Studies of the Fishes of the Order Cyprinodontes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2017 JMIH Program Book Web Version 6-26-17.Pub
Organizing Societies American Elasmobranch Society 33rd Annual Meeting President: Dean Grubbs Treasurer: Cathy Walsh Secretary: Jennifer Wyffels Editor and Webmaster: David Shiffman Immediate Past President: Chris Lowe American Society of Ichthyologists and Herpetologists 97th Annual Meeting President: Carole Baldwin President Elect: Brian Crother Past President: Maureen A. Donnelly Prior Past President: Larry G. Allen Treasurer: F. Douglas Martin Secretary: Prosanta Chakrabarty Editor: Christopher Beachy Herpetologists’ League 75th Annual Meeting President: David M. Green Immediate Past President: James Spotila Vice-President: David Sever Treasurer: Laurie Mauger Secretary: Renata Platenburg Publications Secretary: Ken Cabarle Communications Secretary: Wendy Palin Herpetologica Editor: Stephen Mullin Herpetological Monographs Editor: Michael Harvey Society for the Study of Amphibians and Reptiles 60th Annual Meeting President: Richard Shine President-Elect: Marty Crump Immediate Past-President: Aaron Bauer Secretary: Marion R. Preest Treasurer: Kim Lovich Publications Secretary: Cari-Ann Hickerson Thank you to our generous sponsor We would like to thank the following: Local Hosts David Hillis, University of Texas at Austin, LHC Chair Dean Hendrickson, University of Texas at Austin Becca Tarvin, University of Texas at Austin Anne Chambers, University of Texas at Austin Christopher Peterson, University of Texas at Austin Volunteers We wish to thank the following volunteers who have helped make the Joint Meeting of Ichthyologists and Herpetologists -
FAMILY Poeciliidae Bonaparte 1831
FAMILY Poeciliidae Bonaparte 1831 - viviparous toothcarps, livebearers SUBFAMILY Poeciliinae Bonaparte 1831 - viviparous toothcarps [=Unipupillati, Paecilini, Belonesocini, Cyprinodontidae limnophagae, Gambusiinae, Tomeurinae, Poeciliopsinae, Heterandriini, Guirardinini, Cnesterodontini, Pamphoriini, Xiphophorini, Alfarini, Quintanini, Xenodexiinae, Dicerophallini, Scolichthyinae, Priapellini, Brachyrhaphini, Priapichthyini] GENUS Alfaro Meek, 1912 - livebearers [=Furcipenis, Petalosoma, Petalurichthys] Species Alfaro cultratus (Regan, 1908) - Regan's alfaro [=acutiventralis, amazonum] Species Alfaro huberi (Fowler, 1923) - Fowler's alfaro GENUS Belonesox Kner, 1860 - pike topminnows Species Belonesox belizanus Kner, 1860 - pike topminnow [=maxillosus] GENUS Brachyrhaphis Regan, 1913 - viviparous toothcarps [=Plectrophallus, Trigonophallus] Species Brachyrhaphis cascajalensis (Meek & Hildebrand, 1913) - Río Cascajal toothcarp Species Brachyrhaphis episcopi (Steindachner, 1878) - Obispo toothcarp [=latipunctata] Species Brachyrhaphis hartwegi Rosen & Bailey, 1963 - Soconusco gambusia Species Brachyrhaphis hessfeldi Meyer & Etzel, 2001 - Palenque toothcarp Species Brachyrhaphis holdridgei Bussing, 1967 - Tronadora toothcarp Species Brachyrhaphis olomina (Meek, 1914) - Orotina toothcarp Species Brachyrhaphis parismina (Meek, 1912) - Parismina toothcarp Species Brachyrhaphis punctifer (Hubbs, 1926) - Quibari Creek toothcarp Species Brachyrhaphis rhabdophora (Regan, 1908) - Río Grande de Terraba toothcarp [=tristani] Species Brachyrhaphis roseni -
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
The Etyfish Project © Christopher Scharpf and Kenneth J
CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a -
Uncorrected Proofs for Review Only C5478.Indb 28 1/24/11 2:08:33 PM M
Chapter 3 Variation and evolution of reproductive strategies Marcelo N. Pires, Amanda Banet, Bart J. A. Pollux, and David N. Reznick 3.1 Introduction sociation between these two traits suggests that one of the two traits might be more likely to evolve when the other he family poeciliidae (Rosen & Bailey 1963) trait is already present (the latter facilitating the evolu- consists of a well-defi ned, monophyletic group of tion of the former). However, the existence of a notable Tnearly 220 species with a fascinating heterogene- exception in the literature (the lecithotrophic, superfetat- ity in life-history traits. Reznick and Miles (1989a) made ing Poeciliopsis monacha, the only known exception at the one of the fi rst systematic attempts to gather information time) showed that superfetation and matrotrophy were not from a widely scattered literature on poeciliid life histo- strictly linked, indicating that these two traits can evolve ries. They focused on two important female reproductive independently of each other. traits: (1) the ability to carry multiple broods at different Reznick and Miles (1989a) also proposed a framework developmental stages (superfetation; Turner 1937, 1940b, for future research that was aimed at evaluating possible 1940c), which tends to cause females to produce fewer off- causes and mechanisms for the evolution of superfetation spring per brood and to produce broods more frequently, and matrotrophy by (1) gathering detailed life-history de- and (2) the provisioning of eggs and developing embryos scriptions of a greater number of poeciliid species, either by the mother, which may occur prior to (lecithotrophy) or through common garden studies or from fi eld-collected after (matrotrophy) fertilization. -
Butterfly Splitfin (Ameca Splendens) Ecological Risk Screening Summary
Butterfly Splitfin (Ameca splendens) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2013 Revised, January 2018 Web Version, 8/27/2018 Photo: Ameca splendens. Source: Getty Images. Available: https://rmpbs.pbslearningmedia.org/resource/128605480-endangered-species/butterfly-goodeid- ameca-splendens/#.Wld1X7enGUk. (January 2018). 1 1 Native Range and Status in the United States Native Range From Fuller (2018): “This species is confined to a very small area, the Río Ameca basin, on the Pacific Slope of western Mexico (Miller and Fitzsimons 1971).” From Goodeid Working Group (2018): “This species comes from the Pacific Slope and inhabits the Río Ameca and its tributary, the Río Teuchitlán in Jalisco. More habitats in the ichthyological [sic] closely connected Sayula valley have been detected quite recently.” Status in the United States From Fuller (2018): “Reported from Nevada. Records are more than 25 years old and the current status is not known to us. One individual was taken in November 1981 (museum specimen) and another in August 1983 from Rodgers Spring, Nevada (Courtenay and Deacon 1983, Deacon and Williams 1984). Others were seen and not collected (Courtenay, personal communication).” From Goodeid Working Group (2018): “Miller reported, that on 6 May 1982, this species was collected in Roger's Spring, Clark County, Nevada, (pers. comm. to Miller by P.J. Unmack) where it is now extirpated. It had been exposed there with several other exotic species (Deacon [and Williams] 1984).” From FAO (2018): “Status of the introduced species in the wild: Probably not established.” From Froese and Pauly (2018): “Raised commercially in Florida, U.S.A.” Means of Introductions in the United States From Fuller (2018): “Probably an aquarium release.” Remarks From Fuller (2018): “Synonyms and Other Names: butterfly goodeid.” 2 From Goodeid Working Group (2018): “Some hybridisation attempts have been undertaken with the Butterfly Splitfin to solve its relationship. -
Two New Species of the Genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from Central-Western Mexico
Zootaxa 4189 (1): 081–098 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4189.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:9BF8660A-4817-4EEA-853F-5856D1B8F6FA Two new species of the genus Xenotoca Hubbs and Turner, 1939 (Teleostei, Goodeidae) from central-western Mexico OMAR DOMÍNGUEZ-DOMÍNGUEZ1,3, DULCE MARÍA BERNAL-ZUÑIGA1 & KYLE R. PILLER2 1Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “R” planta baja, Ciudad Universitaria, Morelia, Michoacán, México 2Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, 70402, USA 3Corresponding author. E-mail: [email protected] Abstract The subfamily Goodeinae (Goodeidae) is one of the most representative and well-studied group of fishes from central Mexico, with around 18 genera and 40 species. Recent phylogenetic studies have documented a high degree of genetic diversity and divergences among populations, suggesting that the diversity of the group may be underestimated. The spe- cies Xenotoca eiseni has had several taxonomic changes since its description. Xenotoca eiseni is considered a widespread species along the Central Pacific Coastal drainages of Mexico, inhabiting six independent drainages. Recent molecular phylogenetic studies suggest that X. eiseni is a species complex, represented by at least three independent evolutionary lineages. We carried out a meristic and morphometric study in order to evaluate the morphological differences among these genetically divergent populations and describe two new species. The new species of goodeines, Xenotoca doadrioi and X. lyonsi, are described from the Etzatlan endorheic drainage and upper Coahuayana basin respectively. -
A Survey of Freshwater Fishes and Their Macroparasites in the Guanacaste Conservation Area (ACG), Costa Rica
635 A survey of freshwater fishes and their macroparasites in the Guanacaste Conservation Area (ACG), Costa Rica Odd Terje Sandlund Rita H. Daverdin Anindo Choudhury Daniel R. Brooks Ola H. Diserud NINA Publications NINA Report (NINA Rapport) This is a electronic series beginning in 2005, which replaces the earlier series NINA commissioned reports and NINA project reports. This will be NINA’s usual form of reporting completed research, monitoring or review work to clients. In addition, the series will include much of the institute’s other reporting, for example from seminars and conferences, results of internal research and review work and literature studies, etc. NINA report may also be issued in a second language where appropri- ate. NINA Special Report (NINA Temahefte) As the name suggests, special reports deal with special subjects. Special reports are produced as reQuired and the series ranges widely: from systematic identification keys to information on impor- tant problem areas in society. NINA special reports are usually given a popular scientific form with more weight on illustrations than a NINA report. NINA Factsheet (NINA Fakta) Factsheets have as their goal to make NINA’s research results Quickly and easily accessible to the general public. The are sent to the press, civil society organisations, nature management at all lev- els, politicians, and other special interests. Fact sheets give a short presentation of some of our most important research themes. Other publishing In addition to reporting in NINA’s own series, the institute’s employees publish a large proportion of their scientific results in international journals, popular science books and magazines. -
Distribution and Spread of the Introduced One-Spot Livebearer Phalloceros Caudimaculatus (Pisces: Poeciliidae) in Southwestern Australia
Journal of the Royal Society of Western Australia, 91: 229–235, 2008 Distribution and spread of the introduced One-spot Livebearer Phalloceros caudimaculatus (Pisces: Poeciliidae) in southwestern Australia M G Maddern School of Animal Biology (M092), Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia, [email protected] Manuscript received January 2008; accepted July 2008 Abstract The One-spot Livebearer, Phalloceros caudimaculatus, is a neotropical poeciliid maintained as an ornamental fish by hobbyists worldwide. Introduced populations occur in Africa, New Zealand and Australia. This species has been recorded in four Australian states/territories and is now widely dispersed within metropolitan Perth (Swan/Canning catchment) in southwestern Australia. Phalloceros caudimaculatus thrives in urban, aquatic habitats (e.g. degraded creeks and storm- water drains) and its range in southwestern Australia is expanding into larger watercourses as a consequence of natural dispersal and human-mediated translocations. Phalloceros caudimaculatus has dominated habitats in southwestern and eastern Australia that previously contained high densities of Gambusia holbrooki, a highly invasive species with documented impacts on aquatic ecosystems and endemic ichthyofauna. This is of concern as little research has been conducted on the potential ecological impacts of P. caudimaculatus in Australia or worldwide. As P. caudimaculatus is not commonly kept as an ornamental fish in Australia, the inherent risk of release is lower than that of other popular ornamental fishes. However, the recent establishment of a population in New South Wales indicates that the release of fish, and subsequent colonisation of suitable environments, could occur in other areas of Australia. -
Redalyc.Endohelminths of Some Species of Fishes from Lake
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México García-López, María de Lourdes; Salguero-Vargas, Guadalupe; García-Prieto, Luis; Osorio-Sarabia, David; Pérez-Ponce de León, Gerardo Endohelminths of some species of fishes from Lake Xochimilco, Mexico Revista Mexicana de Biodiversidad, vol. 87, núm. 4, diciembre, 2016, pp. 1-5 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42548632023 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Modele + RMB-2182; No. of Pages 5 ARTICLE IN PRESS Available online at www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad xxx (2016) xxx–xxx www.ib.unam.mx/revista/ Research note Endohelminths of some species of fishes from Lake Xochimilco, Mexico Endohelmintos de algunos peces del lago de Xochimilco, México a a a María de Lourdes García-López , Guadalupe Salguero-Vargas , Luis García-Prieto , b a,∗ David Osorio-Sarabia , Gerardo Pérez-Ponce de León a Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-157, 04510 Mexico City, Mexico b Colegio de Ciencias y Humanidades, Plantel Oriente, Universidad Nacional Autónoma de México, Av. Canal de San Juan S/N, Iztapalapa, Tepalcates, 09210 Mexico City, Mexico Received 20 October 2015; accepted 16 June 2016 Abstract The helminth fauna of 8 introduced and 1 native species (Chirostoma jordani) of freshwater fishes from Xochimilco Lake in southern México City, Mexico, is studied for the first time. -
Goodea Atripinnis; a Fish) Ecological Risk Screening Summary
Blackfin Goodeid (Goodea atripinnis; a fish) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, July 2017 Revised, February 2018 Web Version, 8/16/2018 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “Central America: Lerma River basin and Ayuquila River, Guanajuato, Mexico.” Status in the United States This species has not been reported as introduced or established in the United States. From Imperial Tropicals (2015): “Black-Finned Goodeid (Goodea atripinnis) IMPERIAL TROPICALS […] Out of stock Up for sale are Black Finned Goodeids. They can grow upwards of 6" making them much larger than other livebearers. Goodeids are a unique livebearer from Mexico. $ 15.99 $ 10.99” 1 Means of Introductions in the United States Goodea atripinnis has not been reported as introduced or established in the United States. Remarks From Goodeid Working Group (2017): “Common Name: Blackfin Goodea” “Mexican Name: Tiro” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Acanthopterygii Order Cyprinodontiformes Suborder Cyprinodontoidei Family Goodeidae Subfamily Goodeinae Genus Goodea Species Goodea atripinnis (Jordan, 1880)” “Current Standing: Valid” Size, Weight, and Age Range From Froese and Pauly (2017): “Max length : 13.0 cm TL male/unsexed [Miranda et al. 2009]” Environment From Froese and Pauly (2017): “Freshwater; demersal; pH range: 7.5 - 8.0; […].” 2 “[…] 18°C - 24°C [Baensch et al. 1991; assumed to represent recommended aquarium water temperatures]” From Goodeid Working Group (2017): “In contrast to all other Goodeids, Goodea atripinnis is high tolerant of highly degraded environments […]” “The habitats are very versatile, including lakes, ponds, streams, springs and outflows. -
Florida State Museum
BULLETIN OF THE FLORIDA STATE MUSEUM BIOLOGICAL SCIENCES Volume 5 Number 4 MIDDLE-AMERICAN POECILIID FISHES OF THE GENUS XIPHOPHORUS Donn Eric Rosen fR \/853 UNIVERSITY OF FLORIDA Gainesville 1960 The numbers of THE BULLETIN OF THE FLORIDA STATE MUSEUM, BIOLOGICAL SCIENCES, are published at irregular intervals. Volumes contain about 300 pages and are not necessarily completed in any one calendar year. OLIVER L. AUSTIN, JR., Editor WILLIAM J. RIEMER, Managing Editor All communications concerning purchase or exchange of the publication should be addressed to the Curator of Biological Sciences, Florida State Museum, Seagle Building, Gainesville, Florida. Manuscripts should be sent to the Editor of the B ULLETIN, Flint Hall, University of Florida, Gainesville, Florida. Published 14 June 1960 Price for this issue $2.80 MIDDLE-AMERICAN POECILIID FISHES OF THE GENUS XIPHOPHORUS DONN ERIC ROSEN 1 SYNOPSiS. Drawing upon information from the present studies of the com« parative and functional morphology, distribution, and ecology of the forms of Xiphophorus (Cyprinodontiformes: R6eciliidae) and those made during the last ' quarter of a century on their. genetics, cytology, embryology, endocrinology, and ethology, the species are classified and arranged to indicate their probable phylo- genetic relationships. Their evolution and zoogeography are considered in rela- tion to a proposed center of adaptive radiation -on Mexico's Atlantic coastal plain. Five new forms are, described: X. varidtus evelynae, new subspecies; X, milleri, new specie-s; X. montezumae cortezi, new subspecies; X. pygmaeus 'nigrensis, new ' subspecies; X. heHeri aluarezi, new subspecies. To the memory of MYR6N GORDON, 1899-1959 for his quarter century of contributibns- to the biology of this and other groups of fishes.