Update on Leaf-Feeding Willow Sawfly: the Arrival of Nematus Oligospilus in Australia

Total Page:16

File Type:pdf, Size:1020Kb

Update on Leaf-Feeding Willow Sawfly: the Arrival of Nematus Oligospilus in Australia This document was originally published on the website of the CRC for Australian Weed Management, which was wound up in 2008. To preserve the technical information it contains, the department is republishing this document. Due to limitations in the CRC’s production process, however, its content may not be accessible for all users. Please contact the department’s Weed Management Unit if you require more assistance. factsheet Update on leaf-feeding willow sawfly: the arrival of Nematus oligospilus in Australia Background Impact in the southern hemisphere Willow sawfly In the southern hemisphere countries, Two species of willow sawfly have been the sawfly has caused widespread known from Australia since 1994, the defoliation of willow trees when first willow gall or bean gall sawfly Pontania observed, and spread very fast, proxima, and the willow bud sawfly covering all of New Zealand within ten Amauronematus viduatus, both years. Several species of Salix are accidentally introduced from the attacked, including crack willow, Adult willow sawfly willow sawfly northern hemisphere (Naumann et al. weeping willow, pencil willow and Photo: http://www.hortnet.co.nz/publications/ 2002). golden willow. It seems likely that all guides/willow_sawfly/wsawfly.htm tree willows in the subgenus Salix will Leaf-feeding willow sawfly be attacked but not Populus species. As it is now present in the ACT, The leaf-feeding willow sawfly is a new southern New South Wales and the introduction to Australia, first recorded Arrival in Australia Adelaide hills, eradication is out of the here in 2003 though the identification The introduction of biological control question. It can be expected to turn up has only been confirmed this year. It is agents into Australia is a rigorous and in Victoria and Tasmania fairly soon, also native to the northern hemisphere, lengthy process in place to protect and eventually in Western Australia. where it is found from Ireland through Australia’s unique and valuable continental Europe to the Himalayas, environment and agricultural systems. and also occurs in North America from Impact in Australia However, it is not known how willow Alaska to Mexico. It was first recorded The extent of defoliation in particular sawfly reached Australia, but it is likely in the southern hemisphere in years will probably depend on climatic to have come from New Zealand where Argentina in 1980, in southern Africa conditions. In warm conditions, the it has been widespread in the North in 1993/94 and in New Zealand in sawfly can have up to four generations Island for at least eight years. It may 1997. per season, but may be stressed by dry have come over as pupal cocoons in seasons. There is no information on the willow foliage in cut flowers which Biology sawfly's ability to tolerate high summer were inadequately treated or inspected. temperatures. Climatic predictions Eggs are laid and larvae feed on the Given that cocoons can form in any would require accurate distribution leaves. Pupation takes place in cocoons loose material they may have attached information from the northern on the tree or in the soil under trees. to packaging or other materials. hemisphere, eg the exact localities in Winter is passed as diapausing mature Alternatively it is possible that adults Mexico and the USA where it is found, larvae or pre-pupae in cocoons. The were blown across the Tasman in the with their altitude. southern hemisphere populations easterly wind systems associated with reproduce asexually and males have major cyclonic weather patterns in late However, it is likely that N. oligospilus is never been seen; this promotes rapid summer. a complex of sibling species which may spread and increase of populations. have different climatic tolerances, so Cooperative Research Centre for Australian Weed Management • Fact Sheet any distribution information from the greatest in cool wet summers and least northern hemisphere may not refer to in hot dry summers. Large trees will not the subspecies present in Australia. In be killed but are likely to suffer severe practice, therefore, the northern limits defoliation, which may ultimately kill of this species in Australia cannot be trees if repeated over several years. predicted without laboratory Smaller trees and seedlings may be experiments to determine the upper killed. Larva (15 - 20 mm when fully grown) temperature thresholds of the Photo: D Allan subspecies found here. Impact on willows http://www.hortnet.co.nz/publications/guides/ willow_sawfly/wsawfly.htm Some willows, including crack willows willow sawfly Native parasites and and weeping willows, are serious predators weeds and willows are one of the 20 some districts, it may be necessary to It is also impossible at this stage to Weeds of National Significance or use insecticide treatments to protect predict whether native parasites and WONS. Damage to these will be highly the trees. Any treatments should be predators will transfer over to attack beneficial and will support and assist applied early in the summer as soon as this species. There are very few native the efforts of local government, the first larvae appear (probably Australian species in this sawfly group regional groups, and landcare and October) as treatments are not effective (Tenthridinidae) (Naumann et al. 2002) rivercare groups to control and destroy once heavy defoliation is already so there is probably only a small pool of willow infestations. present. Unfortunately if defoliation parasites available. However, there may occurs every year, annual treatment will However, rapid defoliation of willows in be generalist parasites and predators also be necessary. If this happens, in mid-summer leads to loss of shade and, that will attack this species. If there is the long term land owners might be where willows are the only tree along significant attack, this may limit the advised to replace the willow trees. river banks, may cause increased water populations and, therefore, impact of temperatures in summer. Defoliation the sawfly. will also reduce the effectiveness of Reference It would be useful to start gathering foliar spray herbicide treatments used Naumann ID, Williams MA & Schmidt some information on parasitism and to control willows, though stem S. 2002. Synopsis of the Tenthredinidae predation of the different life stages injection, basal bark and cut stump (Hymenoptera) in Australia, including (egg, larvae and pupae) in the different treatments should not be affected. On two newly recorded, introduced sawfly regions of Australia. the other hand, severe willow species associated with willows (Salix defoliation will also create an spp.). Australian Journal of Entomology opportunity for rivercare groups to Implications for land 41, 1-6. managers gradually replace willows through plantings of native trees under and Pictures and more information are If the New Zealand experience is among the willows. available from HortResearch on repeated here, we can expect severe www.hortnet.co.nz/publications/ Where willows are valued or heritage defoliation of most species of tree guides/willow_sawfly/wsawfly.htm. trees, such as old weeping willows in willows each summer, with effects For further information visit the Weeds CRC’s website: www.weeds.crc.org.au CRC for Australian Weed Management Written by: Dr Rachel Mcfadyen, CEO, Weeds Waite Road, Urrbrae CRC Established and supported PMB 1, Waite Campus Acknowledgements: Photos courtesy of under the Australian Glen Osmond, SA 5064 HortResearch on www.hortnet.co.nz/publications/ Government’s Cooperative T 08 8303 6590 guides/willow_sawfly/wsawfly.htm Research Centres Program F 08 8303 7311 E [email protected] Ref: 40/2005/fs Disclaimer: This publication is provided for the purpose of disseminating information relating to scientific and technical matters. Participating organisations of the Weeds CRC do not accept liability for any loss and/or damage, including financial loss, resulting from the reliance upon any information, advice or recommendations contained in this publication. The contents of this publication should not necessarily be taken to represent the views of the participating organisations. Cooperative Research Centre for Australian Weed Management • Fact Sheet .
Recommended publications
  • Poplars and Willows: Trees for Society and the Environment / Edited by J.G
    Poplars and Willows Trees for Society and the Environment This volume is respectfully dedicated to the memory of Victor Steenackers. Vic, as he was known to his friends, was born in Weelde, Belgium, in 1928. His life was devoted to his family – his wife, Joanna, his 9 children and his 23 grandchildren. His career was devoted to the study and improve- ment of poplars, particularly through poplar breeding. As Director of the Poplar Research Institute at Geraardsbergen, Belgium, he pursued a lifelong scientific interest in poplars and encouraged others to share his passion. As a member of the Executive Committee of the International Poplar Commission for many years, and as its Chair from 1988 to 2000, he was a much-loved mentor and powerful advocate, spreading scientific knowledge of poplars and willows worldwide throughout the many member countries of the IPC. This book is in many ways part of the legacy of Vic Steenackers, many of its contributing authors having learned from his guidance and dedication. Vic Steenackers passed away at Aalst, Belgium, in August 2010, but his work is carried on by others, including mem- bers of his family. Poplars and Willows Trees for Society and the Environment Edited by J.G. Isebrands Environmental Forestry Consultants LLC, New London, Wisconsin, USA and J. Richardson Poplar Council of Canada, Ottawa, Ontario, Canada Published by The Food and Agriculture Organization of the United Nations and CABI CABI is a trading name of CAB International CABI CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 Tel: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 Tel: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org © FAO, 2014 FAO encourages the use, reproduction and dissemination of material in this information product.
    [Show full text]
  • IPM for High Tunnel Vegetables: Practical Pathways for Organic Crop Production Focusing on Insect and Mite
    IPM for High Tunnel Vegetables: Practical Pathways for Organic Crop Protection Focusing on Insect and Mite Pest Issues MOFGA Farmer to Farmer Conference November 2019 Who Are We? • Margaret Skinner, UVM Entomologist Biological Control of Key Pests Western Flower Thrips (greenhouses) Aphids (high tunnel vegetables) • Ron Valentin, Bioworks, Technical Specialist Biological Control of Key Pests Banker plants Beneficials • Pooh Sprague, Edgewater Farm, Grower Owner/Operator Vegetable market garden Greenhouse ornamentals Who Are YOU? Wisdom from Benjamin Franklin • TELL Me and I FORGET • TEACH ME and I may Remember • INVOLVE ME and I LEARN Today’s Multi- Faceted Program • Step-by-step IPM approach to insect pests: Me • Success with Biological Control: Ron • Welcome to the “Real World”: Pooh • Open discussion us us us us Lao Tzu, 4th Century BC Appearance of Insects 350 300 250 200 150 100 Millions of years Millions 50 0 Homo erectus: 6 million years Homo sapiens: 200,000 years So what? So… How can we DEAL WITH IT? IPM What is IPM? IPM = Integrated Pest Management Integration of several strategies to reduce pests using pesticides as little as possible A Step-by-Step Process for Tackling Pests To succeed with IPM, follow these words of wisdom: Know your enemy and know yourself and you can fight a hundred battles without disaster. Sun Tzu, 1753-1818 The Corner Stones Pest ID What is it? I What does it do? Scouting P How many are there? Where are they? M Biology How does it do it? When does it do it? What’s in a NAME? • Class Insecta is separated into Orders • Insect Orders are separated into FAMILIES • Families are separated into GENERA • Each Genus is separated into SPECIES Scientific Name Genus Species Author Myzus persicae (Sulzer) (Order Hemiptera, Family Aphididae) Common Names green peach aphid or peach-potato aphid Some Dead and Some Alive Know your friends and your enemies.
    [Show full text]
  • Comportamiento De Oviposición De La Avispa Sierra Del Sauce Nematus
    Tesis Doctoral Comportamiento de oviposición de la avispa sierra del sauce Nematus oligospilus (Hymenoptera: Tenthredinidae): el rol de los semioquímicos en la elección de plantas hospederas Braccini, Celina Laura 2017-11-02 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Braccini, Celina Laura. (2017-11-02). Comportamiento de oviposición de la avispa sierra del sauce Nematus oligospilus (Hymenoptera: Tenthredinidae): el rol de los semioquímicos en la elección de plantas hospederas. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Braccini, Celina Laura. "Comportamiento de oviposición de la avispa sierra del sauce Nematus oligospilus (Hymenoptera: Tenthredinidae): el rol de los semioquímicos en la elección de plantas hospederas". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2017-11-02. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Comportamiento de oviposición de la avispa sierra del sauce Nematus oligospilus (Hymenoptera: Tenthredinidae): el rol de los semioquímicos en la elección de plantas hospederas Tesis presentada para optar al título de Doctora de la Universidad de Buenos Aires en el área CIENCIAS BIOLÓGICAS Celina Laura Braccini Directora de Tesis: Dra.
    [Show full text]
  • Sawflies (Hym.: Symphyta) of Hayk Mirzayans Insect Museum with Four
    Journal of Entomological Society of Iran 2018, 37(4), 381404 ﻧﺎﻣﻪ اﻧﺠﻤﻦ ﺣﺸﺮهﺷﻨﺎﺳﯽ اﯾﺮان -404 381 ,(4)37 ,1396 Doi: 10.22117/jesi.2018.115354 Sawflies (Hym.: Symphyta) of Hayk Mirzayans Insect Museum with four new records for the fauna of Iran Mohammad Khayrandish1&* & Ebrahim Ebrahimi2 1- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University, Kerman, Iran & 2- Insect Taxonomy Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran 19395-1454, Iran. *Corresponding author, E-mail: [email protected] Abstract A total of 60 species of Symphyta were identified and listed from the Hayk Mirzayans Insect Museum, Iran, of which the species Abia candens Konow, 1887; Pristiphora appendiculata (Hartig, 1837); Macrophya chrysura (Klug, 1817) and Tenthredopsis nassata (Geoffroy, 1785) are newly recorded from Iran. Distribution data and host plants are here presented for 37 sawfly species. Key words: Symphyta, Tenthredinidae, Argidae, sawflies, Iran. زﻧﺒﻮرﻫﺎي ﺗﺨﻢرﯾﺰ ارهاي (Hym.: Symphyta) ﻣﻮﺟﻮد در ﻣﻮزه ﺣﺸﺮات ﻫﺎﯾﮏ ﻣﯿﺮزاﯾﺎﻧﺲ ﺑﺎ ﮔﺰارش ﭼﻬﺎر رﮐﻮرد ﺟﺪﯾﺪ ﺑﺮاي ﻓﻮن اﯾﺮان ﻣﺤﻤﺪ ﺧﯿﺮاﻧﺪﯾﺶ1و* و اﺑﺮاﻫﯿﻢ اﺑﺮاﻫﯿﻤﯽ2 1- ﮔﺮوه ﮔﯿﺎهﭘﺰﺷﮑﯽ، داﻧﺸﮑﺪه ﮐﺸﺎورزي، داﻧﺸﮕﺎه ﺷﻬﯿﺪ ﺑﺎﻫﻨﺮ، ﮐﺮﻣﺎن و 2- ﺑﺨﺶ ﺗﺤﻘﯿﻘﺎت ردهﺑﻨﺪي ﺣﺸﺮات، ﻣﺆﺳﺴﻪ ﺗﺤﻘﯿﻘﺎت ﮔﯿﺎهﭘﺰﺷﮑﯽ اﯾﺮان، ﺳﺎزﻣﺎن ﺗﺤﻘﯿﻘﺎت، ﺗﺮوﯾﺞ و آﻣﻮزش ﮐﺸﺎورزي، ﺗﻬﺮان. * ﻣﺴﺌﻮل ﻣﮑﺎﺗﺒﺎت، ﭘﺴﺖ اﻟﮑﺘﺮوﻧﯿﮑﯽ: [email protected] ﭼﮑﯿﺪه درﻣﺠﻤﻮع 60 ﮔﻮﻧﻪ از زﻧﺒﻮرﻫﺎي ﺗﺨﻢرﯾﺰ ارهاي از ﻣﻮزه ﺣﺸﺮات ﻫﺎﯾﮏ ﻣﯿﺮزاﯾﺎﻧﺲ، اﯾﺮان، ﺑﺮرﺳﯽ و ﺷﻨﺎﺳﺎﯾﯽ ﺷﺪﻧﺪ ﮐﻪ ﮔﻮﻧﻪﻫﺎي Macrophya chrysura ،Pristiphora appendiculata (Hartig, 1837) ،Abia candens Konow, 1887 (Klug, 1817) و (Tenthredopsis nassata (Geoffroy, 1785 ﺑﺮاي اوﻟﯿﻦ ﺑﺎر از اﯾﺮان ﮔﺰارش ﺷﺪهاﻧﺪ. اﻃﻼﻋﺎت ﻣﺮﺑﻮط ﺑﻪ ﭘﺮاﮐﻨﺶ و ﮔﯿﺎﻫﺎن ﻣﯿﺰﺑﺎن 37 ﮔﻮﻧﻪ از زﻧﺒﻮرﻫﺎي ﺗﺨﻢرﯾﺰ ارهاي اراﺋﻪ ﺷﺪه اﺳﺖ.
    [Show full text]
  • CURRICULUM VITAE Matthew P. Ayres
    CURRICULUM VITAE Matthew P. Ayres Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 (603) 646-2788, [email protected], http://www.dartmouth.edu/~mpayres APPOINTMENTS Professor of Biological Sciences, Dartmouth College, 2008 - Associate Director, Institute of Arctic Studies, Dartmouth College, 2014 - Associate Professor of Biological Sciences, Dartmouth College, 2000-2008 Assistant Professor of Biological Sciences, Dartmouth College, 1993 to 2000 Research Entomologist, USDA Forest Service, Research Entomologist, 1993 EDUCATION 1991 Ph.D. Entomology, Michigan State University 1986 Fulbright Fellowship, University of Turku, Finland 1985 M.S. Biology, University of Alaska Fairbanks 1983 B.S. Biology, University of Alaska Fairbanks PROFESSIONAL AFFILIATIONS Ecological Society of America Entomological Society of America PROFESSIONAL SERVICES Member, Board of Editors: Ecological Applications; Member, Editorial Board, Population Ecology Referee: (10-15 manuscripts / year) American Naturalist, Annales Zoologici Fennici, Bioscience, Canadian Entomologist, Canadian Journal of Botany, Canadian Journal of Forest Research, Climatic Change, Ecography, Ecology, Ecology Letters, Ecological Entomology, Ecological Modeling, Ecoscience, Environmental Entomology, Environmental & Experimental Botany, European Journal of Entomology, Field Crops Research, Forest Science, Functional Ecology, Global Change Biology, Journal of Applied Ecology, Journal of Biogeography, Journal of Geophysical Research - Biogeosciences, Journal of Economic
    [Show full text]
  • Working Party on Poplar and Willow Insects and Other Animal Pests
    WORKING PARTY ON POPLAR AND WILLOW INSECTS AND OTHER ANIMAL PESTS 169 170 PRESENT SITUATION OF THE POPULATION OF N. OLIGOSPILUS FOERSTER (=N. DESANTISI SMITH) (HYM.: TENTHREDINIDAE) IN THE TAFI VALLEY, TUCUMAN, ARGENTINA: FUTURE CONSIDERATIONS Mariela Alderete1, Gerardo Liljesthröm Nematus oligospilus Foerster (= N. desantisi Smith), a Holartic species whose larvae feed on leaves of Salix spp., was recorded in Argentina and Chile in the 1980´s. In the delta of the Paraná river (DP) and in the Tafí valley (VT) in Argentina, the sawfly larval populations attained high densities and severe defoliations were observed: in 1991-92 and 1993-94 in DP, and in 1990-91 and 1994-95 in VT. In VT the sawfly larvae have remained at low density since then and trials excluding natural enemies showed that larval survivorship was significantly higher than in the controls. Further, an intensive sampling over five consecutive years allowed us to perform a key-factor analysis, and larval mortality, possibly due to predators (polyphagous Divrachys cavus was the only parasitoid recorded from less than 1% host larvae), was density-dependent and supposed to be capable of regulating the sawfly population. The DP and VT regions have different ecological conditions: while DP has broad and continuous willow plantations and a humid-temperate climate, VT is an elevated valley bordered by mountains with a sub-humid cold climate (rains are concentrated in spring and summer) with small and rather isolated willow forests. Apart from these differences, both regions show very low parasitoidism, outbreaks shortly after being recorded in the area, and no significant differences between outbreak and no-outbreak years with respect to mean and mean maximum temperatures as well as in accumulated rainfall.
    [Show full text]
  • Sawflies (Hymenoptera, Symphyta) Newly Recorded from Washington State
    JHR 49: 129–159 (2016)Sawflies( Hymenoptera, Symphyta) newly recorded from Washington State 129 doi: 10.3897/JHR.49.7104 RESEARCH ARTICLE http://jhr.pensoft.net Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State Chris Looney1, David R. Smith2, Sharon J. Collman3, David W. Langor4, Merrill A. Peterson5 1 Washington State Dept. of Agriculture, 1111 Washington St. SE, Olympia, Washington, 98504, USA 2 Systematic Entomology Laboratory, Agricultural Research Service, USDA, c/o National Museum of Natural History, NHB 168, Washington, D.C. 20560, USA 3 Washington State University Extension, 600 128th St. SE, Everett, Washington, 98208, USA 4 Natural Resources Canada, Canadian Forest Service, 5320 122 Street NW, Edmonton, Alberta, T6H 3S5, Canada 5 Biology Department, Western Washington University, 516 High St., Bellingham, Washington, 98225, USA Corresponding author: Chris Looney ([email protected]) Academic editor: H. Baur | Received 5 November 2015 | Accepted 27 January 2016 | Published 28 April 2016 http://zoobank.org/319E4CAA-6B1F-408D-8A84-E202E14B26FC Citation: Looney C, Smith DR, Collman SJ, Langor DW, Peterson MA (2016) Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State. Journal of Hymenoptera Research 49: 129–159. doi: 10.3897/JHR.49.7104 Abstract Examination of museum specimens, unpublished collection data, and field surveys conducted between 2010 and 2014 resulted in records for 22 species of sawflies new to Washington State, seven of which are likely to be pest problems in ornamental landscapes. These data highlight the continued range expansion of exotic species across North America. These new records also indicate that our collective knowledge of Pacific Northwest arthropod biodiversity and biogeography is underdeveloped, even for a relatively well known and species-poor group of insects.
    [Show full text]
  • Currant Sawfly
    Pest Profile Photo credit: (Left & Right) Whitney Cranshaw, Colorado State University, Bugwood.org Common Name: Imported Currantworm/Currant Sawfly Scientific Name: Nematus ribesii Order and Family: Hymenoptera, Tenthredinidae Size and Appearance: Length (mm) Appearance Egg 1 mm Eggs are oval and green to white in color. The eggs are laid along the veins on the underside of leaves. Larva 12 mm The larval stage of the imported currantworm/currant sawfly are a light green gray with numerous black spots. Newly molted larvae are uniformly light green in color. Younger larvae that recently hatched are small and white in color. Adult 8-9 mm The currant sawfly is a stout-bodied wasp with slender, black antennae. The legs are yellow and the wings have a glass-like appearance with brown venation. The female is larger than the male, with a dark head and thorax with a yellow abdomen. Males are smaller and generally darker in color. Pupa (if The larvae overwinter in capsule-like cocoons on the soil surface applicable) or just below it. The pupae are exarate, meaning the appendages are free and not glued to the body. Type of feeder (Chewing, sucking, etc.): Larvae having chewing mouthparts. Host/s: The larvae primarily feed on currants and gooseberry. Description of Damage (larvae and adults): The main damage is caused by larval feeding along the leaf margins and if numerous, can defoliate an entire plant in a few days. Feeding can also result in irregular holes in leaves and potentially disintegrated leaf margins. If defoliation by larvae occurs before fruit picking, fruit damage may occur.
    [Show full text]
  • Susceptibilidad De Distintos Genotipos Experimentales De Salix Spp a La
    Tercer Congreso Internacional de Salicáceas en Argentina Trabajo Técnico Susceptibilidad de distintos genotipos experimentales de Salix spp a la avispa sierra Nematus oligospilus - Evaluación de daños a campo y estudios de preferencia en laboratorio Teresa Cerrillo 2, Celina L. Braccini 1,3 , Romina Martínez 3, Hugo D. Chludil 3, Silvia R. Leicach 3, Patricia C. Fernandez 2,3 1Instituto de Recursos Biológicos, CNIA-INTA. De los Reseros y las Cabañas S/N, Castelar Buenos Aires 2 EEA Delta del Paraná, INTA. Paraná de las Palmas y Canal Laurentino Comas, Campana, Buenos Aires 3 Cátedra de Biomoléculas, Facultad de Agronomía, UBA. Av. San Martin 4453, CABA, Argentina E-mail: [email protected] Resumen La avispa sierra Nematus oligospilus (Hymenoptera: Tenthredinidae) es una plaga que provoca defoliaciones severas en diferentes especies del género Salix , con gran variación en el grado de ataque según el año considerado. Se estudió la susceptibilidad y preferencia de diferentes genotipos de Salix desde dos niveles de estudio complementarios: a campo y de laboratorio. En los ensayos a campo, 125 individuos o genotipos de Salix spp establecidos en bancos clonales fueron analizados. El nivel más alto de daño por defoliación se registró en genotipos de S. nigra , mientras que el más bajo fue registrado en S. viminalis . En el laboratorio, los siguientes genotipos fueron comparados en ensayos de oviposición múltiple: S. babylonica var sacramenta ‘Americano’, S. nigra ‘Alonzo nigra 4’, los híbridos, S. babylonica x S. alba ‘Ragonese 131-27 INTA’ y S. matsudana x S. alba ‘Barrett 13-44 INTA’; el sauce experimental ED1 (obtenido del cruzamiento controlado entre [ S.
    [Show full text]
  • Predator Defense and Host Selection Behavior of Billbugs (Coleoptera: Dryophthoridae)
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2021 Predator Defense and Host Selection Behavior of Billbugs (Coleoptera: Dryophthoridae) Desireè M. Wickwar Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Wickwar, Desireè M., "Predator Defense and Host Selection Behavior of Billbugs (Coleoptera: Dryophthoridae)" (2021). All Graduate Theses and Dissertations. 8170. https://digitalcommons.usu.edu/etd/8170 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. PREDATOR DEFENSE AND HOST SELECTION BEHAVIOR OF BILLBUGS (COLEOPTERA: DRYOPHTHORIDAE) by Desireè M. Wickwar A thesis submitted in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE in Ecology Approved: _____________________ _____________________ Ricardo Ramirez, Ph.D. Ted Evans, Ph.D. Major Professor Committee Member _____________________ _____________________ Kelly Kopp, Ph.D. Richard Cutler, Ph.D. Committee Member Interim Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2021 ii Copyright © Desireè M. Wickwar 2021 All Rights Reserved iii ABSTRACT Predator Defense and Host Selection Behavior of Billbugs (Coleoptera: Dryophthoridae) by Desireè
    [Show full text]
  • Biodiversity in the Scottish Borders Overview and First Steps
    Biodiversity in the Scottish Borders Overview and First Steps 1 Scottish Borders Local Biodiversity Action Plan Contents Page Purpose of this Document 3 How to use this Document 3 Part One Introduction 4 Vision 4 Scottish Borders Local Biodiversity Action Plan Aims 5 What is Biodiversity? 6 The Biodiversity of the Scottish Borders 8 Landform, Geology and Soils 8 Man’s Influence and History 9 Habitats and Species of the Scottish Borders 11 Sea and Shore 12 Coastal Braes and Deans 14 Hummels, Haughs and Knowes (Enclosed Farmland) 16 Woodlands & Scrub 18 Mosses, Lochs and Clarty Holes 20 Hills, Heather and High Tops 22 Rivers & Burns 24 Towns and Villages 26 The Species: audit, action and reporting. 28 Who Manages Biodiversity? 30 Why Act for Biodiversity? 30 The Need for Action 33 Part Two Biodiversity Action 35 Plan Process and Format 35 Action to Date 35 Future Action 36 Appendices I Initial Plan Outline 38 II The Borders 100 40 III Biodiversity Action Planning - A History 41 IV Glossary 43 V The Scottish Borders Local Biodiversity Partnership (Initial Members) 44 2 Purpose of this Document This document has two main themes: Borders Local Biodiversity Action Plan are available in local libraries and has also been ● It introduces the concept of Biodiversity issued separately to prompt wider involvement in the Scottish Borders (Part One), and in development and implementation. The Plan has been written by the Scottish Borders Local ● It acts as a guide to the individual action Biodiversity Partnership, a broad grouping of plans that make up the Scottish Borders interests responsible for land management and Local Biodiversity Action Plan (Part Two).
    [Show full text]
  • Arthropod Pests of Currant and Gooseberry Crops in the U.K.: Their Biology, Management and Future Prospects
    Agricultural and Forest Entomology (2011), DOI: 10.1111/j.1461-9563.2010.00513.x REVIEW ARTICLE Arthropod pests of currant and gooseberry crops in the U.K.: their biology, management and future prospects Carolyn Mitchell, Rex M. Brennan, Jerry V. Cross∗ and Scott N. Johnson Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, U.K. and ∗East Malling Research, New Road, East Malling, Kent ME19 6BJ, U.K. Abstract 1 Approximately 10–12 species of Ribes plants are cultivated for fruit production, mainly blackcurrants, red- and whitecurrants and gooseberries. These crops are increasingly recognized as rich sources of vitamin C and anthocyanins, with production rising by 24% in Europe subsequent to 1998. To date, research into insect pests of Ribes has been fragmented, with little appreciation of how changes in climate and agronomic practices affect biology. 2 We review 12 key pests of currant and gooseberry crops in Northern Europe, with specific emphasis on their biology and current management options. These are blackcurrant leaf curling midge Dasineura tetensi, blackcurrant sawfly Nematus olfaciens, common gooseberry sawfly Nematus ribesii, European permanent currant aphid Aphis schneideri, redcurrant blister aphid Cryptomyzus ribis, currant–sowthistle aphid Hyperomyzus lactucae, European gooseberry aphid Aphis grossulariae, woolly vine scale Pulvinaria vitis, common green capsid Lygocoris pabulinus, winter moth Operophtera brumata, clear wing moth Synanthedon tipuliformis and blackcurrant gall mite Cecidophyopsis ribis. 3 It is anticipated that global climate change could lead to increases in the incidence of some aphids through increased overwintering survival and longer seasonal activity. Moreover, changes in management practices such as increased cropping densities (from 5400 ha−1 to 8700 ha−1) and machine harvesting could lead to pest outbreaks through optimal microhabitats and increased susceptibility to pest colonization.
    [Show full text]