On the Implementation of the Enhanced Fujita Scale in the USA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fujita Scale Is Used to Rate the Intensity of a Tornado by Examining the Damage Caused by the Tornado After It Has Passed Over a Man-Made Structure
The Fujita Scale is used to rate the intensity of a tornado by examining the damage caused by the tornado after it has passed over a man-made structure. The "Percentage of All Tornadoes 1950- 1994" pie chart reveals that the vast majority of tornadoes are either weak or do damage that can only be attributed to a weak tornado. Only a small percentage of tornadoes can be correctly classed as violent. Such a chart became possible only after the acceptance of the Fujita Scale as the official classification system for tornado damage. It is quite possible that an even higher percentage of all tornadoes are weak. Each year the National Weather Service documents about 1000 tornado touchdowns in the United States. There is evidence that 1000 or more additional weak tornadoes may occur each year and go completely undocumented. The "Percentage of Tornado-Related Deaths 1950-1994" pie chart shows that while violent tornadoes are few in number, they cause a very high percentage of tornado-related deaths. The Tornado Project has analyzed data prior to 1950, and found that the percentage of deaths from violent tornadoes was even greater in the past. This is because the death tolls prior to the introduction of the forecasting/awareness programs were enormous: 695 dead(Missouri-Illinois-Indiana, March 18, 1925); 317 dead(Natchez, Mississippi, May 7, 1840);.255 dead(St. Louis, Missouri and East St. Louis, Illinois, May 27, 1896); 216 dead(Tupelo, Mississippi, April 5, 1936); 203 dead(Gainesville, GA, April 6, 1936). In more recent times, no single tornado has killed more than 50 people since 1971. -
What Are We Doing with (Or To) the F-Scale?
5.6 What Are We Doing with (or to) the F-Scale? Daniel McCarthy, Joseph Schaefer and Roger Edwards NOAA/NWS Storm Prediction Center Norman, OK 1. Introduction Dr. T. Theodore Fujita developed the F- Scale, or Fujita Scale, in 1971 to provide a way to compare mesoscale windstorms by estimating the wind speed in hurricanes or tornadoes through an evaluation of the observed damage (Fujita 1971). Fujita grouped wind damage into six categories of increasing devastation (F0 through F5). Then for each damage class, he estimated the wind speed range capable of causing the damage. When deriving the scale, Fujita cunningly bridged the speeds between the Beaufort Scale (Huler 2005) used to estimate wind speeds through hurricane intensity and the Mach scale for near sonic speed winds. Fujita developed the following equation to estimate the wind speed associated with the damage produced by a tornado: Figure 1: Fujita's plot of how the F-Scale V = 14.1(F+2)3/2 connects with the Beaufort Scale and Mach number. From Fujita’s SMRP No. 91, 1971. where V is the speed in miles per hour, and F is the F-category of the damage. This Amazingly, the University of Oklahoma equation led to the graph devised by Fujita Doppler-On-Wheels measured up to 318 in Figure 1. mph flow some tens of meters above the ground in this tornado (Burgess et. al, 2002). Fujita and his staff used this scale to map out and analyze 148 tornadoes in the Super 2. Early Applications Tornado Outbreak of 3-4 April 1974. -
19.4 Updated Mobile Radar Climatology of Supercell
19.4 UPDATED MOBILE RADAR CLIMATOLOGY OF SUPERCELL TORNADO STRUCTURES AND DYNAMICS Curtis R. Alexander* and Joshua M. Wurman Center for Severe Weather Research, Boulder, Colorado 1. INTRODUCTION evolution of angular momentum and vorticity near the surface in many of the tornado cases is also High-resolution mobile radar observations of providing some insight into possible modes of supercell tornadoes have been collected by the scale contraction for tornadogenesis and failure. Doppler On Wheels (DOWs) platform between 1995 and present. The result of this ongoing effort 2. DATA is a large observational database spanning over 150 separate supercell tornadoes with a typical The DOWs have collected observations in and data resolution of O(50 m X 50 m X 50 m), near supercell tornadoes from 1995 through 2008 updates every O(60 s) and measurements within including the fields of Doppler velocity, received 20 m of the surface (Wurman et al. 1997; Wurman power, normalized coherent power, radar 1999, 2001). reflectivity, coherent reflectivity and spectral width (Wurman et al. 1997). Stemming from this database is a multi-tiered effort to characterize the structure and dynamics of A typical observation is a four-second quasi- the high wind speed environments in and near horizontal scan through a tornado vortex. To date supercell tornadoes. To this end, a suite of there have been over 10000 DOW observations of algorithms is applied to the radar tornado supercell tornadoes comprising over 150 individual observations for quality assurance along with tornadoes. detection, tracking and extraction of kinematic attributes. Data used for this study include DOW supercell tornado observations from 1995-2003 comprising The integration of observations across tornado about 5000 individual observations of 69 different cases in the database is providing an estimate of mesocyclone-associated tornadoes. -
Storm Data and Unusual Weather Phenomena ....…….…....……………
MAY 2006 VOLUME 48 NUMBER 5 SSTORMTORM DDATAATA AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION noaa NATIONAL ENVIRONMENTAL SATELLITE, DATA AND INFORMATION SERVICE NATIONAL CLIMATIC DATA CENTER, ASHEVILLE, NC Cover: Baseball-to-softball sized hail fell from a supercell just east of Seminole in Gaines County, Texas on May 5, 2006. The supercell also produced 5 tornadoes (4 F0’s 1 F2). No deaths or injuries were reported due to the hail or tornadoes. (Photo courtesy: Matt Jacobs.) TABLE OF CONTENTS Page Outstanding Storm of the Month …..…………….….........……..…………..…….…..…..... 4 Storm Data and Unusual Weather Phenomena ....…….…....……………...........…............ 5 Additions/Corrections.......................................................................................................................... 406 Reference Notes .............……...........................……….........…..……........................................... 427 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: William Angel Assistant Editors: Stuart Hinson and Rhonda Herndon STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events -
Probable Maximum Precipitation Estimates, United States East of the 105Th Meridian
HYDROMETEOROLOGICAL REPORT 'N0.53 L D ..... 'C..,p "\ ..u o tM/ 'A1 ws/t.d/M 'b !>"'"'"' , , 1 1 ~, 5 E.~..~t:-west J/.,e; h~ s,J~ ..s, .... ~ ,41'b ~·qto Seasonal Variation of 10-Square-Mile Probable Maximum Precipitation Estimates, United States East of the 105th Meridian ,_ U.S. DEPARTMENT OF COMMERCE, , -- NATIONAL OCEANIC AND ATMOS~HERIC ADMINISI'RATION U.S. NUCLEAR REGULATORY COMMISSION - , - Silver Spnng, Md , , Apn11980 U.S. Department of Commerce U.S. Nuclear Regulatory National Oceanic and Atmospheric Commission Administration NUREG/CR-1486 Hydrometeorological Report No. 53 SEASONAL VARIATION OF 10-SQUARE-MILE PROBABLE MAXIMUM PRECIPITATION ESTIMATES) UNITED STATES EAST OF THE 105TH MERIDIAN Prepared by Francis P. Ho and John T. Riedel Hydrometeorological Branch Office of Hydrology National Weather Service Washington, D.C. April 1980 TABLE OF CONTENTS Page Abstract. 1 1. Introduction . 1 1.1 Authorization. 1 1.2 Purpose. 1 1.3 Scope ••... 1 1.4 Definitions .. 2 1.5 Previous study 2 2. Basic data . 2 2.1 Background • • • • • . 2 2.2 Available station rainfall data •• 3 2.2.1 Storm rainfall • • • • • 3 2.2.2 Maximum 1-day or 24-hour values, each month ••••••• 3 2.2.3 Maximum 6-, 12- and 24-hr values, each month . 3 2.2.4 11aximum recorded rainfall at first-order stations. 3 2.2.5 Data tapes, selected stations. 3 2.2.6 Data tapes, 1948-73 •. 5 2.2.7 Canadian data. 5 3. Approach to PMP. • ••. 5 3.1 Summary. 5 3.2 Selected major storm values •. 5 3.3 Moisture maximization. -
The Population Bias of Severe Weather Reports West of the Continental Divide
THE POPULATION BIAS OF SEVERE WEATHER REPORTS WEST OF THE CONTINENTAL DIVIDE Paul Frisbie NOAAlNational Weather Service Weather Forecast Office Grand Junction, Colorado Abstract and had 'significant consequences. Lightning from thun derstorms that afternoon sparked the Marble Cone fire Many severe storms in the West may go unreported or (several miles south of Camp Pico Blanco) that burned unobserved, and therefore, the severe weather climatology 177,866 acres - the third largest wildfire in California's is not fully understood. However, as the population has history (California Department of Forestry and Fire increased in the West, so has the number of severe weath Protection 2004). er reports. To check if a population bias exists, correlation The aforementioned cases illustrate the challenges of coefficients are calculated with respect to population for establishing a relevant severe weather climatology for tornadic and nontornadic severe storm activity. The sam the western US. Since no one knows how many severe ple size for tornadic storms is too small to draw any con storms go unreported or unobserved, there is uncertainty clusion. To calculate the correlation coefficients for non regarding the number of severe storms that actually do tornadic severe storms, population and severe weather occur. People have been gradually moving into areas that data are used for every county in each western state were once unpopulated, and are now observing severe between the years 1986-1995 and 1996-2004. The calcu storms that would not have been observed beforehand. To lated correlation coefficients reveal that population and provide a better understanding of how often severe the number ofnontornadic severe storms are significantly weather occurs, trends for tornadic and nontornadic correlated which indicates that a population bias does severe storms will be examined. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Tornadoes & Downburst
TORNADOES & DOWNBURST TORNADOES • A devastating F5 tornado about 200 meters wide plows through Hesston, Kansas, on March 13, 1990, leaving almost 300 people homeless and 13 injured. • Total destruction caused by an F5 tornado that devastated parts of Oklahoma on May 3, 1999. • A tornado is a violently rotating (usually counterclockwise in the northern hemisphere) column of air descending from a thunderstorm and in contact with the ground. Although tornadoes are usually brief, lasting only a few minutes, they can sometimes last for more than an hour and travel several miles causing considerable damage. In a typical year about 1000 tornadoes will strike the United States. The peak of the tornado season is April through June and more tornadoes strike the central United States than any other place in the world. This area has been nicknamed "tornado alley." Most tornadoes are spawned from supercell thunderstorms. Supercell thunderstorms are characterized by a persistent rotating updraft and form in environments of strong vertical wind shear. Wind shear is the change in wind speed and/or direction with height. • Tornadoes are natures most destructive weather hazard. Annual Number of Tornadoes per State (upper number) • Tornado incidence by state. The upper figure shows the number of tornadoes reported by each state during a 25-year period. The lower figure is the average annual number of tornadoes per 10,000 square miles. The darker the shading, the greater the frequency of tornadoes. • Average number of tornadoes during each month in the United States. Fujita Scale F0-F1 Fujita scale is a measure of tornado intensity Winds 60 - 115 mph quantified through a subjective analysis of relating tornadic damage to wind speed. -
1 International Approaches to Tornado Damage and Intensity Classification International Association of Wind Engineers
International Approaches to Tornado Damage and Intensity Classification International Association of Wind Engineers (IAWE), International Tornado Working Group 2017 June 6, DRAFT FINAL REPORT 1. Introduction Tornadoes are one of the most destructive natural Hazards on Earth, with occurrences Having been observed on every continent except Antarctica. It is difficult to determine worldwide occurrences, or even the fatalities or losses due to tornadoes, because of a lack of systematic observations and widely varying approacHes. In many jurisdictions, there is not any tracking of losses from severe storms, let alone the details pertaining to tornado intensity. Table 1 provides a summary estimate of tornado occurrence by continent, with details, wHere they are available, for countries or regions Having more than a few observations per year. Because of the lack of systematic identification of tornadoes, the entries in the Table are a mix of verified tornadoes, reports of tornadoes and climatological estimates. Nevertheless, on average, there appear to be more than 1800 tornadoes per year, worldwide, with about 70% of these occurring in North America. It is estimated that Europe is the second most active continent, with more than 240 per year, and Asia third, with more than 130 tornadoes per year on average. Since these numbers are based on observations, there could be a significant number of un-reported tornadoes in regions with low population density (CHeng et al., 2013), not to mention the lack of systematic analysis and reporting, or the complexity of identifying tornadoes that may occur in tropical cyclones. Table 1 also provides information on the approximate annual fatalities, althougH these data are unavailable in many jurisdictions and could be unreliable. -
Storms Are Thunderstorms That Produce Tornadoes, Large Hail Or Are Accompanied by High Winds
From February 17 to 19, a severe storm blasted the Lebanese coast with 100- kilometer (60-mile) winds and dropped as much as 2 meters (7 feet) of snow on parts of the country, news sources said. Temperatures dropped to near freezing along the coast, while snowplows struggled to clear the main roadway between Beirut and Damascus. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on February 20, 2012. Snow covers much of Lebanon, and extends across the border with Syria. Another expanse of snow occurs just north of the Syria-Jordan border. Snow in Lebanon is not uncommon, and the country is home to ski resorts. Still, this fierce storm may have been part of a larger pattern of cold weather in Europe and North Africa. References The Daily Star. (2012, February 18). Lebanon hit by extreme weather conditions. Accessed February 21, 2012. Naharnet. (2012, February 19). Storm subsides after coating Lebanon in snow. Accessed February 21, 2012. NASA image courtesy LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS Flooding is the most common of all natural hazards. Each year, more deaths are caused by flooding than any other thunderstorm related hazard. We think this is because people tend to underestimate the force and power of water. Six inches of fast-moving water can knock you off your feet. Water 24 inches deep can carry away most automobiles. Nearly half of all flash flood deaths occur in automobiles as they are swept downstream. -
Visualization of Tornado Data
Visualization of Tornado Data Anu Joy, Harshal Chheda, James Chy and Yuxing Sun Drexel University ABSTRACT— The aim of this project is to study the nature of tornadoes with the use of information visualization tools. The emphasis of this project is to study the tornadoes that change directions and their effects. For this report we used a subset of published storm data from the National Oceanographic and Atmospheric Administration (NOAA). The data set included many types of storms, but we focused upon just the storm data relating to tornadoes. Both Tableau and IBM Many Eyes were used as the information visualization tools to perform graphical analysis of the data. When visualizing the data, we focused on the BEGIN_AZIMUTH and the END_AZIMUTH parameters in the data, which reflect the change of tornado directions. We found that tornadoes do frequently change direction. Tornadoes that probably went straight seemed to have much less in injuries than ones, which probably changed course. We had difficulties using the visualization tools convey any aggregated information regarding directions in general because the direction was not presented as numeric values in NOAA data. During the preparation of visualizations, we found some skills to change and improve the presentation of data. improved in step with advances in technology, most prominently 1 INTRODUCTION with increasingly more sophisticated radar systems. Numerical simulations continue to improve with increased computer power, 1.1 Brief History of Tornado Research speed, and storage capabilities. Researchers continue to be fascinated by tornadoes and measure 1.2 Brief History of Research into Tornado Path and observe the paths tornadoes follow, the months they are Research occur, and regions in which are tornado prone. -
Damage Analysis of Three Long-Track Tornadoes Using High-Resolution Satellite Imagery
atmosphere Article Damage Analysis of Three Long-Track Tornadoes Using High-Resolution Satellite Imagery Daniel Burow * , Hannah V. Herrero and Kelsey N. Ellis Department of Geography, University of Tennessee, Knoxville, 1000 Phil Fulmer Way, Knoxville, TN 37920, USA; [email protected] (H.V.H.); [email protected] (K.N.E.) * Correspondence: [email protected] Received: 2 May 2020; Accepted: 8 June 2020; Published: 10 June 2020 Abstract: Remote sensing of tornado damage can provide valuable observations for post-event surveys and reconstructions. The tornadoes of 3 March 2019 in the southeastern United States are an ideal opportunity to relate high-resolution satellite imagery of damage with estimated wind speeds from post-event surveys, as well as with the Rankine vortex tornado wind field model. Of the spectral metrics tested, the strongest correlations with survey-estimated wind speeds are found using a Normalized Difference Vegetation Index (NDVI, used as a proxy for vegetation health) difference image and a principal components analysis emphasizing differences in red and blue band reflectance. NDVI-differenced values across the width of the EF-4 Beauregard-Smiths Station, Alabama, tornado path resemble the pattern of maximum ground-relative wind speeds across the width of the Rankine vortex model. Maximum damage sampled using these techniques occurred within 130 m of the tornado vortex center. The findings presented herein establish the utility of widely accessible Sentinel imagery, which is shown to have sufficient spatial resolution to make inferences about the intensity and dynamics of violent tornadoes occurring in vegetated areas. Keywords: tornadoes; tornado damage; remote sensing; Sentinel-2; NDVI; PCA; Rankine vortex 1.