Histamine H Receptor Antagonists

Total Page:16

File Type:pdf, Size:1020Kb

Histamine H Receptor Antagonists Histamine H3 Receptor Antagonists from Bench to Bedside Holger Stark XVIIIth Summer School on Medicinal Chemistry Rio de Janeiro/Brazil, January 23-27, 2012 Institut für Pharmazeutische Chemie Biozentrum, Johann Wolfgang Goethe-Universität E-Mail: [email protected] H. Stark Stark-Lab Biogenic Amines Lipids Dopamine Histamine NMDA Sphingosine AA 1 Content Introduction histamine receptors . Subtypes . Functions Histamine H3 receptor antagonists . From imidazole to non-imidazole compounds . Pharmacological tools . Clinical candidates – clinical trials Summary 3 NH2 HN The Magnificent Seven N Four histamine receptor subtypes (H1 –H4) Original source: 七人の侍 Shichinin no samurai 2 NH2 HN Histaminergic System N Histamine . Modulator of (patho)physiological effects in CNS and periphery Tuberomammilary nucleus Histamine receptors GPCR Class A H1 H2 H3 H4 Allergic reactions Gastric Neurotransmission Inflammatory Sleep / wake cycle acid secretion processes 5 Schematic Histaminergic Innervation L-Histidine H3 Heteroreceptors (ACh, DA, 5-HT, NA, NANC ...) - Glia cells Histamine Gi/o - N-Methyl- H3 histamine Histamine HMT H4 Modulation of H H1 2 energy metabolism blood circulation IP3 DAG cAMP 6 sleep / waking state 3 Therapeutic Targets of Histamine H3 Receptor Antagonists Schizophrenia, depression Epilepsy Neuropathic pain Sleep-wake disorders hH R (narcolepsy) 3 Cancer Cognition disorders Allergy (Alzheimer´s D, ADHD) Migraine Obesity 7 Histamine H3 Receptor Antagonists In vitro In vivo S Ki ED50 p.o. [nM] [mg/kg] N N H N Thioperamide 2.2 1 N H N O N FUB 465 580 0.26 H N O N 19 (>10) (protean H Proxyfan O agonist) N O inverse N Ciproxifan 0.5 0.14 agonist H 8 4 Synthesis of Keto Derivatives 4-(3-Phenoxypropyl)-1H-imidazole Structure O C R1 Mitsunobu O N reaction OH + + HO H C 1 2 R N R CPh N O 3 R2 N 4/5 steps H+ H O NaH NOH C C 1 R1 R N OH N + F O 2 R2 R N N H CPh3 1 R CH3 CH3 CH3 (CH2)1-5-H CH3 CH3 C2H5 Ph 2 etc. R 2-CH3 3-CH3 2-F H 2-CF3 OCH3 2-F 2-F J. Med. Chem. 2000, 43, 3335; J. Med. Chem. 2000, 43, 3987; Bioorg. Med. Chem. Lett. 2000, 10, 279. Histamine H3 Receptor Antagonists In vitro In vivo S Ki ED50 p.o. N N [nM] [mg/kg] H N Thioperamide 2.2 1 N H N O N FUB 465 580 0.26 H N O (protean N Proxyfan 19 (>10) H O agonist) N O inverse Ciproxifan 0.5 0.14 agonist N H 10 5 Chemical Space Text durch klicken hinzufügen Hier steht die Copy 11 Nat. Rev. Drug Disc.2006,5, 993–996. Blue Print Histamine H3 Receptor Antagonists (Ciproxifan) old new 12 6 H O Five-Choice Task (Rat) N O N H 90 Duration Stimuli 0.50 s 0.25 s 80 * P < 0.05 * 70 60 Correct Responses (%) 50 Control Ciproxifan (3 mg/kg, i.p.) 13 J. Pharmacol. Exp. Ther. 1998, 287, 658-666. Rodent Models for Preclincal Testing 14 Esbenshade et al. Mol. Interv. 2006, 6, 77-88 7 Hypnograms of Ciproxifan p.o. in Cats PS S2 Placebo S1 W Ciproxifan 0.15 mg/kg 0.3 mg/kg 0.7 mg/kg 2 mg/kg 0 1 2 3 t (h) 4 PS = paradoxical sleep S2 = deep slow wave sleep S1 = light slow wave sleep W = wakefullness Ciproxifan - J. Pharmacol. Exp. Ther. 1998, 287, 658. Pitolisant - J. Pharmacol. Exp. Ther. 2007, 320, 365. Receptor Profile of Ciproxifan O Receptor assays: H1 GP ileum N H2 GP atrium O 10 H3 R synaptosomes 9.3 9.3 9.4 N H3 GP ileum H H M NMeHA liberation 9 3 8.4 H3 M NA liberation H3 H CHO 8 H4 H CHO 7.2 M3 GP ileum 7 1D R aorta 1 GP atrium 5.7 5-HT1B GP inguinal artery 6 <5.7<5.7 5.6 5.4 5.4 5-HT2A R tail artery 4.9 <5.0 5-HT GP il. plex. myenter. <4.7 4.9 4.9 3 5 5-HT4 R oesophagus CYP450 H placental 4 mikrosomes GP = guinea-pig 3 R = rat H1 H2 H3 H3 H3 H3 hH3 M3 1D 1 div. 5 - H T CYP450 NMe M = mouse R GP NA 1B 2A 34 HA hH4 H = human 16 J. Pharmacol. Exp. Ther. 1998, 287, 658; Mini Rev. Med. Chem. 2004, 4, 965 8 Binding Model of Ciproxifan at Human and Rat H3 Receptors TM3 Rat Human 122 122 Val Ala Ciproxifan Ala119 Thr119 Ciproxifan Ciproxifan Influence beyond binding pocket „humanised“ rat H3 receptor shows similar binding properties like human H3 receptor 17 Br. J. Pharmacol. 2000, 131, 1247 Bioorg. Med. Chem. Lett. 2001, 11, 951 Non-Imidazole H3 Receptor Antagonists O CH3 N O hKi > 30 nM N FUB (MeHA) H ED = 0.24 mg/kg Carbonyl 372 50 CH displacement 3 N O hK = 3.6 nM (IPX) N i H ED = 0.20 mg/kg UCL 1791 50 Imidazole Replacement CH3 N O (CyP450 interaction ?) New Lead 18 Holger Stark 9 Extended Blue Print Histamine H3 Receptor Antagonists 19 Histamine H3 Receptor Antagonists Imidazole-based Non-imidazole-based O N O N Cl O FUB 649 HN Ciproxifan N N S N H CH3 O N N ABT-239 N O H N N JNJ-20281457 Thioperamide HN H O N N H GT-2331 N H N GSK189254 O Polar group and/or 1st basic Central 2nd basic moiety S p a c e r moiety core and/or liphophilic residue and / or acidic residue 20 Exp. Opin. Investig. Drugs 2009, 18, 1519; Bioorg. Med. Chem. Lett. 2010, 20, 1581 10 Actual Status of Compounds with Additional Functions H3 Antagonists – H1 Antagonists H3 Antagonists – NO-Releasing H3 Antagonists – H4 Ligands K = 0.22 nM H3 Antagonists – HMT Inhibitors i Cowart, M. et al. Poster P49, H3 Antagonists – HMT / ACh / BuCh Inhibitors 34th Meeting of EHRS, Bled/Slovenia, 2005. H3 Antagonists – M2 Antagonists H3 Antagonists – Leukotrien Antagonists H3 Antagonists – SSRI H Antagonists – neuroleptics etc. 3 Ki = 11 nM H3 Ligands – Radioactive elements H3 Antagonists – Fluorescence properties Bioorg. Med.Chem. Lett. 2006, 16, 1938-40. Approaches on Novel Leads with Additional Functionalities Pharmacophor H3 Fluorophore F2 1. Cleavable Konjugate H3 Cleavable chain F2 2. Konjugate H3 Chain F2 3. Additive Compounds H3 F2 4. Integrative Compounds H3 F2 Drug Disc. Today 2004, 9, 736. 11 Synthetic Pathways to Final Fluorescence Compounds NH i N OH ii N Cl Br OH iii R R HO N O R = NO2, CN, phenyl-CN, OH R= ph en 2 yl NO R -p = = -C R O v N iv H N C = v OH R NH2 NH2 N O N O N O NH2 N O O2N vi Cl NO2 F NO vi 2 vii N N O NO2 X1 X2 N O N NO2 N O NO2 O N 1 2 X = NH, CH2-NH X = NH, CH2-NH, phenyl-CH2-NH, O Nitrobenzofurazans Sanger´s derivatives hH3 Binding Affinities and Physicochemical Properties X Fluorophore N O hH3 Ki ClogP Ex. Em. X Fluorophore [nM] max [nm] max -NH- 0.066 5.63 481 531 -CH2-NH- 0.572 5.10 415 533 N NO2 O N -C6H4-CH2-NH- 0.706 7.04 452 531 -CH2-NH- 0.603 5.16 396 496 -NH- 0.140 5.70 396 449 O2N NO2 -O- 0.048 5.00 397 527 ChemMedChem 2007, 2, 708-716 12 Details for ST-688 NO2 hH K = 48 ± 13 pM O 3 i ED50 = 0.96 mg/kg p.o. (mice) N O NO2 Clog P = 5.00 (calc.) (conc. = 10-5 M (ethanol)) max = 397 nm max = 527 nm Stokes Shift = 130 nm 18F –ST-889 cf. Bioorg. Med. Chem. Lett. 2009, 19, 2172 Histamine H3 Receptor Antagonist BF-2.649 (INN: Pitolisant (formerly: tiprolisant); NME; orphan drug) N O Cl Clinical Phase IIb (DBPCX) (n=12) Photosensitive Epilepsy – therapy resistant Patient 20 mg BF-2.649 40 mg BF-2.649 60 mg BF-2.649 (different co-medications) 26 Holger Stark WO 2006084833. + Arch. Pharm. 2008, 341, 610 13 Narcolepsy Rusty, the narcoleptic Dachshund 27 Clinical Trial on Narcoleptic Patients (n=22) Change in Epworth Sleepiness Scale (ESS) (Total values of one week with standard co-medication) N O 3 4 3 12 Cl (BF-2.649, pitolisant) 40 mg/d - 22 patients 28 14 Compounds in Clinical Development + Narcolepsy Phase II Phase III etc. EDS in narcolepsy (HARMONY I & II) N O EDS in sleep apnoe syndrome (HAROSA I & II) Pitolisant Cl EDS in Parkinson´s therapy (HARPS I & II) Pro-cognitive effects in schizophrenia MK0249 EDS in sleep apnoe syndrome JNJ-17216498 Narcolepsie O Pro-cognitive effects in Alzheimer NHCH3 GSK 239512 N Pro-cognitive effects in schizophrenia O N Pro-cognitive effects in Alzheimer ABT-288 Pro-cognitive effects in schizophrenia EDS = JNJ-39220675 Allergic rhinitis Waking state Excessive PF-3654746 Allergic rhinitis Cognition Daytime Periphery Sleepiness 29 Celanire et al. Drug Discovery: From Hits to Clinical Candidates. CRC Press, 2009, pp. 103. Sander et al. Histamine H3 Receptor Antagonists go to Clinics. Biol. Pharm. Bull., 2008, 31, 2136. Summary Novel histamine H3 receptor antagonists Robust antagonist pharmacophor . Pharmacodynamic profiling (multiple targeting) . Pharmacokinetic optimization . Toxicity reduced Novel therapeutic concepts (NME, clinical phase III) . Epilepsy, narcolepsy, dementia . Late stage in clinical development Interdisciplinary and translatory research by numerous experts in their fields 30 15 Acknowledgement Johann Wolfgang Goethe-Universität Frankfurt am Main • M. Amon Y. von Coburg B.
Recommended publications
  • TABLE 1 Studies of Antagonist Activity in Constitutively Active
    TABLE 1 Studies of antagonist activity in constitutively active receptors systems shown to demonstrate inverse agonism for at least one ligand Targets are natural Gs and constitutively active mutants (CAM) of GPCRs. Of 380 antagonists, 85% of the ligands demonstrate inverse agonism. Receptor Neutral Antagonist Inverse Agonist Reference Human β2-adrenergic Dichloroisoproterenol, pindolol, labetolol, timolol, Chidiac et al., 1996; Azzi et alprenolol, propranolol, ICI 118,551, cyanopindolol al., 2001 Turkey erythrocyte β-adrenergic Propranolol, pindolol Gotze et al., 1994 Human β2-adrenergic (CAM) Propranolol Betaxolol, ICI 118,551, sotalol, timolol Samama et al., 1994; Stevens and Milligan, 1998 Human/guinea pig β1-adrenergic Atenolol, propranolol Mewes et al., 1993 Human β1-adrenergic Carvedilol CGP20712A, metoprolol, bisoprolol Engelhardt et al., 2001 Rat α2D-adrenergic Rauwolscine, yohimbine, WB 4101, idazoxan, Tian et al., 1994 phentolamine, Human α2A-adrenergic Napthazoline, Rauwolscine, idazoxan, altipamezole, levomedetomidine, Jansson et al., 1998; Pauwels MPV-2088 (–)RX811059, RX 831003 et al., 2002 Human α2C-adrenergic RX821002, yohimbine Cayla et al., 1999 Human α2D-adrenergic Prazosin McCune et al., 2000 Rat α2-adrenoceptor MK912 RX821002 Murrin et al., 2000 Porcine α2A adrenoceptor (CAM- Idazoxan Rauwolscine, yohimbine, RX821002, MK912, Wade et al., 2001 T373K) phentolamine Human α2A-adrenoceptor (CAM) Dexefaroxan, (+)RX811059, (–)RX811059, RS15385, yohimbine, Pauwels et al., 2000 atipamezole fluparoxan, WB 4101 Hamster α1B-adrenergic
    [Show full text]
  • From Inverse Agonism to 'Paradoxical Pharmacology' Richard A
    International Congress Series 1249 (2003) 27-37 From inverse agonism to 'Paradoxical Pharmacology' Richard A. Bond*, Kenda L.J. Evans, Zsirzsanna Callaerts-Vegh Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 521 Science and Research Bldg 2, 4800 Caltioun, Houston, TX 77204-5037, USA Received 16 April 2003; accepted 16 April 2003 Abstract The constitutive or spontaneous activity of G protein-coupled receptors (GPCRs) and compounds acting as inverse agonists is a recent but well-established phenomenon. Dozens of receptor subtypes for numerous neurotransmitters and hormones have been shown to posses this property. However, do to the apparently low percentage of receptors in the spontaneously active state, the physiologic relevance of these findings remains questionable. The possibility that the reciprocal nature of the effects of agonists and inverse agonists may extend to cellular signaling is discussed, and that this may account for the beneficial effects of certain p-adrenoceptor inverse agonists in the treatment of heart failure. © 2003 Elsevier Science B.V. All rights reserved. Keywords. Inverse agonism; GPCR; Paradoxical pharmacology 1. Brief history of inverse agonism at G protein-coupled receptors For approximately three-quarters of a century, ligands that interacted with G protein- coupled receptors (GPCRs) were classified either as agonists or antagonists. Receptors were thought to exist in a single quiescent state that could only induce cellular signaling upon agonist binding to the receptor to produce an activated state of the receptor. In this model, antagonists had no cellular signaling ability on their own, but did bind to the receptor and prevented agonists from being able to bind and activate the receptor.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0221245 A1 Kunin (43) Pub
    US 2010O221245A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0221245 A1 Kunin (43) Pub. Date: Sep. 2, 2010 (54) TOPICAL SKIN CARE COMPOSITION Publication Classification (51) Int. Cl. (76) Inventor: Audrey Kunin, Mission Hills, KS A 6LX 39/395 (2006.01) (US) A6II 3L/235 (2006.01) A638/16 (2006.01) Correspondence Address: (52) U.S. Cl. ......................... 424/133.1: 514/533: 514/12 HUSCH BLACKWELL SANDERS LLP (57) ABSTRACT 4801 Main Street, Suite 1000 - KANSAS CITY, MO 64112 (US) The present invention is directed to a topical skin care com position. The composition has the unique ability to treat acne without drying out the user's skin. In particular, the compo (21) Appl. No.: 12/395,251 sition includes a base, an antibacterial agent, at least one anti-inflammatory agent, and at least one antioxidant. The (22) Filed: Feb. 27, 2009 antibacterial agent may be benzoyl peroxide. US 2010/0221 245 A1 Sep. 2, 2010 TOPCAL SKIN CARE COMPOSITION stay of acne treatment since the 1950s. Skin irritation is the most common side effect of benzoyl peroxide and other anti BACKGROUND OF THE INVENTION biotic usage. Some treatments can be severe and can leave the 0001. The present invention generally relates to composi user's skin excessively dry. Excessive use of some acne prod tions and methods for producing topical skin care. Acne Vul ucts may cause redness, dryness of the face, and can actually garis, or acne, is a common skin disease that is prevalent in lead to more acne. Therefore, it would be beneficial to provide teenagers and young adults.
    [Show full text]
  • Ciproxifan, a Histamine H3 Receptor Antagonist, Reversibly Inhibits Monoamine Oxidase a and B Received: 05 September 2016 S
    www.nature.com/scientificreports OPEN Ciproxifan, a histamine H3 receptor antagonist, reversibly inhibits monoamine oxidase A and B Received: 05 September 2016 S. Hagenow1, A. Stasiak2, R. R. Ramsay3 & H. Stark1 Accepted: 07 December 2016 Ciproxifan is a well-investigated histamine H receptor (H3R) inverse agonist/antagonist, showing Published: 13 January 2017 3 an exclusively high species-specific affinity at rodent compared to human H3R. It is well studied as reference compound for H3R in rodent models for neurological diseases connected with neurotransmitter dysregulation, e.g. attention deficit hyperactivity disorder or Alzheimer’s disease. In a screening for potential monoamine oxidase A and B inhibition ciproxifan showed efficacy on both enzyme isoforms. Further characterization of ciproxifan revealed IC50 values in a micromolar concentration range for human and rat monoamine oxidases with slight preference for monoamine oxidase B in both species. The inhibition by ciproxifan was reversible for both human isoforms. Regarding inhibitory potency of ciproxifan on rat brain MAO, these findings should be considered, when using high doses in rat models for neurological diseases. As the H3R and monoamine oxidases are all capable of affecting neurotransmitter modulation in brain, we consider dual targeting ligands as interesting approach for treatment of neurological disorders. Since ciproxifan shows only moderate activity at human targets, further investigations in animals are not of primary interest. On the other hand, it may serve as starting point for the development of dual targeting ligands. Ciproxifan (cyclopropyl 4-(3-(1H-imidazol-4-yl)propyloxy)phenyl methanone) is a well characterized species-specific histamine 3H receptor (H3R) inverse agonist/antagonist (Fig.
    [Show full text]
  • Title Page CEP-26401 (Irdabisant), a Potent and Selective Histamine H3 Receptor Antagonist/ Inverse Agonist with Cognition-Enhan
    JPET Fast Forward. Published on October 14, 2011 as DOI: 10.1124/jpet.111.186585 JPET FastThis articleForward. has not Published been copyedited on and October formatted. 14,The final2011 version as DOI:10.1124/jpet.111.186585 may differ from this version. Title Page CEP-26401 (Irdabisant), a potent and selective histamine H3 receptor antagonist/ inverse agonist with cognition-enhancing and wake promoting activities Downloaded from Rita Raddatz, Robert L. Hudkins, Joanne R. Mathiasen*, John A. Gruner*, Dorothy G. Flood*, Lisa D. Aimone, Siyuan Le*, Hervé Schaffhauser*, Maciej Gasior*, Donna jpet.aspetjournals.org Bozyczko-Coyne, Michael J. Marino*, Mark A. Ator, Edward R. Bacon, John P. Mallamo and Michael Williams* at ASPET Journals on September 24, 2021 Discovery Research Cephalon, Inc. 145 Brandywine Parkway West Chester, PA 19380 USA Copyright 2011 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on October 14, 2011 as DOI: 10.1124/jpet.111.186585 This article has not been copyedited and formatted. The final version may differ from this version. JPET #186585 2 Running Title H3 Receptor Antagonist CEP-26401 Corresponding author: Rita Raddatz Cephalon, Inc. 145 Brandywine Parkway West Chester, PA 19380 USA PHONE : (610) 738-6728 FAX: (610) 738-6305 Downloaded from [email protected] Text Pages: 48 Tables: 6 jpet.aspetjournals.org Figures: 7 References: 40 at ASPET Journals on September 24, 2021 Abstract (# of words): 240 Introduction (# of words): 490 Discussion (# of words): 1500 Abbreviations: H3R, histamine H3 receptor; CEP-26401, 6-{4-[3-((R)-2-methyl- pyrrolidin-1-yl)-propoxy]-phenyl}-2H-pyridazin-3-one HCl; ABT-239, 4-(2-{2-[(2R)-2- methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile (L) tartrate; RAMH, R-α- methylhistamine; GTPγS, guanosine 5`-(γ-thio)triphosphate; PPI, prepulse inhibition; [3H]NAMH, [3H]N-α-methylhistamine; RID, ratio of investigation duration; DTT, dithiothreitol; EEG, electroencephalographic; EMG, electromyographic; SWS, slow wave sleep; REMS, rapid eye movement sleep.
    [Show full text]
  • International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors
    1521-0081/67/3/601–655$25.00 http://dx.doi.org/10.1124/pr.114.010249 PHARMACOLOGICAL REVIEWS Pharmacol Rev 67:601–655, July 2015 Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ELIOT H. OHLSTEIN International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors Pertti Panula, Paul L. Chazot, Marlon Cowart, Ralf Gutzmer, Rob Leurs, Wai L. S. Liu, Holger Stark, Robin L. Thurmond, and Helmut L. Haas Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry (H.S.) and Institute of Neurophysiology, Medical Faculty (H.L.H.), Heinrich-Heine-University Duesseldorf, Germany; and Janssen Research & Development, LLC, San Diego, California (R.L.T.) Abstract ....................................................................................602 Downloaded from I. Introduction and Historical Perspective .....................................................602 II. Histamine H1 Receptor . ..................................................................604 A. Receptor Structure
    [Show full text]
  • Identification and Analysis of Hepatitis C Virus NS3 Helicase Inhibitors Using Nucleic Acid Binding Assays Sourav Mukherjee1, Alicia M
    Published online 27 June 2012 Nucleic Acids Research, 2012, Vol. 40, No. 17 8607–8621 doi:10.1093/nar/gks623 Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays Sourav Mukherjee1, Alicia M. Hanson1, William R. Shadrick1, Jean Ndjomou1, Noreena L. Sweeney1, John J. Hernandez1, Diana Bartczak1, Kelin Li2, Kevin J. Frankowski2, Julie A. Heck3, Leggy A. Arnold1, Frank J. Schoenen2 and David N. Frick1,* 1Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, 2University of Kansas Specialized Chemistry Center, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047 and 3Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA Received March 26, 2012; Revised May 30, 2012; Accepted June 4, 2012 Downloaded from ABSTRACT INTRODUCTION Typical assays used to discover and analyze small All cells and viruses need helicases to read, replicate and molecules that inhibit the hepatitis C virus (HCV) repair their genomes. Cellular organisms encode NS3 helicase yield few hits and are often con- numerous specialized helicases that unwind DNA, RNA http://nar.oxfordjournals.org/ founded by compound interference. Oligonucleotide or displace nucleic acid binding proteins in reactions binding assays are examined here as an alternative. fuelled by ATP hydrolysis. Small molecules that inhibit After comparing fluorescence polarization (FP), helicases would therefore be valuable as molecular homogeneous time-resolved fluorescence (HTRFÕ; probes to understand the biological role of a particular Cisbio) and AlphaScreenÕ (Perkin Elmer) assays, helicase, or as antibiotic or antiviral drugs (1,2). For an FP-based assay was chosen to screen Sigma’s example, several compounds that inhibit a helicase Library of Pharmacologically Active Compounds encoded by herpes simplex virus (HSV) are potent drugs in animal models (3,4).
    [Show full text]
  • Pitolisant | Medchemexpress
    Inhibitors Product Data Sheet Pitolisant • Agonists Cat. No.: HY-12199 CAS No.: 362665-56-3 Molecular Formula: C₁₇H₂₆ClNO • Molecular Weight: 295.85 Screening Libraries Target: Histamine Receptor Pathway: GPCR/G Protein; Immunology/Inflammation; Neuronal Signaling Storage: Pure form -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month SOLVENT & SOLUBILITY In Vitro DMSO : 100 mg/mL (338.01 mM; Need ultrasonic) Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 3.3801 mL 16.9005 mL 33.8009 mL Stock Solutions 5 mM 0.6760 mL 3.3801 mL 6.7602 mL 10 mM 0.3380 mL 1.6900 mL 3.3801 mL Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (8.45 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (8.45 mM); Clear solution 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (8.45 mM); Clear solution BIOLOGICAL ACTIVITY Description Pitolisant is a potent and selective nonimidazole inverse agonist at the recombinant human histamine H3 receptor (Ki=0.16 nM). IC₅₀ & Target Ki: 0.16 nM (H3 receptor)[1] EC50: 1.5 nM (H3 receptor)[1] In Vitro On the stimulation of guanosine 5′-O-(3-[35S]thio)triphosphate binding to this receptor, Pitolisant (BF2.649) behaves as a Page 1 of 3 www.MedChemExpress.com competitive antagonist with a Ki value of 0.16 nM and as an inverse agonist with an EC50 value of 1.5 nM and an intrinsic activity ~50% higher than that of ciproxifan.
    [Show full text]
  • New Use of Glutaminyl Cyclase Inhibitors
    (19) TZZ _Z T (11) EP 2 481 408 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 01.08.2012 Bulletin 2012/31 A61K 31/4164 (2006.01) A61K 31/4184 (2006.01) A61K 31/422 (2006.01) A61K 31/4178 (2006.01) (2006.01) (2006.01) (21) Application number: 11192085.6 A61K 31/433 A61K 31/5415 A61K 31/517 (2006.01) A61P 25/28 (2006.01) (2006.01) (2006.01) (22) Date of filing: 28.02.2008 A61P 29/00 A61P 3/08 A61K 45/06 (2006.01) (84) Designated Contracting States: • Hoffmann, Torsten AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 06114 Halle / Saale (DE) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • Cynis, Holger RO SE SI SK TR 06110 Halle / Saale (DE) • Demuth, Hans-Ulrich (30) Priority: 01.03.2007 US 892265 P 06120 Halle / Saale (DE) 14.03.2007 US 685881 (74) Representative: Hoffmann, Matthias et al (62) Document number(s) of the earlier application(s) in Maikowski & Ninnemann accordance with Art. 76 EPC: Patentanwälte 08717208.6 / 2 117 540 Kurfürstendamm 54-55 10707 Berlin (DE) (71) Applicant: Probiodrug AG 06120 Halle/Saale (DE) Remarks: This application was filed on 06-12-2011 as a (72) Inventors: divisional application to the application mentioned • Schilling, Stephan under INID code 62. 06130 Halle / Saale (DE) (54) New use of glutaminyl cyclase inhibitors (57) The present invention relates in general to an c. fibrosis, e.g. lung fibrosis, liver fibrosis, renal fibrosis, inhibitor of a glutaminyl peptide cyclotransferase, and d.
    [Show full text]
  • EVALUATION of ANTIHISTAMINES for in Vitro ANTIMALARIAL ACTIVITY AGAINST Plasmodium Falciparum
    EVALUATION OF ANTIHISTAMINES FOR in vitro ANTIMALARIAL ACTIVITY AGAINST Plasmodium falciparum SHAIK ANEESA A full thesis submitted in fulfilment of the requirements for the degree of Magister Pharmaceuticiae in the Faculty of Natural Sciences, School of Pharmacy, University of the Western Cape Supervisor: Dr. Henry Martin John Leng January 2011 I #75-0"1 Plasmodium falciparum Antihistamines Chloroquine resistance Synergism Cyproheptadine Ketotifen Chlorpheniramine H3 antagonists Morphology Haemoglobin II #!*02'-, I declare that Evaluation of Antihistamines for in vitro Antimalarial Activity against Plasmodium falciparum is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. Full name.................................... Date.................................. Signed......................................... III ABSTRACT Evaluation of Antihistamines for in vitro Antimalarial Activity against Plasmodium falciparum Aneesa Shaik M. Pharm thesis, School of Pharmacy, University of the Western Cape, Bellville, South Africa January 2011 The declining efficacy of antimalarial drugs against resistant Plasmodium falciparum strains in several endemic regions has amplified the world’s burden of neglected diseases. This has highlighted the need for alternate strategies for chemotherapy and chemoprophylaxis. Since malaria is prevalent primarily in third world countries, it is critical for novel therapies
    [Show full text]
  • Pitolisant and Other Histamine-3 Receptor Antagonists—An Update on Therapeutic Potentials and Clinical Prospects
    medicines Review Pitolisant and Other Histamine-3 Receptor Antagonists—An Update on Therapeutic Potentials and Clinical Prospects Victoria Harwell and Pius S. Fasinu * Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27501, USA; [email protected] * Correspondence: [email protected] Received: 28 July 2020; Accepted: 27 August 2020; Published: 1 September 2020 Abstract: Background: Besides its well-known role as a peripheral chemical mediator of immune, vascular, and cellular responses, histamine plays major roles in the central nervous system, particularly in the mediation of arousal and cognition-enhancement. These central effects are mediated by the histamine-3 auto receptors, the modulation of which is thought to be beneficial for the treatment of disorders that impair cognition or manifest with excessive daytime sleepiness. Methods: A database search of PubMed, Google Scholar, and clinicaltrials.gov was performed in June 2020. Full-text articles were screened and reviewed to provide an update on pitolisant and other histamine-3 receptor antagonists. Results: A new class of drugs—histamine-3 receptor antagonists—has emerged with the approval of pitolisant for the treatment of narcolepsy with or without cataplexy. At the recommended dose, pitolisant is well tolerated and effective. It has also been evaluated for potential therapeutic benefit in Parkinson disease, epilepsy, attention deficit hyperactivity disorder, Alzheimer’s disease, and dementia. Limited
    [Show full text]
  • The Histamine H3 Receptor: Structure, Pharmacology and Function
    Molecular Pharmacology Fast Forward. Published on August 25, 2016 as DOI: 10.1124/mol.116.104752 This article has not been copyedited and formatted. The final version may differ from this version. MOL #104752 The histamine H3 receptor: structure, pharmacology and function Gustavo Nieto-Alamilla, Ricardo Márquez-Gómez, Ana-Maricela García-Gálvez, Guadalupe-Elide Morales-Figueroa and José-Antonio Arias-Montaño Downloaded from Departamento de Fisiología, Biofísica y Neurociencias, molpharm.aspetjournals.org Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Av. IPN 2508, Zacatenco, 07360 México, D.F., México at ASPET Journals on September 29, 2021 Running title: The histamine H3 receptor Correspondence to: Dr. José-Antonio Arias-Montaño Departamento de Fisiología, Biofísica y Neurociencias Cinvestav-IPN Av. IPN 2508, Zacatenco 07360 México, D.F., México. Tel. (+5255) 5747 3964 Fax. (+5255) 5747 3754 Email [email protected] 1 Molecular Pharmacology Fast Forward. Published on August 25, 2016 as DOI: 10.1124/mol.116.104752 This article has not been copyedited and formatted. The final version may differ from this version. MOL #104752 Text pages 66 Number of tables 3 Figures 7 References 256 Words in abstract 168 Downloaded from Words in introduction 141 Words in main text 9494 molpharm.aspetjournals.org at ASPET Journals on September 29, 2021 2 Molecular Pharmacology Fast Forward. Published on August 25, 2016 as DOI: 10.1124/mol.116.104752 This article has not been copyedited and formatted. The final version may differ
    [Show full text]