The Air Traffic Control Operational Errors Severity Index: an Initial

Total Page:16

File Type:pdf, Size:1020Kb

The Air Traffic Control Operational Errors Severity Index: an Initial DOT/FAA/AM-05/5 The Air Traffic Control Office of Aerospace Medicine Operational Errors Severity Washington, DC 20591 Index: An Initial Evaluation Larry L. Bailey David J. Schroeder Julia Pounds Civil Aerospace Medical Institute Federal Aviation Administration Oklahoma City, OK 73125 April 2005 Final Report This document is available to the public through: • The Defense Technical Information Center Ft. Belvior, VA. 22060 • The National Technical Information Service Springfield, Virginia 22161 NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents thereof. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. ���������������� � � � � � 4. Title and Subtitle 5. Report Date ���������������������������������������������������������������������� ����������� ���������� 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. �������������������������������� 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) �������������������������������������� � ��������������� 11. Contract or Grant No. ������������������������ 12. Sponsoring Agency name and Address 13. Type of Report and Period Covered ����������������������������� � �������������������������������� � ���������������������������� � ��������������������� 14. Sponsoring Agency Code 15. Supplemental Notes ������������������������������������������������������ 16. Abstract ����������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������ �������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������� ������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������������������ ������������������������������������������������������������������������������������������������� 17. Key Words 18. Distribution Statement ��������������������������������������� ������������������������������������������������ ������������������������������������������������������� ���������������������������������������������� ������������������������������� 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price ������������� ������������� ��� Form DOT F 1700.7 (8-72) Reproduction of completed page authorized i THE AIR TRAFFIC CONTROL OPERATIONAL ERROR SEVERITY INDEX: AN INITIAL EVALUATION Currently, the FAA Air Traffic Investigations Division Operational Error Severity Index (SI) oversees and coordinates the Operational Error (OE) re- A study of OEs throughout the National Airspace porting process governed by the FAA Air Traffic Quality System (NAS) served as the basis for development of a Assurance Order 7210.56c (FAA, 2002) that details the model that would characterize their severity (Rodgers & conduct of incident reporting processes. The need for a Nye, 1993). Information from the initial investigation formal, system-error reporting program was recognized was used as the basis for development of the current early in the FAA’s evolution. Recommendations were SI. The index is based on the following factors: vertical developed regarding the conduct of incident investiga- and horizontal separation distances, relative flight paths, tions and the use of the resulting information, many cumulative closure rates, and the level of ATC awareness of which were incorporated into the FAA Order 8020 (hereafter referred to as ATC Control). Since these factors (O’Connor & Pearson, 1965). In 1964, a six-month test are based on operationally relevant criteria associated with of an expanded operational error/operational deviation the provision of ATC services, they allow for the calcula- (OE/OD) reporting form was conducted at two en route tion of the severity of air traffic control separation losses. centers located in Miami and Jacksonville, Florida. By July These factors are allocated various point values that total 1965, FAA Order 8020, the AT System Error Reporting 100 and thereby allow for an assessment of relative safety Program, was revised “to provide more complete error oc- across operational errors. currence information and simplify typing with a resultant The current Severity Index formula is computed from savings in time” (League, 1965). In addition to many data that, for the most part, can be objectively determined items resembling those used in the current report, this by post hoc incident investigation. Points are assigned for form included a matrix of points assigned to horizontal varying levels of vertical separation, horizontal separation, and vertical separation. This information was used to closure rate, flight paths, and the amount of control. categorize the event as major, moderate, or minor, using Determination of whether the event was controlled or horizontal and vertical proximity. Although this matrix uncontrolled is the only variable that requires ATC expert was later discontinued, the system was continually revised judgment to determine a point value. to become the current operational error reporting system Vertical and Horizontal separation are defined as the (FAA Order 7210.56c). The error reporting system has minimum separation based on the radar data just prior demonstrated the relatively infrequent nature of OEs. to aircraft divergence. Together, these factors make up For example, in fiscal year 2000 alone, the U.S. air traf- to 50% of the SI point total. As shown in Tables 1a fic system handled 166,669,557 operations with an OE and 1b, the maximum point values (25 points each) are rate of .69 per 1000,000 facility activities. (FAA, 2002). assigned for both vertical and horizontal distances for However, concern has been expressed that the error rate events that culminate in proximities of less than 500 has gradually increased from .49 in 1997. ft vertical and less than 1⁄2-mile horizontal separation. In response to a recommendation in the 2000 report Given existing radar tolerances and measurement tools, by the U.S. Department of Transportation’s Office of further division of minimum separation distance would Inspector General (OIG), the FAA developed a method be of limited value. Accepting the notion that the safety to assign severity values for operational errors that occur in margin decreases geometrically, as opposed to a steady flight. A memorandum of understanding was negotiated arithmetic decline as aircraft get closer, points assessed between the National Air Traffic Controllers Association for close encounters remain higher. Conversely, as vertical (NATCA) and the FAA to support this effort. Having and horizontal separation increase, the potential threat to a tool to group OEs by severity would facilitate the pri- safety is assumed to be lower, and their associated point oritization and allocation of resources to focus attention assignments drop off rapidly. more efficiently on OEs in the different severity groups. When wake turbulence separation standards govern Later, in 2003, an OIG report (hereafter called the OIG aircraft around an airport, SI point values for vertical report) led to a scientific evaluation of the OE Severity separation are not calculated. Instead, in-trail separa- Index (SI) and its component parts. We report on the tions point values are used, as shown at the bottom of results of that evaluation. Table 1b. 1 Respective point values for closure rates and flight paths The following is an example of how the point total were developed to objectively include these parameters is used. If an aircraft is in en route airspace at a higher as components of the Severity Index (Tables 1a-1b). It altitude, standard separation calls for the minimum sepa- should be noted that faster aircraft closure rates, coupled ration to involve either a horizontal distance of 5 miles with converging, opposite-direction flight paths reduce or a vertical distance of 2,000 ft. As separation between the safety margin more so than slower closure rates and aircraft is reduced to less than the required distance, points diverging flight paths. Also, a significant assumption are assigned for the moment when minimum separation is made that aircraft on diverging or non-intersecting occurred. If the aircraft pair was separated by less than paths have little impact on the overall safety margin and 500 ft vertically (25 points) and between 1 to 1.499 miles consequently do not receive Severity Index points. How- (24 points), the subtotal would reach 49 points. At a ever, head-on encounters at high rates of speed, coupled
Recommended publications
  • Aviation Week & Space Technology
    STARTS AFTER PAGE 34 Using AI To Boost How Emirates Is Extending ATM Efficiency Maintenance Intervals ™ $14.95 JANUARY 13-26, 2020 2020 THE YEAR OF SUSTAINABILITY RICH MEDIA EXCLUSIVE Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • Aviation Acronyms
    Aviation Acronyms 5010 AIRPORT MASTER RECORD (FAA FORM 5010-1) 7460-1 NOTICE OF PROPOSED CONSTRUCTION OR ALTERATION 7480-1 NOTICE OF LANDING AREA PROPOSAL 99'S NINETY-NINES (WOMEN PILOTS' ASSOCIATION) A/C AIRCRAFT A/DACG ARRIVAL/DEPARTURE AIRFIELD CONTROL GROUP A/FD AIRPORT/FACILITY DIRECTORY A/G AIR - TO - GROUND A/G AIR/GROUND AAA AUTOMATED AIRLIFT ANALYSIS AAAE AMERICAN ASSOCIATION OF AIRPORT EXECUTIVES AAC MIKE MONRONEY AERONAUTICAL CENTER AAI ARRIVAL AIRCRAFT INTERVAL AAIA AIRPORT AND AIRWAY IMPROVEMENT ACT AALPS AUTOMATED AIR LOAD PLANNING SYSTEM AANI AIR AMBULANCE NETWORK AAPA ASSOCIATION OF ASIA-PACIFIC AIRLINES AAR AIRPORT ACCEPTANCE RATE AAS ADVANCED AUTOMATION SYSTEM AASHTO AMERICAN ASSOCIATION OF STATE HIGHWAY & TRANSPORTATION OFFICIALS AC AIRCRAFT COMMANDER AC AIRFRAME CHANGE AC AIRCRAFT AC AIR CONTROLLER AC ADVISORY CIRCULAR AC ASPHALT CONCRETE ACAA AIR CARRIER ACCESS ACT ACAA AIR CARRIER ASSOCIATION OF AMERICA ACAIS AIR CARRIER ACTIVITY INFORMATION SYSTEM ACC AREA CONTROL CENTER ACC AIRPORT CONSULTANTS COUNCIL ACC AIRCRAFT COMMANDER ACC AIR CENTER COMMANDER ACCC AREA CONTROL COMPUTER COMPLEX ACDA APPROACH CONTROL DESCENT AREA ACDO AIR CARRIER DISTRICT OFFICE ACE AVIATION CAREER EDUCATION ACE CENTRAL REGION OF FAA ACF AREA CONTROL FACILITY ACFT AIRCRAFT ACI-NA AIRPORTS COUNCIL INTERNATIONAL - NORTH AMERICA ACID AIRCRAFT IDENTIFICATION ACIP AIRPORT CAPITAL IMPROVEMENT PLANNING ACLS AUTOMATIC CARRIER LANDING SYSTEM ACLT ACTUAL CALCULATED LANDING TIME Page 2 ACMI AIRCRAFT, CREW, MAINTENANCE AND INSURANCE (cargo) ACOE U.S. ARMY
    [Show full text]
  • RCED-89-7 Air Traffic Control
    ,, ,, ,,,., .,. .I United States General Accounting Office Report to the Chairman, Subcommittee on - Transportation, Committee on Appropriations, House of Representatives November 1988 AIR TRAFFIC CONTROL Continued Improvements Needed in FAA’s Management of the NM Plan GAO,‘RCED-89-7 Resources, Community, and Economic Development Division B-230526.4 November lo,1988 The Honorable William Lehman Chairman, Subcommittee on Transportation Committee on Appropriations House of Representatives Dear Mr. Chairman: At your request, we evaluated the status of the Federal Aviation Administration’s National Airspace Systems Plan. This report presents the current cost and schedule estimates for the plan’s most significant projects, along with our findings, conclusions, and recommendations regarding the agency’s management of the air traffic control modernization effort. Unless you publicly announce its contents earlier, we plan no further distribution of this report until 17 days from the date of this letter. At that time, we will send copies to interested congressionalcommittees; the Secretary of Transportation; and the Administrator, Federal Aviation Administration. We will also make copies available to others upon request. This work was performed under the direction of Kenneth M. Mead, Associate Director. Major contributors are listed in appendix III. Sincerely yours, J. Dexter Peach Assistant Comptroller General Executive Summ~ The dramatic increasesin air travel after airline deregulation have Purpose strained the capabilities of the nation’s air traffic control system. More- over, aging and obsolete equipment are limiting the Federal Aviation Administration’s (FAA) ability to handle the increased air traffic effi- ciently. Since 1981, when FAA issued its National Airspace System (NAS) Plan to modernize the air traffic control system, GAO has reported fre- quently on various aspectsof the plan.
    [Show full text]
  • The Impacts of Globalisation on International Air Transport Activity
    Global Forum on Transport and Environment in a Globalising World 10-12 November 2008, Guadalajara, Mexico The Impacts of Globalisation on International Air Transport A ctivity Past trends and future perspectives Ken Button, School of George Mason University, USA NOTE FROM THE SECRETARIAT This paper was prepared by Prof. Ken Button of School of George Mason University, USA, as a contribution to the OECD/ITF Global Forum on Transport and Environment in a Globalising World that will be held 10-12 November 2008 in Guadalajara, Mexico. The paper discusses the impacts of increased globalisation on international air traffic activity – past trends and future perspectives. 2 TABLE OF CONTENTS NOTE FROM THE SECRETARIAT ............................................................................................................. 2 THE IMPACT OF GLOBALIZATION ON INTERNATIONAL AIR TRANSPORT ACTIVITY - PAST TRENDS AND FUTURE PERSPECTIVE .................................................................................................... 5 1. Introduction .......................................................................................................................................... 5 2. Globalization and internationalization .................................................................................................. 5 3. The Basic Features of International Air Transportation ....................................................................... 6 3.1 Historical perspective .................................................................................................................
    [Show full text]
  • Aviation Gridlock Understanding the Options and Seeking Solutions
    TRANSPORTATION RESEARCH E-CIRCULAR Number E-C029 March 2001 Aviation Gridlock Understanding the Options and Seeking Solutions Phase 1: Airport Capacity and Demand Management February 16, 2001 Washington, D.C. TRANSPORTATION NUMBER E-C029, MARCH 2001 RESEARCH ISSN 0097-8515 E-CIRCULAR Aviation Gridlock Understanding the Options and Seeking Solutions Phase 1: Airport Capacity and Demand Management February 16, 2001 Washington, D.C. Cosponsored by Federal Aviation Administration Transportation Research Board TRB STEERING COMMITTEE FOR OVERSIGHT OF FAA-SPONSORED WORKSHOPS ON AVIATION ISSUES (A1T74) Agam N. Sinha, Chair, and Chair, Aviation Section (A1J00) Gerald W. Bernstein, Chair, Committee on Aviation Economics and Forecasting (A1J02) Jody Yamanaka Clovis, Chair, Committee on Airport Terminals and Ground Access (A1J04) Geoffrey David Gosling, Chair, Committee on Aviation System Planning (A1J08) Gerald S. McDougall, Chair, Committee on Light Commercial and General Aviation (A1J03) Michael T. McNerney, Chair, Committee on Aircraft/Airport Compatibility, (A1J07) Roger P. Moog, Chair, Committee on Intergovernmental Relations in Aviation (A1J01) Saleh A. Mumayiz, Chair, Committee on Airfield and Airspace Capacity and Delay (A1J05) Daniel T. Wormhoudt, Chair, Task Force on Environmental Impacts of Aviation (A1J52) Joseph A. Breen, TRB Staff Representative TRB website: Transportation Research Board national-academies.org/trb National Research Council 2101 Constitution Avenue, NW Washington, DC 20418 The Transportation Research Board is a unit of the National Research Council, a private, nonprofit institution that is the principal operating agency of the National Academy of Sciences and the National Academy of Engineering. Under a congressional charter granted to the National Academy of Sciences, the National Research Council provides scientific and technical advice to the government, the public, and the scientific and engineering communities.
    [Show full text]
  • Air Traffic Control the Netherlands Becomes KLM's Latest
    Air Traffic Control the Netherlands becomes KLM’s latest biofuel partner Amstelveen, January 22nd 2018 - Air Traffic Control the Netherlands is joining KLM’s Corporate BioFuel Programme. This will enable KLM to increase investment in sustainable biofuel. Air Traffic Control the Netherlands will buy sustainable biofuel for all its business flights. “Sustainable biofuel makes a structural contribution to increasing the sustainability of the airline industry. KLM is committed to this aim, but cannot do it alone. It is therefore fantastic that more and more Dutch companies, like Air Traffic Control the Netherlands, are signing up to our Corporate Biofuel Programme. Together we can make a difference.” Pieter Elbers - KLM President & CEO “As air traffic control organization, we ensure the safety of air traffic in the Netherlands. Our employees also travel regularly outside the Netherlands to meet with our international partners. Air Traffic Control the Netherlands is delighted to be able to contribute to the sustainable development of the aviation sector by compensating for 100% of the CO2 emitted by our business flights with KLM. This is a great example of how we jointly facilitate aviation, in a sustainable way.” Michiel van Dorst, CEO Air Traffic Control the Netherlands Contact: SkyNRG Media Relations, tel. +31 20 470 20 20, [email protected], Rapenburgerstraat 109 – 1011 VL Amsterdam – The Netherlands – www.skynrg.com Cutting CO2 emissions KLM wants to cut its CO2 emissions 20% by 2020 (compared to 2011). To achieve this, KLM has been investing not only in sustainable biofuels, but also in new aircraft and more efficient flight operations. Using sustainable biofuels on a large scale can lead to an 80% cut in CO2 emissions, compared with fossil fuels.
    [Show full text]
  • Chapter Number
    APPENDIX E NATIONAL AIR TRAFFIC CONTROL SYSTEM Rocky Mountain Metropolitan Airport Airport Master Plan Update APPENDIX E. NATIONAL AIR TRAFFIC CONTROL SYSTEM The national airspace system consists of a network of navigational aids and a number of air traffic control facilities. The specific purpose of the air traffic control service is twofold: to prevent collisions between aircraft and, in the maneuvering area, between aircraft and obstructions and to expedite and maintain an orderly flow of air traffic. To properly manage the traffic in the system, the jurisdiction of control is divided into three parts, en route, terminal, and oceanic. Terminal air traffic control may be further sub-divided into terminal radar approach control (TRACON), and air traffic control tower (ATCT) operations. E.1 AIR ROUTE TRAFFIC CONTROL CENTER Air route traffic control centers (ARTCC) are established primarily to provide air traffic service to aircraft operating under instrument flight rules (IFR) on flight plans within controlled airspace, including airways and jet routes, and principally during the en route phase of flight. In addition, ARTCC can provide approach control services to non-towered airports and to non-terminal radar approach control airports. There are 21 ARTCCs located throughout the United States. Each of these centers is responsible for controlling en route traffic over the United States and parts of the Atlantic and Pacific Oceans in a definitive amount of geographical area that can be in excess of 100,000 square miles. At the boundary point of their definitive area, ARTCC will provide the pilot in command of the aircraft with the option of terminating service or transferring to an adjacent ARTCC or approach control facility for continued service.
    [Show full text]
  • Schedule Irregularity/IROPS Tickets Issued Prior to April 8, 2020
    Schedule Irregularity/IROPS Tickets issued prior to April 8, 2020 Note: if the ticket was issued on/after April 8, 2020 – see Schedule Irregularity/IROPS on/after 08APR2020 Index SalesLink – INVOL Reissue –Double 300-Mile Radius Endorsement Box Requirements Quick Additional Ticketing/Itinerary oneworld Reaccommodations – Schedule Irregularity/IROPS- Information Separate Tickets Reaccom Alternate Cities – MAC and Domestic Premium Class/Upfares/Premium Schedule Irregularity/IROPS-SSR Co Terminals Economy Fare Codes for Customer Contact Domestic/International Itineraries Refunds – Flight is Canceled Travel Agency Refund Processing Dynamic Rebooking Refunds – Flight is Delayed Brazil ANAC Guidelines RBD by Cabin Reaccommodation American has an automated reaccommodation system that will confirm customers on an alternate flight during disruptions, I.E. mechanical, ATC (Air Traffic Control), crew legality, weather, etc., which may occur up to 72 hours prior to the schedule departure. Travel professionals will follow the Schedule Irregularity/IROPS guidelines and reissue the customer’s ticket up to 2hrs prior to the departure time when the customer has not been accommodated by the Dynamic Rebooking Tool. Not all customers are accommodated by the Dynamic Rebooking, however, they are reaccommodated by normal REACCOM tool. Reissue / Protection Domestic / International Itineraries Domestic Travel Travel professionals may rebook up to 2 hours prior to the departure time on another American / American Eagle Prime flight Lowest available inventory
    [Show full text]
  • FY 2014 R&D Annual Review
    FY 2014 R&D Annual Review August 2015 Report of the Federal Aviation Administration to the United States Congress pursuant to Section 44501(c) of Title 49 of the United States Code FY 2014 R&D Annual Review August 2015 The R&D Annual Review is a companion document to the National Aviation Research Plan (NARP), a report of the Federal Aviation Administration to the United States Congress pursuant to Section 44501(c)(3) of Title 49 of the United States Code. The R&D Annual Review is available on the Internet at http://www.faa.gov/go/narp. FY 2014 R&D Annual Review Table of Contents Table of Contents Introduction ..............................................................................................................1 R&D Principle 1 – Improve Aviation Safety ......................................................... 2 R&D Principle 2 – Improve Efficiency ................................................................79 R&D Principle 3 – Reduce Environmental Impacts ..........................................93 Acronym List ........................................................................................................106 i FY 2014 R&D Annual Review List of Figures List of Figures Figure 1: Simulation Validation of GSE Impact Loading on 5-Frame .......................................... 2 Figure 2: Shear Tie Crushing Model Validation............................................................................ 3 Figure 3: Skin Cracking Model Validation ...................................................................................
    [Show full text]
  • The Effects of Air Traffic Control Privatization on Operating Cost and Flight Safety
    Journal of Aviation/Aerospace Education & Research Volume 14 Number 3 JAAER Spring 2005 Article 8 Spring 2005 The Effects of Air Traffic Control Privatization on Operating Cost and Flight Safety Anthony W. Adams Follow this and additional works at: https://commons.erau.edu/jaaer Scholarly Commons Citation Adams, A. W. (2005). The Effects of Air Traffic Control Privatization on Operating Cost and Flight Safety. Journal of Aviation/Aerospace Education & Research, 14(3). https://doi.org/10.15394/jaaer.2005.1521 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Adams: The Effects of Air Traffic Control Privatization on Operating Cos Air TrMc Control Privatization THE EFFECTS OF AIR TRAFFZC CONTROL PRNA TZmTZON ON OPERATZNG COST AND FLIGHT SAFETY Anthony W. Adarns r ABSTRACT The purpose of this study was to determine if privatization of the Air Traffic Control (ATC) System would cause a reduction in ATC operating cost and improve air traffic safety. An analysis was made to determine the effect privatization had on operating cost and air MICsafety involving the privatized ATC systems of Australia, Germany, New Zealand, and Switzerland. The study showed reduced operating cost and increased safety would result from corporate structuring of the ATC system. It was concluded that corporate style policy regarding personnel management and equipment procurement procedures would increase efficiency, which would reduce operating cost and increase ATC flight safety.
    [Show full text]
  • Human Performance in Air Traffic Management Safety a White Paper
    Human Performance in Air Traffic Management Safety A White Paper EUROCONTROL/FAA Action Plan 15 Safety September 2010 EUROCONTROL HUMAN PERFORMANCE IN AIR TRAFFIC MANAGEMENT SAFETY A White Paper September 2010 EUROCONTROL / FAA ACTION PLAN 15 SAFETY HUMAN PERFORMANCE AND AIR TRAFFIC MANAGEMENT SAFETY WHITE PAPER FOREWORD EUROCONTROL / FAA Action Plan 15 on Safety Research is aimed at advancing safety concepts and practices in air traffic management, via the sharing of expertise from its membership. It has three main axes: understanding system safety, developing new approaches to assess and improve safety, and disseminating its findings into the industry. AP15 came into existence in 2003 and its current terms of reference run until end 2010. The relationship between human performance and safety has been a long-standing issue in AP15 deliberations, since human performance is such a critical determinant for ATM safety. The AP15 Members hope this White Paper will help understanding of this area, and its critical importance in achieving system performance and system safety, today, and in tomorrow’s systems as envisaged by SESAR in Europe and NextGen in the US. AP 15 Terms of Reference Understand Safety & Hazards Improve Safety in Develop/Adapt Safety Methods ATM Disseminate Useful Approaches AP15 Membership n EUROCONTROL – Barry Kirwan [Co-chair], Eric Perrin, Herman Nijhuis, and Steven Shorrock n FAA – Joan Devine [Co-chair], Jim Daum, Dino Piccione, Sherry Borener, Warren Randolph, Hossein Eghbali and Michael Sawyer n NASA – Dawn McIntosh, Michael Feary and Barbara Burian n NATS (UK) – David Bush n DFS (Germany) – Joerg Leonhardt n AVINOR (Norway) – Anne Chavez n LFV (Sweden) – Billy Josefsson n NLR (the Netherlands) – Henk Blom and Michel Piers For further information: [email protected] [email protected] HUMAN PERFORMANCE AND AIR TRAFFIC MANAGEMENT SAFETY WHITE PAPER 1 EXECUTIVE SUMMARY This White Paper is built on collaboration between 1.
    [Show full text]
  • Ecodemonstrator ASTAR Guided Arrival Research (EAGAR)
    National Aeronautics and Space Administration ATM Technology Demonstration 1 (ATD-1) EcoDemonstrator ASTAR Guided Arrival Research (EAGAR) Roy Roper Project Outbrief January 29, 2015 www.nasa.gov 1 Sequence of Events Leading to EAGAR In Spring 2013, high level NASA and Boeing management were seeking opportunities to collaborate on a flight test activity involving the ecoDemonstrator. The Airspace Systems Program Office identified FIM as a viable candidate. ATD‐1 accepted the challenge. Work began in July for a December 2013 flight test. 2 Objectives Conduct a rapid collaborative development effort with Boeing to equip the 2013 ecoDemonstrator test aircraft (B787‐800) with an ASTAR‐based airborne spacing tool. Conduct a flight test to demonstrate precision spacing between two aircraft with the aid of NASA’s ASTAR algorithm. 3 Minimum Success Criteria ATD‐1: Successful rapid collaboration between NASA and Boeing FIM operation: Both Target and FIM aircraft fly from initial waypoint to FAF without interruption (vectors, etc). Was it feasible in the real world? YES FIM software: Continuous progression to achieve assigned spacing goal behind Target aircraft. Was the software robust and perform as expected? YES 4 “Stretch” Success Criteria Demonstrate consistent final spacing within +/‐5 seconds at the FIM termination point. Run # Delivery Accuracy 1 ‐7.5 21.5 31.4 42 5 ‐3.5 Std. Dev. 4.16 Range 9.5 5 Flight Test Approach Equip the ecoDemostrator with the ASTAR‐based application hosted on a laptop PC Conduct an arrival sequence and connect to
    [Show full text]