The Burnside Ring and Equivariant Stable Cohomotopy for Infinite Groups Wolfgang L¨uck∗ Fachbereich Mathematik Universit¨at M¨unster Einsteinstr. 62 48149 M¨unster Germany June 5, 2018 Abstract After we have given a survey on the Burnside ring of a finite group, we discuss and analyze various extensions of this notion to infinite (dis- crete) groups. The first three are the finite-G-set-version, the inverse- limit-version and the covariant Burnside group. The most sophisticated one is the fourth definition as the zero-th equivariant stable cohomotopy of the classifying space for proper actions. In order to make sense of this definition we define equivariant stable cohomotopy groups of finite proper equivariant CW -complexes in terms of maps between the sphere bundles associated to equivariant vector bundles. We show that this yields an equivariant cohomology theory with a multiplicative structure. We for- mulate a version of the Segal Conjecture for infinite groups. All this is analogous and related to the question what are the possible extensions of the notion of the representation ring of a finite group to an infinite group. Here possible candidates are projective class groups, Swan groups and the equivariant topological K-theory of the classifying space for proper actions. arXiv:math/0504051v2 [math.AT] 12 Jul 2005 Key words: Burnside ring, equivariant stable cohomotopy, infinite groups. Mathematics Subject Classification 2000: 55P91, 19A22. 0 Introduction The basic notions of the Burnside ring and of equivariant stable cohomotopy have been defined and investigated in detail for finite groups. The purpose of ∗email:
[email protected] www: http://www.math.uni-muenster.de/u/lueck/ FAX: 49 251 8338370 1 this article is to discuss how these can be generalized to infinite (discrete) groups.