40 5.2.1 Terrestrial Palynomorphs Laevigate Trilete Spores

Total Page:16

File Type:pdf, Size:1020Kb

40 5.2.1 Terrestrial Palynomorphs Laevigate Trilete Spores 5.2.1 Terrestrial Palynomorphs Laevigate trilete spores Genus: Aulisporites LESCHIK 1954 Aulisporites astigmosus (LESCHIK 1956a) KLAUS 1960 1956 Calamospora astigmosa sp. nov . – LESCHIK, p. 22, Plate 2 Fig. 17 1960 Aulisporites astigmosus (Leschik) nov. Comb . – K LAUS , p. 119 - 120, Plate 28, fig. 2. Genus: Calamospora SCHOPF , WILSON & B ENTALL 1944 Calamospora tener (LESCHIK 1955) DE JERSEY 1962 1955 Laevigatisporites tener sp. nov. – LESCHIK , p. 13, Plate 1., Fig. 20. 1955 Punctatisporites flavus – LESCHIK , p. 31, Plate 4, Fig. 2. 1958 Calamospora mesozoicus – COUPER , p. 132, Plate 15/3+4. 1960 Calamospora nathorstii – KLAUS , p. 116, Plate 28, Fig. 1. 1962 Calamaospora tener (L ESCHIK ) n. comb. - de Jersey, p. 3-4, Plate 1, fig 9 –10. 1964 Calamospora tener (LESCHIK 1955) n. comb. – MÄDLER (a), p. 92, Plate 8, Fig. 2. Genus: Cingulizonates DYBOVA & J ACHOWICS 1957 Cingulizonates rhaeticus (R HEINHARDT ) S CHULZ 1967 1962 Cingulatizonates rhaeticus sp. nov. – RHEINHARDT , P. 702, P LATE 2 F IG . 3 1964 Anulatisporites drawehni MAEDLER , P. 177, P LATE 2, F IGS . 1 – 2 1966 Cingulatizonates delicatus ORLOWSKA – Z WOLINSKAP I 014, PLATE 7 FIGS 36 - 38 1967 Cingulatizonates rhaeticus – SCHULZ P. 584, PLATE .13, F IG . 6- 7 Genus: Concavisporites THOMSON & P FLUG 1953 p. 49, Plate 1, Fig. 19 1953 Concavisporites gen. nov. – THOMSON & P FLUG , p. 49. 1959 Toroisporites gen. nov. – KRUTZSCH ,, p. 90. Concavisporites crassexinius NILSSON 1958 p.35, Plate 1, Fig. d 1958 Concavisporites crassexinius sp. nov. – NILSSON , p . 35, Plate 1, Fig. 11. Concavisporites mesozoicus sensu BÓNA Comment: Sporomorphs described by Bóna as C. mesozoicus are comparable to Concavisporites variverrucatus described by COUPER 1958. Concavisporites parvulus sensu BONA The spores, described by Bóna as C. parvulus with a diameter of 20-24 µm are smaller as the other species of this genus. 40 Concavisporites rhaetoliassicus ACHILLES 1981 1981 Concavisporites rhaetoliassicus sp. nov. – ACHILLES , p. 13 –14 , Plate 1, Fig. -13 - 15. Genus: Cornutisporites SCHULZ 1962 p. 310, plate 1, Fig. 7 - 8 Cornutisporites seebergensis SCHULZ 1962 1967 Cornutisporites seebergensis SCHULZ , p. 310, Plate 1, Fig. 7 - 8. Genus: Cyathidites COUPER 1953 p. 27, Plate 2, Fig. 11, 12. Cyathidites australis COUPER 1953 1953 Lygodiosporites adriennis POTONIE & G ELLETICH f. mesozoicus Thiergart; COOKSON , p. 470, Plate 2, Fig. 29. 1953 Cyathidites australis COUPER , p. 27, Plate 2, Fig. 11, 12. 1961 Lygodiumsporites adriennis POTONIE & G ELLETICH ; B OLKOVITINA , p. 104-105, Plate 31, Fig. 3e (illustration of specimen figured by COOKSON 1953). 1961 Cyathidites australis COUPER ; Dev, p. 43, Plate 1, Fig. 1. 1963 Leiotriletes sp. Type A.; SAAD , p. 120, Plate 33, Fig. 1-5. 1963 Cyathidites australis COUPER ; DETTMANN , p. 22, Plate 1, Fig. 1-3. 1965 Cyathidites cf. australis COUPER ; DORING , p. 19, Plate 3, Fig. 1-3. 1966 Cyathidites australis COUPER ; BURGER , p. 237, Plate 5, Fig. 2. 1968 Deltoidospora australis ; CHALONER & MUIR , Plate 16, Fig. a. 1969 Cyathidites australis COUPER ; NORRIS , p. 582, Plate 102, Fig. 1. 2003 Cyathidites australis COUPER ; CHEN & Z HANG , p. 305, Plate 1, Fig. 6-8. 2003 Deltoidospora australis (COUPER ) POCOCK ; QUATTROCCHIO , et al. p. 66, Plate 1, Fig. 1. 2004 Cyathidites australis COUPER ; CHEN & Z HANG , p. 205, Plate 1, Fig. 7, 8. 2006 Deltoidospora australis (COUPER ) POCOCK ; QUATTROCCHIO , et al. p. 594, Fig. 6E. 2006 Cyathidites australis COUPER ; MACPHAIL & CANTRILL , p. 619, Plate 1, Fig. 11. Natural affinity: Filicopsida; various genera and families; Cyatheaceae ( Cyathea ), Dicksoniaceae, Schizaeaceae (Lygodium ). Cycathidites minor COUPER , 1953 1953 Cyathidites australis COUPER , p. 28, Plate 2, Fig. 13 Genus: Deltoidospora MINER 1935 p. 613 plate 24 fig. 7 Deltoidospora sp. sensu BONA Description: Trilete spores, concavely triangular to subcircular; Y mark distinct, rays at least 2/3 radius; exine two-layered, smooth or infrapunctate, with or without exinal folds (kyrtome or less) along the Y mark; 25-80 µm. 41 Genus : Densosporites BERRY 1937 p. 157 Densosporites fissus ( REINHARDT 1964) S CHULZ 1967 1964 Densoisporites fissus sp.nov. REINHARDT p. 54 plate 2 fig 1 – 3 1964 Cingulatizonites rhaeticus MAEDLER 1964 p. 184 plate 2 fig. 18 - 19 1967 Densosporites fissus (R HEINHARDT ) comb. nov. SCHULZ 582, PLATE 12, FIG . 5 - 6 Densoisporites sp. Plate 1, Fig. c Genus : Dictyophyllidites COUPER , 1958 p. 140 plate 21 fig. 5 - 6 Dictyophyllidites harrisii COUPER , 1958 1958 Dictyophyllidites harrisii COUPER , p. 140 plate 21 fig. 5 - 6 Original diagnosis: Trilete, laesurae long, distinct, commissures clearly raised, bordered by a distinct margo; equatorial contour triangular, distal surface markedly convex, proximal less so; exine smooth and comparatively thin. The genus is intended for dispersed spores of the type met within the Jurassic fern Dictyophyllum . Genus: Leiotriletes NAUMOVA 1939 p. 355 emend. POTONIÉ & K REMP 1955 Leiotriletes sp. Genus: Stereisporites THOMSON & P FLUG 1953 p. 53 Stereisporites spp. DE JERSEY & R AINE 1990 1990 Stereisporites sp.; DE JERSEY & RAINE , p. 22, Plate 1, Fig. L. Natural affinity: Bryophyta. Genus Todisporites COUPER 1958 P. 134 Todisporites major COUPER 1958 1958 Todisporites major COUPER , p. 134, Plate 16, Fig. 6-8. 1964 Punctatisporites major (COUPER ) KEDVES & S IMONCSICS , p. 13, Plate 3, Fig. 1, 2. 1966 Todisporites major COUPER ; Helal, p. 86, Plate 31, Fig. 5. 1977 Punctatisporites major (COUPER ) DORHOFER , pp. 20-21, Plate 2, Fig. 10-12 (in part). (includes T. minor COUPER in synonymy) 1978 Todisporites major COUPER ; GUY -OHLSON , pp. 40-41, Plate 6, Fig. 58. 1988 Punctatisporites major (COUPER ) DORHOFER ; PONS , p. 82, Plate 17, Fig.7. 1989 Todisporites cf. major COUPER ; PLANDEROVA , p. 40, Plate 11, Fig. 6. 1992 Puncatisporites sp. cf. P. major (COUPER ) DORHOFER ; BRENNER & Bickoff, p. 164, Plate 5, Fig. 11. 1993 Todisporites major COUPER ; MANDAOKAR , p. 134-135, Plate 2, Fig. 11, 14, 18. 1995 Punctatosporites COUPER ; RAVN , p. 64, Plate 8, Fig. 21. 42 1996 Todisporites major COUPER ; PRAMPARO et al., p. 398. Natural affinity: Filicopsida; Osmundaceae?. Todisporites minor COUPER 1958 p. 135 Plate 16, Fig. 9 -10 See 1955 Laevigatosporites globosus LESCHIK , p. 11, Plate 1, Fig. 5. 1958 Todisporites minor COUPER , p. 135, Plate 16, Fig. 9, 10. 1968 Todisporites sp. A.; JAIN , p. 9, Plate 1, Fig. 5. 1969 Todisporites minor COUPER ; VAGVOLGYI & H ILLS , p. 160, Plate 1, Fig. 13. 1973 Todisporites cf. T. minor COUPER ; STONE , p. 64, Plate 10, Fig. 51. 1974 Todisporites minor COUPER ; RAMANUJAM & S RISAILAM , p. 73, 75, Plate 2, Fig. 11. 1975 Todisporites cf. minor COUPER ; VOLKHEIMER & QUATTROCCHIO , p. 204-205, Plate 1, Fig. 2. 1976 Todisporites minor COUPER ; ROGALSKA , Plate 10, Fig. 153-156. 1977 Punctatisporites globosus (LESCHIK ) LUND , p. 52, Plate 1, Fig. 11. 1977 Punctatisporites major (COUPER ) DORHOFER ,p. 20-21 (in part). 1977 Todisporites minor COUPER ; STAPLETON & B EER , pp. 6-7, Plate 2, Fig. 9. 1985 Todisporites rotundiformis (MALJAVKINA ) POCOCK ; Yu et al., p. 65-66, Plate 12, Fig. 22. 1986 Todisporites minor COUPER ; ASHRAF & E RBEN , p. 128, Plate 2, Fig. 10. 1986 Punctatisporites minor (COUPER ) BRENNER , p. 143, Fig. 6.10. 1086 Todisporites minor COUPER ; Nanjing Institute etc., p. 200, Plate 1, Fig. 18, 39, 40, 46. 1991 Punctatisporites globosus (LESCHIK ) LUND ; DYBKJAER , p. 19, Plate 1, Fig. 8. 1991 Punctatisporites minor COUPER ; ZHANG & ZHAN , p. 76, Plate 3, Fig. 18. 1992 Todisporites cf. T. minor COUPER ; KUMAR , p. 84, Plate 1, Fig. 8. 1992 Todisporites minor COUPER ; ELA & M AHROUS , p. 607, Fig. 5.1. 1998 Todisporites cf. minor COUPER ; SONG , p. 344, Plate 1, Fig. 23, 24. 1998 Todisporites minor COUPER ; SHANG , p. 444, Plate 3, Fig. 2. Natural affinity: Filicopsida; ?Osmundaceae. Genus: Uvaesporites DOERING 1965 P. 39 Uvaesporites argenteaeformis (BOLKOVITINA 1953) SCHULZ 1967 1953 Stenozonatriletes argenteaeformis BOLKOVITINA , p. 51, Plate 7, Fig. 9. 1962 Triletes reissingeri RHEINHARDT , p. 707, plate 2 fig. 1-2 1967 Uvaesporites argenteaeformis (BOLKOVITINA ) SCHULZ , p. 560, Plate 2, Fig. 10, 11. 1997 Uvaesporites argenteaeformis (BOLKOVITINA ) SCHULZ ; ZHANG & GRANT -MACKIE , p. 18, Plate 2, Fig. 7; Plate 4, Fig. 11, 12. 2000 Uvaesporites argenteaeformis (BOLKOVITINA ) SCHULZ ; GAO et al., p. 222, Plate 8, Fig. 16. 2001 Uvaesporites argenteaeformis (BOLKOVITINA ) SCHULZ ; VAJDA , pp. 417, 421, Fig. 10I, 15H. Natural affinity: Lycopsida. Sculptured trilete Spores Genus: Acanthotriletes (Naumova 1939) p. 355 POTONIÉ & K REMP 1954 Acanthotriletes varius NILSSON 1958 page 42 Plate 2, Fig. 10 1958 Acanthotriletes varius sp. nov. – NILSSON , p. 42, Plate 2, Fig. 10. 43 1964 Anemiidites spinosus sp. nov. – MÄDLER (b), p. 180, Plate 2, Fig. 11. Genus: Baculatisporites PFLUG & T HOMSON 1953 p. 56 Baculatisporites sp. 1934 Baculatisporltes primarius WOLFF 1953 PFLUG & THOMSON in THOMSON & PFLUG , 1953, p. 56. Comment: Krutzsch 1967 after having studied spores of all recent species of Osmunda , proposes to maintain Verrucosisporites for Paleozoic spores of this affinity and morphology, and to broaden the diagnosis of Baculatisporites so it will encompass all Mesozoic spores with osmundoid character of ornamentation, which includes ruguiate and baculate sculpture. Similar sculpture can be found, amongst others, in the genera Todea and Lepidopteris of the Osmundaceae . Krutzsch states that at present only few fossil spores can be identified
Recommended publications
  • A Palaeoenvironmental Reconstruction of the Middle Jurassic of Sardinia (Italy) Based on Integrated Palaeobotanical, Palynological and Lithofacies Data Assessment
    Palaeobio Palaeoenv DOI 10.1007/s12549-017-0306-z ORIGINAL PAPER A palaeoenvironmental reconstruction of the Middle Jurassic of Sardinia (Italy) based on integrated palaeobotanical, palynological and lithofacies data assessment Luca Giacomo Costamagna1 & Evelyn Kustatscher2,3 & Giovanni Giuseppe Scanu1 & Myriam Del Rio1 & Paola Pittau1 & Johanna H. A. van Konijnenburg-van Cittert4,5 Received: 15 May 2017 /Accepted: 19 September 2017 # The Author(s) 2017. This article is an open access publication Abstract During the Jurassic, Sardinia was close to con- diverse landscape with a variety of habitats. Collection- tinental Europe. Emerged lands started from a single is- and literature-based palaeobotanical, palynological and land forming in time a progressively sinking archipelago. lithofacies studies were carried out on the Genna Selole This complex palaeogeographic situation gave origin to a Formation for palaeoenvironmental interpretations. They evidence a generally warm and humid climate, affected occasionally by drier periods. Several distinct ecosystems can be discerned in this climate, including alluvial fans This article is a contribution to the special issue BJurassic biodiversity and with braided streams (Laconi-Gadoni lithofacies), paralic ^ terrestrial environments . swamps and coasts (Nurri-Escalaplano lithofacies), and lagoons and shallow marine environments (Ussassai- * Evelyn Kustatscher [email protected] Perdasdefogu lithofacies). The non-marine environments were covered by extensive lowland and a reduced coastal Luca Giacomo Costamagna and tidally influenced environment. Both the river and the [email protected] upland/hinterland environments are of limited impact for Giovanni Giuseppe Scanu the reconstruction. The difference between the composi- [email protected] tion of the palynological and palaeobotanical associations evidence the discrepancies obtained using only one of those Myriam Del Rio [email protected] proxies.
    [Show full text]
  • Mezzolombardo
    ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale SERVIZIO GEOLOGICO D’ITALIA Organo cartografico dello Stato (legge 68 del 2.2.1960) NOTE ILLUSTRATIVE della CARTA GEOLOGICA D’ITALIA alla scala 1:50.000 foglio 043 MEZZOLOMBARDO A cura di Marco Avanzini1 Giuseppe Maria Bargossi2, Andrea Borsato1, Maurizio Cucato3, Corrado Morelli3, Vincenzo Picotti2, Luigi Selli2 Con la collaborazione di: Tiziano Abbà3, Mariangela Balboni4, Gianfranco Bazzoli3, Paolo Campedel4, Claudio Carraro5, Oscar Groaz4, Lorenz Keim5, Paolo Ferretti1, Luca Froner4, Pierpaolo Macconi2, Mattia Marini6, Gianluca Piccin3, Matteo Rinaldo3, Ernesto Santuliana4,Claudia Strada5, Riccardo Tomasoni3, Alfio Viganò4, Giorgio Zampedri4, Mauro Zambotto4 1 MuseoPROGETTO Tridentino di Scienze Naturali, Trento 2 Dipartimento di Scienze della Terra e Geologico - Ambientali, Università di Bologna 3 Geologo, libero professionista 4 Servizio Geologico - Provincia Autonoma di Trento 5 Ufficio Geologia e prove materiali - Provincia Autonoma di Bolzano - Alto Adige 6 SEA Srl, Torino Enti realizzatori Provincia Autonoma di Trento ProvinciaProvincia Autonoma Autonoma di Bolzano di Bolzano - Alto Adige Servizio Geologico CARGUfficio Geologia e prove materiali Ufficio Geologia e prove materiali Direttore del Servizio Geologico d’Italia - ISPRA: C. Campobasso Responsabile del Progetto CARG per il Servizio Geologico d’Italia - ISPRA: F. Galluzzo Responsabile del progetto CARG per la Provincia Autonoma di Trento: S. Cocco Responsabile del Progetto CARG per la Provincia Autonoma di Bolzano: V. Mair Per il Servizio Geologico d’Italia – ISPRA Revisione scientifica: D. Berti, R. Graciotti, M.L. Pampaloni, M. Pantaloni Coordinamento cartografico: D. Tacchia, S. Falcetti Coordinamento editoriale ed allestimento per la stampa: M.L. Vatovec, S. Falcetti Revisione informatizzazione dei dati geologici: L.
    [Show full text]
  • Biodiversity and the Reconstruction of Early Jurassic Flora from the Mecsek
    Acta Palaeobotanica 51(2): 127–179, 2011 Biodiversity and the reconstruction of Early Jurassic fl ora from the Mecsek Mountains (southern Hungary) MARIA BARBACKA Hungarian Natural History Museum, Department of Botany, H-1476, P.O. Box 222, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; e-mail: [email protected] Received 15 June 2011; accepted for publication 27 October 2011 ABSTRACT. Rich material from Hungary’s Early Jurassic (the Mecsek Mts.) was investigated in a palaeoen- vironmental context. The locality (or, more precisely, area with a number of fossiliferous sites) is known as a delta plain, showing diverse facies, which suggest different landscapes with corresponding plant assemblages. Taphonomical observations proved that autochthonous and parautochthonous plant associations were present. The reconstruction of the biomes is based on the co-occurrence of taxa and their connection with the rock matrix and sites in the locality, as well as the environmental adaptation of the plants expressed in their morphology and cuticular structure. The climatic parameters were confi rmed as typical for the Early Jurassic by resolution of a palaeoatmospheric CO2 level based on the stomatal index of one of the common species, Ginkgoites mar- ginatus (Nathorst) Florin. Plant communities were differentiated with the help of Detrended Correspondence Analysis (DCA); the rela- tionship between taxa and sites and lithofacies and sites, were analysed by Ward’s minimal variance and cluste- red with the help
    [Show full text]
  • Exine Morphology and Ultrastructure of Duplicisporites from the Triassic of Italy
    Grana 44: 337–342, 2005 Exine morphology and ultrastructure of Duplicisporites from the Triassic of Italy NATALIA E. ZAVIALOVA and GUIDO ROGHI Zavialova, N. E. & Roghi, G. 2005. Exine morphology and ultrastructure of Duplicisporites from the Triassic of Italy. – Grana 44: 337–342. ISSN 0017-3134. A morphological study of dispersed Circumpolles pollen grains from the Upper Triassic of the Southern Alps has been initiated with the genus Duplicisporites. Individual pollen grains were studied by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Seen with SEM the pollen surface is finely verrucate with low verrucae of different sizes. A sub-equatorial continuous rimula is clearly visible. The proximal trilete scar is small and indistinct. TEM images reveal a bi-layered exine. The ectexine is formed by numerous small, closely packed, granulae subdivided by irregularly-spaced cavities. In the region of the subequatorial canal, the ectexine becomes thinner, about 1/3 of the usual thickness. At places, the ectexine is slightly separated from the underlying endexine. The endexine is prominent and significantly darker than the ectexine. It is homogeneous and of constant thickness. On the basis of its older age, with respect to Classopollis, the present ultrastructural dataset provides information on the possible origin of cheirolepidiaceous-type morphology. Natalia E. Zavialova*, Laboratory of Palaeobotany, Palaeontological Institute, Russian Academy of Sciences, Profsoyusnaya str., 123, Moscow, 117647 Russia & Guido Roghi, Institute of Geosciences and Earth Resources (IGG-CNR), Corso Garibaldi 37, Padova I -35137, Italy. *Corresp. Author (Manuscript received 19 November 2004; accepted 5 June 2005) The fossil pollen group Circumpolles is of interest to of Italy, Austria and Hungary have revealed rich palyno- palynologists and evolutionary biologists due to its complex logical assemblages, which contain members of Circum- morphology and parallelisms to angiospermoid characters polles (De Zanche et al.
    [Show full text]
  • Angiosperm-Like Pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland)
    ORIGINAL RESEARCH ARTICLE published: 01 October 2013 doi: 10.3389/fpls.2013.00344 Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland) Peter A. Hochuli 1* and Susanne Feist-Burkhardt 2 1 Palaeontological Institute and Museum, University of Zürich, Zürich, Switzerland 2 Dr. Susanne Feist-Burkhardt Geological Consulting & Services, Ober-Ramstadt, Germany Edited by: Here we report on angiosperm-like pollen and Afropollis from the Anisian (Middle Triassic, Xin Wang, Chinese Academy of 247.2–242.0Ma) of a mid-latitudinal site in Northern Switzerland. Small monosulcate pollen Sciences, China grains with typical reticulate (semitectate) sculpture, columellate structure of the sexine Reviewed by: and thin nexine show close similarities to early angiosperm pollen known from the Early Michael S. Zavada, Seton Hall University, USA Cretaceous. However, they differ in their extremely thin inner layer (nexine). Six different JamesA.Doyle,Universityof pollen types (I–VI) are differentiated based on size, reticulation pattern, and exine structure. California, Davis, USA The described pollen grains show all the essential features of angiosperm pollen. However, Evelyn Kustatscher, Naturmuseum considering the lack of a continuous record throughout the lower part of the Mesozoic and Südtirol, Italy Limi Mao, Nanjing Institute of the comparison with the oldest Cretaceous finds we suggest an affinity to an angiosperm Geology and Palaeontology, China stem group. Together with the previously published records from the Middle Triassic of *Correspondence: the Barents Sea area the angiosperm-like pollen grains reflect a considerable diversity of Peter A. Hochuli, Palaeontological the parent plants during the Middle Triassic. Sedimentological evidence and associated Institute and Museum, University of palynofloras also suggest a remarkable ecological range for these plants.
    [Show full text]
  • Dinosaur Ichnotaxa from the Lower Jurassic of Hungary
    Geological Quarterly, Vol.40,No.l,1996,p.1l9- 128 Gerard GIERLrNSKI Dinosaur ichnotaxa from the Lower Jurassic of Hungary The Early Jurassic strata of the Mecsek Coal Fonnatioo of southern Hungary revealed new dinosaur tracks. Two ichnospecies of Gralla/or /uberosus (Hitchcock 1836) Weems 1992 and Kayen/aplIS soltykovensis (Gierliriski 1991) comb. nov. have been recognized. The iCMotaxonomy of Kayelilaplis is emended and supplemented by a ichnotaxon previously designated as "Gralla/or (Eubrontes) soltykovensis". INTRODUCTION Occurrence of dinosaur tracks in Hungary is restricted to the Early Liassic deposits of the Mecsek Coal Formation, in the Pecs area. The first discoveries were reported from the Vasas mine and Komlo CA. Tasnadi Kubacska, 1967, 1968. 1970; L. Kordos. 1983). Later. dinosaur tracks were also found in the Pecsbanya mine (K. Hips et aI., i989). New material described herein was collected in September, 1995. in the Vasas and Pecsbanya opencast coal mines. Contrary to L. Kordos (1983), the features of hitherto discovered ichnites from Hungary indicate their theropod affinity (not ornithischian, as L. Kordos postulated). The tracks resemble well known cosmopolitan theropod ichnotaxa of Grallator and Kayentapus. Abbreviation used in the text: te - third digit projection beyond the lateral toes; fl - pes length; fw - pes width; Muz. PIG - Geological Museum of the Polish Geological Institute, Warsaw. Poland; LO - Geological Institute of the Lund University, Lund. Sweden; UCMP - University of California Museum of Paleontology ,Berkeley. California, USA; MNA - Paleontological Locality Files of the Museum of Northern Arizona, Flagstaff. Arizona, USA. 120 Gerard Gidiitski SYSTEMATIC DESCRIPTIONS Suborder Theropoda Marsh 188 1 IchnofarniIy GraIlatoridae Lull 1904 Ichnogenus Graitator Hitchcock 1858 Grallator tuberoxus (Hitchcock 1835) Weems I992 (PI, I, Figs- 2,3) M a r e r i a 1 :Muz.
    [Show full text]
  • Field Trip 2 Late Paleozoic and Mesozoic Terrestrial Environments in the Dolomites and Surrounding Areas 71-116 Geo.Alp, Vol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Geo.Alp Jahr/Year: 2016 Band/Volume: 013 Autor(en)/Author(s): Kustatscher Evelyn, Bernardi Massimo, Petti Fabio Massimo, Avanzini Marco, Tomasoni Riccardo Artikel/Article: Field trip 2 Late Paleozoic and Mesozoic terrestrial environments in the Dolomites and surrounding areas 71-116 Geo.Alp, Vol. 13 2016 71 - 116 Field trip 2 Late Paleozoic and Mesozoic terrestrial environments in the Dolomites and surrounding areas Evelyn Kustatscher1,2, Massimo Bernardi3,4, Fabio Massimo Petti3,5, Marco Avanzini3 & Riccardo Tomasoni3 1 Naturmuseum Südtirol, Bindergasse 1, 39100 Bozen/Bolzano, Italy; e-mail: [email protected]; 2 Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians- Universität and Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany; 3 Museo delle Scienze di Trento, Corso del Lavoro e della Scienza 3, 38123 Trento, Italy; e-mail: [email protected], [email protected], [email protected], [email protected]; 4 School of Earth Sciences, University of Bristol, Bristol BS81RJ, UK; 5 PaleoFactory, Dipartimento di Scienze della Terra, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy. 1 Topics and highlights of the excursion Mojsisovics, 1879, 1882; Mojsisovics et al., 1895; Bittner, 1892; Brack et al., 2005, Mietto & Man- The Southern Alps represent
    [Show full text]
  • Földtani Közlöny Hasábjain Is Meg Fognak Jelenni
    149/1, 3–4., Budapest, 2019 Elnöki megnyitó Elhangzott a Magyarhoni Földtani Társulat 169. rendes közgyűlésén (2019. 03. 20.) Tisztelt Közgyűlés! Egy évvel ezelőtt, 2018 márciusában Társulatunk új vezetőséget választott, amely a következő fő célkitű - zésekkel látott munkához: 1. A Társulat 170 éves múltjához méltó szakmai programok, hazai és nemzetközi tudományos konferenciák, terepbejárások szervezése, szakmai tematikus továbbképzések rendezése, a területi szervezetek és tematikus szakosztályok működésének segítése, tagtársaink új és életképes ötleteinek felhasználása, illetve megvaló - sítása. 2. Az ipari partnerekkel korábban kialakított kapcsolatok ápolása és további potenciális támogatók keresése. Az elmúlt években elnyert európai uniós pályázatok folyamatos teljesítése és egyéb pályázati lehetőségek felkutatása a Társulat működésének pénzügyi biztosítása érdekében. 3. Programjaink, rendezvényeink „fiatalbaráttá”, az ifjú szakemberek számára is vonzóvá tétele. Ennek célja, hogy az egyetemi hallgatók és a fiatal geológusok ne csak egy komoly, tudományos szervezetet lássanak a Társulatban, hanem modern, fiatalos lendülettel működő közösséget is, ahová nemcsak belépni, hanem ahol dolgozni is érdemes. 4. Az elmúlt egy-két évtizedben egyre inkább előtérbe kerülő ismeretterjesztő tevékenység folytatása, a geológiai örökségek bemutatása és népszerűsítése. A földtudományok megismertetése és megszerettetése a nagyközönséggel, elsősorban a fiatalokkal, a gyerekekkel, hiszen ők azok, akik nem csupán szakmánk, de Társulatunk jövőjének is a
    [Show full text]
  • Early Jurassic Dinosaur Footprints from the Mecsek Moutains, Southern
    HETTANGIAN (EARLY JURASSIC) DINOSAUR TRACKSITES FROM THE MECSEK MOUNTAINS, HUNGARY Attila Ősi1, József Pálfy1, 2, László Makádi3, Zoltán Szentesi3, Péter Gulyás3, Márton Rabi3, Gábor Botfalvai3 and Kinga Hips4 1Hungarian Academy of Sciences–Hungarian Natural History Museum, Research Group for Paleontology, Budapest, Hungary 2Eötvös University, Department of Physical and Applied Geology, Budapest, Hungary 3Eötvös University, Department of Paleontology, Budapest, Hungary 4Geological, Geophysical and Space Science Research Group of the Hungarian Academy of Sciences, Eötvös University, Budapest, Hungary Keywords: Hettangian, trackways, Komlosaurus, morphological variability, Hungary RH: Hettangian dinosaur tracks from Hungary Address correspondence to Attila Ösi: Hungarian Academy of Sciences–Hungarian Natural History Museum, (Research Group for Palaeontology, Ludovika tér 2, 1083) Budapest, Hungary (e-mail: [email protected]; Tel: +36-1-2101075/2317, Fax: +36-1-3382728. 1 Abstract—Isolated theropod dinosaur tracks were first collected in Hungary from Hettangian (Lower Jurassic) beds of the Mecsek Coal Formation in 1966 and described as Komlosaurus carbonis Kordos, 1983. Our study is based on newly collected material from additional track-bearing beds. The description of the two largest preserved surfaces, containing a total of 102 tracks that can be referred to 21 trackways, is provided here. This represents the first attempt to measure, map and compare the tracks of these bipedal, functionally tridactyl dinosaurs in several associated trackways. Significant morphological variability can be observed (e.g. depth, presence or absence of a metatarsal impression, digit length, digit divarication angle) that is explained by differences in physical parameters of the substrate. The mean of pes length is 16.3 cm in tracksite PB1 and 19.9 cm in tracksite PB2.
    [Show full text]
  • Latest Triassic Onset of the Central Atlantic Magmatic Province (CAMP) Volcanism in the Fundy Basin (Nova Scotia): New Stratigraphic Constraints
    ARTICLE IN PRESS EPSL-09928; No of Pages 12 Earth and Planetary Science Letters xxx (2009) xxx–xxx Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): New stratigraphic constraints S. Cirilli a,⁎, A. Marzoli b,c, L. Tanner d, H. Bertrand e,f, N. Buratti a, F. Jourdan g,h, G. Bellieni b,c, D. Kontak i, P.R. Renne g,j a Dipartimento di Scienze della Terra, Università di Perugia, Italy b Dipartimento di Geoscienze, Università di Padova, Italy c Centro Nazionale delle Ricerche, Istituto di Geoscienze e Georisorse, Padova, Italy d Department of Biological Sciences, Le Moyne College, Syracuse, NY 13214, USA e Ecole Normale Supérieure de Lyon, France f Université Lyon1, France g Berkeley Geochronology Center, 2455 Ridge Rd., Berkeley, CA, USA h Western Australian Argon Isotope Facility, Department of Applied Geology, Curtin University of Technology, Perth, WA6845, Australia i Department of Earth Sciences, Laurentian University, Sudbury, Ontario, Canada P3E 2C6 j Department of Earth and Planetary Science, University of California, Berkeley, CA, USA article info abstract Article history: In this paper we investigate the stratigraphic relationship between the emplacement of the CAMP basalts and the Received 2 February 2009 Triassic–Jurassic (Tr–J) boundary in the Fundy Basin (Nova Scotia, Canada). This is one of the best exposed of the Received in revised form 9 July 2009 synrift basins of eastern North America (ENA) formed as a consequence of the rifting that led to the formation of Accepted 14 July 2009 the Atlantic Ocean.
    [Show full text]
  • Exine Ultrastructure of in Situ Protohaploxypinus from a Permian Peltasperm Pollen Organ, Russian Platform
    Review of Palaeobotany and Palynology 213 (2015) 27–41 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Exine ultrastructure of in situ Protohaploxypinus from a Permian peltasperm pollen organ, Russian Platform Natalia Zavialova ⁎, Eugeny Karasev A.A.Borissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, Moscow 117647, Russia article info abstract Article history: The fine morphology and exine ultrastructure are studied in pollen grains of Protohaploxypinus-type, which were Received 8 September 2014 extracted from a pollen organ of Permotheca striatifera from the upper Permian (Lopingian) Isady locality Received in revised form 7 November 2014 (Vologda Region, Russia). The pollen grains are bisaccate and striate, with up to ten proximal ribs. The ectexine Accepted 15 November 2014 and endexine differ in ultrastructure and electron density. The ectexine is alveolate; the endexine is more Available online 22 November 2014 electron-dense and appears homogeneous, though some indices of layering were observed under higher magni- fi fl Keywords: cations. The sacci appear protosaccate. Areas that ank the body are a diminished and more regular version of Permian the sacci. In ribs, the ectexine includes an outer continuous layer, a thinner underlying alveolate layer, and an Peltasperm pteridosperm inner layer. Grooves between the ribs either retain the inner homogeneous ectexinal layer resting on the endex- Pollen organ ine or are lined by the endexine alone. The distal face of the body is covered by the endexine alone. The obtained Pollen grain data are compared with available ultrastructural information on pollen grains of the Protohaploxypinus-type of Exine ultrastructure different origins and with that on other peltasperm pollen types such as Vittatina, Vesicaspora and Cycadopites.
    [Show full text]
  • The Eco-Plant Model and Its Implication on Mesozoic Dispersed Sporomorphs for Bryophytes, Pteridophytes, and Gymnosperms
    Review of Palaeobotany and Palynology 293 (2021) 104503 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Review papers The Eco-Plant model and its implication on Mesozoic dispersed sporomorphs for Bryophytes, Pteridophytes, and Gymnosperms Jianguang Zhang a,⁎, Olaf Klaus Lenz b, Pujun Wang c,d, Jens Hornung a a Technische Universität Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany b Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt/Main, Germany c Key Laboratory for Evolution of Past Life and Environment in Northeast Asia (Jilin University), Ministry of Education, Changchun 130026, China d College of Earth Sciences, Jilin University, Changchun 130061, PR China article info abstract Article history: The ecogroup classification based on the growth-form of plants (Eco-Plant model) is widely used for extant, Ce- Received 15 July 2020 nozoic, Mesozoic, and Paleozoic paleoenvironmental reconstructions. However, for most Mesozoic dispersed Received in revised form 2 August 2021 sporomorphs, the application of the Eco-Plant model is limited because either their assignment to a specific Accepted 3 August 2021 ecogroup remains uncertain or the botanical affinities to plant taxa are unclear. By comparing the unique outline Available online xxxx and structure/sculpture of the wall of dispersed sporomorph to the sporomorph wall of modern plants and fossil plants, 861 dispersed Mesozoic sporomorph genera of Bryophytes, Pteridophytes, and Gymnosperms are Keywords: Botanical affinity reviewed. Finally, 474 of them can be linked to their closest parent plants and Eco-Plant model at family or Ecogroup order level. Based on the demands of the parent plants to different humidity conditions, the Eco-Plant model sep- Paleoenvironment arates between hydrophytes, hygrophytes, mesophytes, xerophytes, and euryphytes.
    [Show full text]