ASCII character set byte prefixes and binary math. Its size can vary depending on spark machine itself the computing language In most contexts a byte is futile to bits or 1 octet In 1956 this leaf was named by. Pages Bytes and Other Units of Measure Robelle. This function is used in conversion forms where we are one series two inputs.
    [Show full text]
  • Relink Eo 3-11-97
    CHAPTER 1 COMMUNICATIONS As an Aviation Electronics Technician, you will be communication circuits. These operations are accom- tasked to operate and maintain many different types of plished through the use of compatible and flexible airborne communications equipment. These systems communication systems. may differ in some respects, but they are similar in many Radio is the most important means of com- ways. As an example, there are various models of AM municating in the Navy today. There are many methods radios, yet they all serve the same function and operate of transmitting in use throughout the world. This manual on the same basic principles. It is beyond the scope of will discuss three types. They are radiotelegraph, this manual to discuss each and every model of radiotelephone, and teletypewriter. communication equipment used on naval aircraft; therefore, only representative systems will be discussed. Every effort has been made to use not only systems that Radiotelegraph are common to many of the different platforms, but also have not been used in the other training manuals. It is Radiotelegraph is commonly called CW (con- the intent of this manual to have systems from each and tinuous wave) telegraphy. Telegraphy is accomplished every type of aircraft in use today. by opening and closing a switch to separate a continuously transmitted wave. The resulting “dots” and “dashes” are based on the Morse code. The major RADIO COMMUNICATIONS disadvantage of this type of communication is the relatively slow speed and the need for experienced Learning Objective: Recognize the various operators at both ends. types of radio communications.
    [Show full text]
  • Binary Numbers 8'S Colum 8'S Colum 2'S Colum 1'S 4'S Colum 4'S N N N N
    Codes and number systems Introduction to Computer Yung-Yu Chuang with slides by Nisan & Schocken (www.nand2tetris.org) and Harris & Harris (DDCA) Coding • Assume that you want to communicate with your friend with a flashlight in a night, what will you do? light painting? What’s the problem? Solution #1 • A: 1 blink • B: 2 blibliknks • C: 3 blinks : • Z: 26 blinks Wha t’s the problem ? • How are you? = 131 blinks Solution #2: Morse code Hello Lookup • It is easy to translate into Morse code than reverse. Why? Lookup Lookup Useful for checking the correctness/ redddundency Braille Braille What’s common in these codes? • They are both binary codes. Binary representations • Electronic Implementation – Easy to store with bitblbistable elemen ts – Reliably transmitted on noisy and inaccurate wires 0 1 0 3.3V 2.8V 0.5V 0.0V Number systems <13> 1 Chapter = = Systems 2 1's column 10 1's column 10's column 2's column 100's column 4's column 1000's column 8's column 5374 1101 Number • numbers Decimal • Binary numbers Number Systems • Decimal numbers 1000's col 10's colum 1's column 100's colu u m n mn n 3 2 1 0 537410 = 5 ? 10 + 3 ? 10 + 7 ? 10 + 4 ? 10 five three seven four thousands hundreds tens ones • Binary numbers 8's colum 2's colum 1's colum 4's colum n n n n 3 2 1 0 11012 = 1 ? 2 + 1 ? 2 + 0 ? 2 + 1 ? 2 = 1310 one one no one eight four two one Chapter 1 <14> Binary numbers • Digits are 1 and 0 (a binary dig it is calle d a bit) 1 = true 0 = false • MSB –most significant bit • LSB –least significant bit MSB LSB • Bit numbering: 1 0 1 1 0
    [Show full text]
  • Lynn Conway Professor of Electrical Engineering and Computer Science, Emerita University of Michigan, Ann Arbor, MI 48109-2110 [email protected]
    IBM-ACS: Reminiscences and Lessons Learned From a 1960’s Supercomputer Project * Lynn Conway Professor of Electrical Engineering and Computer Science, Emerita University of Michigan, Ann Arbor, MI 48109-2110 [email protected] Abstract. This paper contains reminiscences of my work as a young engineer at IBM- Advanced Computing Systems. I met my colleague Brian Randell during a particularly exciting time there – a time that shaped our later careers in very interesting ways. This paper reflects on those long-ago experiences and the many lessons learned back then. I’m hoping that other ACS veterans will share their memories with us too, and that together we can build ever-clearer images of those heady days. Keywords: IBM, Advanced Computing Systems, supercomputer, computer architecture, system design, project dynamics, design process design, multi-level simulation, superscalar, instruction level parallelism, multiple out-of-order dynamic instruction scheduling, Xerox Palo Alto Research Center, VLSI design. 1 Introduction I was hired by IBM Research right out of graduate school, and soon joined what would become the IBM Advanced Computing Systems project just as it was forming in 1965. In these reflections, I’d like to share glimpses of that amazing project from my perspective as a young impressionable engineer at the time. It was a golden era in computer research, a time when fundamental breakthroughs were being made across a wide front. The well-distilled and highly codified results of that and subsequent work, as contained in today’s modern textbooks, give no clue as to how they came to be. Lost in those texts is all the excitement, the challenge, the confusion, the camaraderie, the chaos and the fun – the feeling of what it was really like to be there – at that frontier, at that time.
    [Show full text]
  • 6.0.119 Plot Subroutine for FORTRAN with Format 1620-FO
    o o o DECK KEY PLOT SUBROUTlNE 1. FORTRAN Plot Demonstration Deck to Read FOR FORTRAN Values from and Compute the Sine, Cosine WITH FORMAT and Natural Log (1620-FO-004 Version 1) 2. Plot Subroutine Program Deck 3. Plot Subroutine Source Deck 4. Plot Subroutine Demonstration Data Deck Author: Edward A. VanSchaik IBM Corporation 370 W. First Street Dayton, Ohio . "7 Plot Subroutine for FORTRAN with Format (1620-FO-OO4 Version 1) Author: Edward A. VanSchaik IDM Corporation Plot Subroutine of IBM 1620 FORTRAN with Format 3'70 West First Street Dayton 2, Ohio INTRODUCTION Direct Inquiries To: Author Since many IBM 1620 applications are in areas where a rough plot of the results can be quite useful, it was felt that a subroutine incorporated into A. Purpose/Description: This program presents a subroutine which can be FORTRAN was necessary. GOTRAN provides a statement for plotting easily used in FORTRAN for plotting single or multiple curves without requiring a separate program and a knowledge of GOTRAN language. This the GOTRAN problem of determining which curve has the lower magnitude. write-up presents a subroutine which can be easily used in FORTRAN for Also this method can be used to generate the curves on cards for off-line plotting single or multiple curves without the GOTRAN problem of detf;'lr­ printing. mining which curve has the lower magnitude. Also this method can be used to generate the curves on cards for off-line printing. B. Method: N/A METHOD OF USE C. Restrictions and Range: Normally a range of 0-'70 should be the limitation for typewriter output since the carriage can handle only 80 to 85 positions.
    [Show full text]
  • VSI Openvms C Language Reference Manual
    VSI OpenVMS C Language Reference Manual Document Number: DO-VIBHAA-008 Publication Date: May 2020 This document is the language reference manual for the VSI C language. Revision Update Information: This is a new manual. Operating System and Version: VSI OpenVMS I64 Version 8.4-1H1 VSI OpenVMS Alpha Version 8.4-2L1 Software Version: VSI C Version 7.4-1 for OpenVMS VMS Software, Inc., (VSI) Bolton, Massachusetts, USA C Language Reference Manual Copyright © 2020 VMS Software, Inc. (VSI), Bolton, Massachusetts, USA Legal Notice Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license. The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein. HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise. Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or other countries. Kerberos is a trademark of the Massachusetts Institute of Technology.
    [Show full text]
  • Ascii, Baudot, and the Radio Amateur
    ASCII, BAUDOT AND THE RADIO AMATEUR George W. Henry, Jr. K9GWT Copyright © 1980by Hal Communications Corp., Urbana, Illinois HAL COMMUNICATIONS CORP. BOX365 ASCII, BAUDOT, AND THE RADIO AMATEUR The 1970's have brought a revolution to amateur radio RTTY equipment separate wire to and from the terminal device. Such codes are found in com­ and techniques, the latest being the addition of the ASCII computer code. mon use with computer and line printer devices. Radio amateurs in the Effective March 17, 1980, radio amateurs in the United States have been United States are currently authorized to use either the Baudot or ASCII authorized by the FCC to use the American Standard Code for Information serial asynchronous TTY codes. Interchange(ASCII) as well as the older "Baudot" code for RTTY com­ munications. This paper discusses the differences between the two codes, The Baudot TTY Code provides some definitions for RTTY terms, and examines the various inter­ facing standards used with ASCII and Baudot terminals. One of the first data codes used with mechanical printing machines uses a total of five data pulses to represent the alphabet, numerals, and symbols. Constructio11 of RTTY Codes This code is commonly called the Baudot or Murray telegraph code after the work done by these two pioneers. Although commonly called the Baudot Mark Ull s,.ce: code in the United States, a similar code is usually called the Murray code in other parts of the world and is formally defined as the International Newcomers to amateur radio RTTY soon discover a whole new set of terms, Telegraphic Alphabet No.
    [Show full text]