Killi-Data Wassup N°7 EDITORIAL : Genus Concept to Be Revisited?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2017 JMIH Program Book Web Version 6-26-17.Pub
Organizing Societies American Elasmobranch Society 33rd Annual Meeting President: Dean Grubbs Treasurer: Cathy Walsh Secretary: Jennifer Wyffels Editor and Webmaster: David Shiffman Immediate Past President: Chris Lowe American Society of Ichthyologists and Herpetologists 97th Annual Meeting President: Carole Baldwin President Elect: Brian Crother Past President: Maureen A. Donnelly Prior Past President: Larry G. Allen Treasurer: F. Douglas Martin Secretary: Prosanta Chakrabarty Editor: Christopher Beachy Herpetologists’ League 75th Annual Meeting President: David M. Green Immediate Past President: James Spotila Vice-President: David Sever Treasurer: Laurie Mauger Secretary: Renata Platenburg Publications Secretary: Ken Cabarle Communications Secretary: Wendy Palin Herpetologica Editor: Stephen Mullin Herpetological Monographs Editor: Michael Harvey Society for the Study of Amphibians and Reptiles 60th Annual Meeting President: Richard Shine President-Elect: Marty Crump Immediate Past-President: Aaron Bauer Secretary: Marion R. Preest Treasurer: Kim Lovich Publications Secretary: Cari-Ann Hickerson Thank you to our generous sponsor We would like to thank the following: Local Hosts David Hillis, University of Texas at Austin, LHC Chair Dean Hendrickson, University of Texas at Austin Becca Tarvin, University of Texas at Austin Anne Chambers, University of Texas at Austin Christopher Peterson, University of Texas at Austin Volunteers We wish to thank the following volunteers who have helped make the Joint Meeting of Ichthyologists and Herpetologists -
The Etyfish Project © Christopher Scharpf and Kenneth J
CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a -
Butterfly Splitfin (Ameca Splendens) Ecological Risk Screening Summary
Butterfly Splitfin (Ameca splendens) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2013 Revised, January 2018 Web Version, 8/27/2018 Photo: Ameca splendens. Source: Getty Images. Available: https://rmpbs.pbslearningmedia.org/resource/128605480-endangered-species/butterfly-goodeid- ameca-splendens/#.Wld1X7enGUk. (January 2018). 1 1 Native Range and Status in the United States Native Range From Fuller (2018): “This species is confined to a very small area, the Río Ameca basin, on the Pacific Slope of western Mexico (Miller and Fitzsimons 1971).” From Goodeid Working Group (2018): “This species comes from the Pacific Slope and inhabits the Río Ameca and its tributary, the Río Teuchitlán in Jalisco. More habitats in the ichthyological [sic] closely connected Sayula valley have been detected quite recently.” Status in the United States From Fuller (2018): “Reported from Nevada. Records are more than 25 years old and the current status is not known to us. One individual was taken in November 1981 (museum specimen) and another in August 1983 from Rodgers Spring, Nevada (Courtenay and Deacon 1983, Deacon and Williams 1984). Others were seen and not collected (Courtenay, personal communication).” From Goodeid Working Group (2018): “Miller reported, that on 6 May 1982, this species was collected in Roger's Spring, Clark County, Nevada, (pers. comm. to Miller by P.J. Unmack) where it is now extirpated. It had been exposed there with several other exotic species (Deacon [and Williams] 1984).” From FAO (2018): “Status of the introduced species in the wild: Probably not established.” From Froese and Pauly (2018): “Raised commercially in Florida, U.S.A.” Means of Introductions in the United States From Fuller (2018): “Probably an aquarium release.” Remarks From Fuller (2018): “Synonyms and Other Names: butterfly goodeid.” 2 From Goodeid Working Group (2018): “Some hybridisation attempts have been undertaken with the Butterfly Splitfin to solve its relationship. -
Two New Species of the Genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from Central-Western Mexico
Zootaxa 4189 (1): 081–098 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4189.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:9BF8660A-4817-4EEA-853F-5856D1B8F6FA Two new species of the genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from central-western Mexico OMAR DOMÍNGUEZ-DOMÍNGUEZ1,3, DULCE MARÍA BERNAL-ZUÑIGA1 & KYLE R. PILLER2 1Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “R” planta baja, Ciudad Universitaria, Morelia, Michoacán, México 2Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, 70402, USA 3Corresponding author. E-mail: [email protected] Abstract The subfamily Goodeinae (Goodeidae) is one of the most representative and well-studied group of fishes from central Mexico, with around 18 genera and 40 species. Recent phylogenetic studies have documented a high degree of genetic diversity and divergences among populations, suggesting that the diversity of the group may be underestimated. The spe- cies Xenotoca eiseni has had several taxonomic changes since its description. Xenotoca eiseni is considered a widespread species along the Central Pacific Coastal drainages of Mexico, inhabiting six independent drainages. Recent molecular phylogenetic studies suggest that X. eiseni is a species complex, represented by at least three independent evolutionary lineages. We carried out a meristic and morphometric study in order to evaluate the morphological differences among these genetically divergent populations and describe two new species. The new species of goodeines, Xenotoca doadrioi and X. lyonsi, are described from the Etzatlan endorheic drainage and upper Coahuayana basin respectively. -
ABSTRACT BOOK Keynote – Presentation
2.7.–7.7. 2017 / Olomouc, CZ ABSTRACT BOOK Keynote – Presentation IMPLICATIONS OF GLOBAL CHANGE FOR AQUATIC COMMUNITIES: DO MICRO-EVOLUTIONARY SHIFTS IN POPULATION FUNCTIONAL TRAITS MAKE A DIFFERENCE? Steven Declerk ([email protected])1 1 Netherlands Institute of Ecology, Wageningen, NL By most ecologists, species are considered as entities with fixed traits because rates of evo- lutionary adaptations are believed to be much slower than the rate of ecological dynamics. However, it is only in the latest years that an increasing number of ecologists come to re- alize that microevolutionary adaptation can take place at ecological time scales. Although microevolutionary trait shifts may seem small and insignificant in magnitude compared to the large trait changes that are documented for macro-evolutionary time scales, they may still be of considerable importance from an ecological perspective, as they may strongly determine the performance of contemporary populations and their interactions with the biotic and abiotic environment. This is especially relevant in the context of current glob- al change, with anthropogenic impacts that cause the biotic and abiotic environment of organisms to change at unprecedented rates. In this talk, I will introduce the concept of eco-evolutionary dynamics, illustrate its relevance for aquatic systems with a variety of examples and try to address the question whether such dynamics may effectively contrib- ute to a better understanding of the response of aquatic biota to anthropogenic pressures. 2 ABSTRACT BOOK / 2.7.–7.7. 2017 / OLOMOUC, CZ 3 Keynote – Presentation Keynote – Presentation SERENDIPIDY IN SCIENCE – 35 YEARS STUDYING A TROPICAL MICROBIAL NITRIFICATION IN URBAN STREAMS: FROM SINGLE LAKE CELL ACTIVITY TO ECOSYSTEM PROCESSES David Harper ([email protected])1 Stephanie N. -
Goodea Atripinnis; a Fish) Ecological Risk Screening Summary
Blackfin Goodeid (Goodea atripinnis; a fish) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, July 2017 Revised, February 2018 Web Version, 8/16/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “Central America: Lerma River basin and Ayuquila River, Guanajuato, Mexico.” Status in the United States This species has not been reported as introduced or established in the United States. From Imperial Tropicals (2015): “Black-Finned Goodeid (Goodea atripinnis) IMPERIAL TROPICALS […] Out of stock Up for sale are Black Finned Goodeids. They can grow upwards of 6" making them much larger than other livebearers. Goodeids are a unique livebearer from Mexico. $ 15.99 $ 10.99” 1 Means of Introductions in the United States Goodea atripinnis has not been reported as introduced or established in the United States. Remarks From Goodeid Working Group (2017): “Common Name: Blackfin Goodea” “Mexican Name: Tiro” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Cyprinodontiformes Suborder Cyprinodontoidei Family Goodeidae Subfamily Goodeinae Genus Goodea Species Goodea atripinnis (Jordan, 1880)” “Current Standing: Valid” Size, Weight, and Age Range From Froese and Pauly (2017): “Max length : 13.0 cm TL male/unsexed [Miranda et al. 2009]” Environment From Froese and Pauly (2017): “Freshwater; demersal; pH range: 7.5 - 8.0; […].” 2 “[…] 18°C - 24°C [Baensch et al. 1991; assumed to represent recommended aquarium water temperatures]” From Goodeid Working Group (2017): “In contrast to all other Goodeids, Goodea atripinnis is high tolerant of highly degraded environments […]” “The habitats are very versatile, including lakes, ponds, streams, springs and outflows. -
2016-01 Catalog of Fishes. Online Version: (2016): 72 Records
2016-01 Catalog of Fishes. Online Version: (2016): 72 records http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Genera and Species of Goodeidae W. N. Eschmeyer, R. Fricke, R. van der Laan (eds) albivallis, Crenichthys baileyi Williams [J. E.] & Wilde [G. R.] 1981:489, Fig. 7 [Southwestern Naturalist v. 25 (no. 4); ref. 8991] Preston Big Spring, White Pine County, Nevada, U.S.A. Holotype: UMMZ 203332. Paratypes: UMMZ 203333 (1, allotype); UNLV F-952 (28). •Synonym of Crenichthys baileyi (Gilbert 1893), but a valid subspecies albivallis Williams & Wilde 1981 as described -- (Fuller et al. 1999:322 [ref. 25838], Lazara 2001:71 [ref. 25711], Scoppettone & Rissler 2002:82 [ref. 25956], Scharpf 2007:27 [ref. 30398], Minckley & Marsh 2009:243 [ref. 31114], Page & Burr 2011:452 [ref. 31215]). Current status: Synonym of Crenichthys baileyi (Gilbert 1893). Goodeidae: Empetrichthyinae. Distribution: Springs in White Pine County, Nevada, U.S.A. [subspecies Albivallis]. Habitat: freshwater. atripinnis, Goodea Jordan [D. S.] 1880:299 [Proceedings of the United States National Museum v. 2 (no. 94); ref. 2382] Leon, Guanajuato, Mexico. Lectotype: USNM 23137. Paralectotypes: USNM 23137 (many). Lectotype established (as figured specimen) in caption to Pl. 114, p. 3257 in Jordan & Evermann 1900 [ref. 2446] if figured specimen is identifiable. •Valid as Goodea atripinnis Jordan 1880 -- (Espinosa Pérez et al. 1993:41 [ref. 22290], Nelson et al. 2004:107 [ref. 27807], Miller 2006:281 [ref. 28615], Scharpf 2007:28 [ref. 30398], Miranda et al. 2010:185 [ref. 31345], Page et al. 2013:104 [ref. 32708]). Current status: Valid as Goodea atripinnis Jordan 1880. Goodeidae: Goodeinae. -
2201 Innal Et Al Four Aphanius Species Endemic Turkey.Indd
ACTA ZOOLOGICA BULGARICA Aquatic Ecology Acta zool. bulg., 71 (2), 2019: 211-217 Research Article Age Structure and Length-Weight Relationship for Four Species of Aphanius Nardo, 1827 (Actinopterygii: Aphaniidae) Endemic to the Lake District, Central Anatolia, Turkey Deniz Innal1*, Salim Serkan Güçlü2, Mehmet Can Ünal1, Buğrahan Doğangil1 & Daniela Giannetto3 1Department of Biology, Mehmet Akif Ersoy University, Burdur, Turkey 2Eğirdir Fisheries Faculty, Isparta University of Applied Sciences, Isparta, Turkey 3Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey Abstract: Age structure and length-weight relationship are examined for four species of the genus Aphanius Nardo, 1827 endemic to the Lake District, Central Anatolia, Turkey: A. iconii Akşiray, 1948, A. saldae (Aksiray, 1955), A. sureyanus (Neu, 1937) and A. transgrediens (Ermin, 1946). Specimens were sampled by a shore seine net from Lake Eğirdir (A. iconii), Lake Salda (A. saldae), Lake Burdur (A. sureyanus) and Lake Acıgöl (A. transgrediens) during 2014-2015. A total of 1246 specimens are examined (A. iconii: n=206; A. saldae: n=525; A. sureyanus: n= 350; A. transgrediens: n=165). The maximum age for A. iconii, A. saldae and A. sureyanus was 4 years and for A. transgrediens was 5 years. The values of the b parameter of the length- weight equations for A.transgrediens, A. saldae, A. sureyanus and A. iconii populations are 3.027, 2.587, 3.221 and 2.713, respectively. A new maximum total length of 6.1 cm for A. transgrediens is reported. Key words: Anatolia; endemic species; killifish; Aphaniidae; Cyprinodontidae; length-weight relationship; age. Introduction The genus Aphanius Nardo, 1827 is native to North Aphanius iconii Akşiray, 1948, A. -
Studies of the Fishes of the Order Cyprinodontes
UNIVERSITY OF MICHIGAN MUSEUM OF ZOOLOGY Miscellaneous Publications No. 13 Studies of the Fishes of the Order Cyprinodontes BY CARL L. HUBBS ANN ARBOR, MICHIGAN PUBLISHED BY THE UNIVERSITY JANUARY 18, I924 UXIVERSITY 01: bI1CHIGAX MUSEUM OF ZOOLOGY Miscellaneous Publications R'o. 13 Studies of the Fishes of the Order Cyprinodontes BY . CARL L. I-IUHBS ANN ARBOR, MICHIGAN PUBLISHED BY THE UNIVERSITY JANUARY 18, 1924 ADVERTISEMENT The publicatiolls of the Museum of Zoology, University of Michigan, consist of two series-tlie Occasional Papers and the Miscellaneous Publi- catioils. Both series were foullded by Dr. Bryant Tnialker, Mr. Bradshatv I-I. Swales and Dr. W. Mr. Newcomb. The Occasional Papers, publication of which was begun in 1913, jerve as a medium fpr the publication of brief oricinal papers based principally upon the collectioils ill the Museum. The papers are issued separately to libraries and specialists, and, when a sufficient number of pages have been printed to lnalce a volume, a title page, index, and table of contents are sup- plied to libraries and individuals on the mailing list for the entire series. The Miscellaneous Publications include papers on field and museum technique, monographic studies and other papers not within the scope of the Occasional Papers. The papers are published separately, and, as it is not intended that they shall be grouped into volumes, each number has a title page and, when necessary, a table of contents. ALEXANDEKG. RU'I'~-I\JT.:K, Director of the Museum of Zoology, University G: Michigan. STUDIES OF THE FISHES OI: THE ORDER CYPRINODONTES IV. -
Conservation of Freshwater Live-Bearing Fishes: Development
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 7-6-2018 Conservation of Freshwater Live-bearing Fishes: Development of Germplasm Repositories for Goodeids Yue Liu Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Aquaculture and Fisheries Commons, Biotechnology Commons, and the Cell Biology Commons Recommended Citation Liu, Yue, "Conservation of Freshwater Live-bearing Fishes: Development of Germplasm Repositories for Goodeids" (2018). LSU Doctoral Dissertations. 4675. https://digitalcommons.lsu.edu/gradschool_dissertations/4675 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CONSERVATION OF FRESHWATER LIVE-BEARING FISHES: DEVELOPMENT OF GERMPLASM REPOSITORIES FOR GOODEIDS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Renewable Natural Resources by Yue Liu B.S., Jiujiang University, 2010 M.Agric., Shanghai Ocean University, 2013 August 2018 For my maternal grandparents, Wenzhi Zhang and Xianrang Zhang, who raised me up in my childhood For my parents, who support me with all their love For Youjin and Jenna, who are the meaning of my life ii Acknowledgments I want to thank my advisor Dr. Terrence Tiersch, who has been the most important person in my PhD study. -
An Updated List of Taxonomy, Distribution and Conservation Status (Teleostei: Cyprinodontoidea)
Iran. J. Ichthyol. (March 2018), 5(1): 1–29 Received: January 5, 2018 © 2018 Iranian Society of Ichthyology Accepted: March 1, 2018 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.22034/iji.v5i1.267 http://www.ijichthyol.org Review Article Cyprinodontid fishes of the world: an updated list of taxonomy, distribution and conservation status (Teleostei: Cyprinodontoidea) Hamid Reza ESMAEILI1*, Tayebeh ASRAR1, Ali GHOLAMIFARD2 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran. 2Department of Biology, Faculty of Sciences, Lorestan University, 6815144316 Khorramabad, Iran. Email: [email protected] Abstract: This checklist aims to list all the reported cyprinodontid fishes (superfamily Cyprinodontoidea/pupfishes) of the world. It lists 141 species in 8 genera and 4 families. The most diverse family is Cyprinodontidae (54 species, 38%), followed by Orestiidae (45 species, 32%), Aphaniidae (39 species, 28%), and Cubanichthyidae (3 species, 2%). Among 141 listed species, 73 (51.8%) species are Not Evaluated (NE), 15 (10.6%) Least Concern (LC), 9 (6.4%) Vulnerable (VU), 3 (2.1%) Data Deficient (DD), 11 (7.8%) Critically Endangered (CR), 4 (2.8%) Near Threatened (NT), 18 (12.8%) Endangered (EN), 3 (2.1%) Extinct in the Wild (EW) and 5 (3.5%) Extinct of the Red List of IUCN. They inhabit in the fresh, brackish and marine waters of the United States, Middle America, the West Indies, parts of northern South America, North Africa, the Mediterranean Anatolian region, coastal areas of the Persian Gulf and Makran Sea (Oman Sea), the northern Arabian Sea east to Gujarat in India, and some endorheic basins of Iran, Pakistan and the Arabian Peninsula. -
Chlorella Vulgaris Beyerinck [Beijerinck] (Chlorophyta) Suşlarının Kesikli Kültür Sisteminde Yığın Kültürlerinin Üretimi Üzerine Bir Çalışma
LIMNOFISH-Journal of Limnology and Freshwater Fisheries Research 3(2): 61-67 (2017) Chlorella vulgaris Beyerinck [Beijerinck] (Chlorophyta) Suşlarının Kesikli Kültür Sisteminde Yığın Kültürlerinin Üretimi Üzerine Bir Çalışma Dilek YALÇIN DUYGU* Gazi Üniversitesi Gazi Eğitim Fakültesi, Orta Öğretim Fen ve Matematik Alanları, Ankara, Türkiye ÖZ MAKAL E BİLGİSİ Bu çalışmada, tatlısu birikintilerinde yaygın olarak bulunan, tek hücreli bir yeşil ARAŞTIRMA MAKALESİ alg olan Chlorella vulgaris türünün izolasyonu, kültür koşullarının oluşturulması ve yığın kültürlerinin elde edilmesi amaçlanmıştır. C. vulgaris gıda, kozmetik ve Geliş : 23.12.2016 eczacılık sektöründe kullanıldığı gibi, son yıllarda biyodizel üretiminde ve atık Düzeltme : 30.03.2017 suların arıtımında da umut verici hale gelmiştir. Tatlısu birikintilerinden izole Kabul : 07.04.2017 edilen C. vulgaris suşları kesikli kültür sistemi oluşturularak, 100, 200, 500, 1000, 2000 ve 4000 ml’lik hacimlerde üretimleri yapılmıştır. Suşların başlangıç Yayım : 21.08.2017 inokulum miktarı, uygun pH, sıcaklık, havalandırma gibi etmenler denenerek optimum kültür koşulları oluşturulmuştur. 4000 ml’lik yığın kültürlerin 120. DOI: 10.17216/LimnoFish.280547 4 saatte yapılan hücre sayımlarında en yüksek değer AUFFH suşunda 6,8x10 h/ml olarak tespit edilmiş bu suşu sırasıyla; TOH 6,7x104 h/ml, UIK 6,3x104 h/ml, * SORUMLU YAZAR 4 4 GURH 6,2x10 h/ml ve GUMSH 6,1x10 h/ml suşları izlemiştir. Yaş ağırlıkları [email protected] açısından 4000 ml’lik yığın kültürler için yine AUFFH 152 (g/2000 ml) ile en Tel : +90 532 328 21 47 yüksek miktar elde edilirken onu sırasıyla TOH 129,6 (g/2000 ml), GURH 120,8 (g/2000 ml), GUMSH 84,3 (g/2000 ml), UIK 48,8 (g/2000 ml) takip etmiştir.