Classical Biological Control of Mediterranean Fruit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Parasitoids of Queensland Fruit Fly Bactrocera Tryoni in Australia and Prospects for Improved Biological Control
Insects 2012, 3, 1056-1083; doi:10.3390/insects3041056 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Parasitoids of Queensland Fruit Fly Bactrocera tryoni in Australia and Prospects for Improved Biological Control Ashley L. Zamek 1,, Jennifer E. Spinner 2 Jessica L. Micallef 1, Geoff M. Gurr 3 and Olivia L. Reynolds 4,* 1 Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Woodbridge Road, Menangle, NSW 2568, Australia; E-Mails: [email protected] (A.L.Z.); [email protected] (J.L.M) 2 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; E-Mail: [email protected] 3 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Charles Sturt University, P.O. Box 883, Orange, NSW 2800, Australia; E-Mail: [email protected] 4 EH Graham Centre for Agricultural Innovation, NSW Department of Primary Industries and Charles Sturt University, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW 2568, Australia Present address: Level 1, 1 Phipps Close DEAKIN ACT 2600 Australia. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-0-2-4640-6426; Fax: +61-0-2-4640-6300. Received: 3 September 2012; in revised form: 4 October 2012 / Accepted: 10 October 2012 / Published: 22 October 2012 Abstract: This review draws together available information on the biology, methods for study, and culturing of hymenopteran parasitoids of the Queensland fruit fly, Bactrocera tryoni, and assesses prospects for improving biological control of this serious pest. -
Application of Nuclear Techniques to Improve the Mass Production and Management of Fruit Fly Parasitoids
Insects 2012, 3, 1105-1125; doi:10.3390/insects3041105 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Application of Nuclear Techniques to Improve the Mass Production and Management of Fruit Fly Parasitoids 1, 2 3 4 Jorge Cancino *, Lía Ruíz 1, Mariana Viscarret , John Sivinski and Jorge Hendrichs 1 Programa Moscafrut SAGARPA-IICA, Camino a los Cacahoatales S/N, 30860, Metapa de Domínguez, Chiapas, Mexico; E-Mail: [email protected] 2 Insectario de Investigaciones para Lucha Biológica, Instituto de Microbiología y Zoología CICVyA, INTA, Castelar, 1712 Buenos Aires, Argentina; E-Mail: [email protected] 3 Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; E-Mail: [email protected] 4 Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mails: [email protected]; [email protected]; Tel./Fax: +52-962-64-35059. Received: 7 August 2012; in revised form: 28 August 2012 / Accepted: 17 October 2012 / Published: 25 October 2012 Abstract: The use of irradiated hosts in mass rearing tephritid parasitoids represents an important technical advance in fruit fly augmentative biological control. Irradiation assures that fly emergence is avoided in non-parasitized hosts, while at the same time it has no appreciable effect on parasitoid quality, i.e., fecundity, longevity and flight capability. Parasitoids of fruit fly eggs, larvae and pupae have all been shown to successfully develop in irradiated hosts, allowing a broad range of species to be shipped and released without post-rearing delays waiting for fly emergence and costly procedures to separate flies and wasps. -
Fauna of Chalcid Wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan Province, Southern Iran
J Insect Biodivers Syst 02(1): 155–166 First Online JOURNAL OF INSECT BIODIVERSITY AND SYSTEMATICS Research Article http://jibs.modares.ac.ir http://zoobank.org/References/AABD72DE-6C3B-41A9-9E46-56B6015E6325 Fauna of chalcid wasps (Hymenoptera: Chalcidoidea, Chalcididae) in Hormozgan province, southern Iran Tahereh Tavakoli Roodi1, Majid Fallahzadeh1* and Hossien Lotfalizadeh2 1 Department of Entomology, Jahrom branch, Islamic Azad University, Jahrom, Iran. 2 Department of Plant Protection, East-Azarbaijan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran ABSTRACT. This paper provides data on distribution of 13 chalcid wasp species (Hymenoptera: Chalcidoidea: Chalcididae) belonging to 9 genera and Received: 30 June, 2016 three subfamilies Chalcidinae, Dirhininae and Haltichellinae from Hormozgan province, southern Iran. All collected species are new records for the province. Accepted: Two species Dirhinus excavatus Dalman, 1818 and Hockeria bifasciata Walker, 13 July, 2016 1834 are recorded from Iran for the first time. In the present study, D. excavatus Published: is a new species record for the Palaearctic region. An updated list of all known 13 July, 2016 species of Chalcididae from Iran is also included. Subject Editor: George Japoshvili Key words: Chalcididae, Hymenoptera, Iran, Fauna, Distribution, Malaise trap Citation: Tavakoli Roodi, T., Fallahzadeh, M. and Lotfalizadeh, H. 2016. Fauna of chalcid wasps (Hymenoptera: Chalcidoidea: Chalcididae) in Hormozgan province, southern Iran. Journal of Insect Biodiversity and Systematics, 2(1): 155–166. Introduction The Chalcididae are a moderately specious Coleoptera, Neuroptera and Strepsiptera family of parasitic wasps, with over 1469 (Bouček 1952; Narendran 1986; Delvare nominal species in about 90 genera, occur and Bouček 1992; Noyes 2016). -
Knowledge Gaps, Training Needs and Bio-Ecological Studies on Fruit-Infesting Flies (Diptera: Tephritidae) in Northern Ghana
University of Ghana http://ugspace.ug.edu.gh KNOWLEDGE GAPS, TRAINING NEEDS AND BIO-ECOLOGICAL STUDIES ON FRUIT-INFESTING FLIES (DIPTERA: TEPHRITIDAE) IN NORTHERN GHANA BY BADII KONGYELI BENJAMIN MASTER OF PHILOSOPHY IN ENTOMOLOGY UNIVERSITY OF GHANA, LEGON, GHANA THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF DOCTOR OF PHILOSOPHY CROP SCIENCE (ENTOMOLOGY) DEGREE JULY, 2014 University of Ghana http://ugspace.ug.edu.gh DECLARATION I hereby declare that this thesis is the result of my own original research, and that it has neither in whole nor in part been presented for a degree elsewhere. Works of others which served as sources of information have been duly acknowledged by reference to the authors. Candidate ………………………… Badii Kongyeli Benjamin Principal Supervisor …………………. Co-supervisor ………………….. Prof. Daniel Obeng-Ofori Prof. Kwame Afreh-Nuamah Co-supervisor …………………… Dr. Maxwell Kevin Billah University of Ghana http://ugspace.ug.edu.gh ACKNOWLEDGEMENTS This thesis could not have been accomplished without the guidance of my dear supervisors and academic mentors. My supervisors (Prof. Daniel Obeng-Ofori, Prof. Kwame Afreh-Nuamah and Dr. Maxwell K. Billah) offered me the needed encouragement, support and guidance throughout the study. Also, Prof. Gebriel A. Teye (Pro-Vice Chancellor), Prof. George Nyarko (Dean, Faculty of Agriculture), Dr. Elias N. K. Sowley (Director, Academic Quality Assurance Directorate) and Dr. Isaac K. Addai (Head, Department of Agronomy) all of the University for Development Studies (UDS) approved of my leave of study, supported and encouraged me throughout my study. The Head of Department (Mrs. Dr C. -
Meta-Barcoding for Assessment of Risks Posed by Genetically Modified Crops to Farmland Arthropods
Meta-barcoding for assessment of risks posed by genetically modified crops to farmland arthropods By Trace Akankunda A thesis submitted for the partial fulfilment of the requirements of the Master of Biotechnology (Plant Biotechnology) The University of Adelaide Faculty of Sciences School of Agriculture, Food & Wine Waite Campus 2014 Declaration I declare that this thesis is a record of original work and contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text. Akankunda Trace i Table of Contents Preface .............................................................................................................................................. iii Abstract ............................................................................................................................................. 1 1. Introduction ............................................................................................................................... 2 2. Methodology ............................................................................................................................. 7 2.1. Sampling sites and sampling design .................................................................................... 7 2.2. DNA extraction for the reference samples ......................................................................... -
An Evaluation of Fly Breeding and Fly Parasites at Animal Farms on Leeward and Central Oahu
Vol. XXII, No. 2, Sept. 1976 353 An Evaluation of Fly Breeding and Fly Parasites at Animal Farms on Leeward and Central Oahu Gary M. Toyama and James K. Ikeda VECTOR CONTROL BRANCH HAWAII STATE DEPARTMENT OF HEALTH, HONOLULU In recent years the development of subdivisions in the rural areas of Oahu has generated an increased volume of complaints to the Vector Control Branch about flies from animal farms. This situation is also common on the mainland. Levels of control formerly obtained are no longer adequate, and the reluctance of farmers to expend money and labor in areas which do not contribute directly to production has necessitated the development of more specific, practical, and inexpensive fly control programs. Workers such as Legner and Olton (1968) and Axtell (1970) have con cluded that an "integrated control" approach is logical for fly control on animal farms. This integrated concept utilizes all compatible means of control including chemical, biological, and cultural control methods. How ever, our research has shown that much of the basic information required for the development of an integrated fly control program is lacking in Hawaiian literature. The only available references to fly breeding on animal farms in Hawaii are by Illingworth (1923) and Tanada et al (1950), which deal with flies in poultry manure. Bohart and Gressitt's (1951) study of the filth-inhabiting flies of Guam is useful, but their findings are not entirely applicable to Hawaiian conditions. Therefore, the present study was initiated to obtain information -
Molecular Phylogenetics of the Genus Ceratitis (Diptera: Tephritidae)
Molecular Phylogenetics and Evolution 38 (2006) 216–230 www.elsevier.com/locate/ympev Molecular phylogenetics of the genus Ceratitis (Diptera: Tephritidae) Norman B. Barr ¤, Bruce A. McPheron Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA Received 29 March 2005; revised 3 October 2005; accepted 5 October 2005 Abstract The Afrotropical fruit Xy genus Ceratitis MacLeay is an economically important group that comprises over 89 species, subdivided into six subgenera. Cladistic analyses of morphological and host use characters have produced several phylogenetic hypotheses for the genus. Only monophyly of the subgenera Pardalaspis and Ceratitis (sensu stricto) and polyphyly of the subgenus Ceratalaspis are common to all of these phylogenies. In this study, the hypotheses developed from morphological and host use characters are tested using gene trees pro- duced from DNA sequence data of two mitochondrial genes (cytochrome oxidase I and NADH-dehydrogenase subunit 6) and a nuclear gene (period). Comparison of gene trees indicates the following relationships: the subgenus Pardalaspis is monophyletic, subsection A of the subgenus Pterandrus is monophyletic, the subgenus Pterandrus may be either paraphyletic or polyphyletic, the subgenus Ceratalaspis is polyphyletic, and the subgenus Ceratitis s. s. might not be monophyletic. In addition, the genera Ceratitis and Trirhithrum do not form reciprocally monophyletic clades in the gene trees. Although the data statistically reject monophyly for Trirhithrum under the Shimoda- ira–Hasegawa test, they do not reject monophyly of Ceratitis. 2005 Elsevier Inc. All rights reserved. Keywords: Ceratitis; Trirhithrum; Tephritidae; ND6; COI; period 1. Introduction cies, C. capitata (Wiedemann) (commonly known as the Mediterranean fruit Xy), is already an invasive species The genus Ceratitis MacLeay (Diptera: Tephritidae) with established populations throughout tropical, sub- comprises over 89 Afrotropical species of fruit Xy (De tropical, and mild temperate habitats worldwide (Vera Meyer, 2000a). -
EFFECTS of TEMPERATURE and DIET in STABLE FLY (DIPTERA: MUSCIDAE) DEVELOPMENT Melina Florez-Cuadros University of Nebraska-Lincoln
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of Spring 3-7-2017 EFFECTS OF TEMPERATURE AND DIET IN STABLE FLY (DIPTERA: MUSCIDAE) DEVELOPMENT Melina Florez-Cuadros University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/entomologydiss Part of the Entomology Commons, and the Other Veterinary Medicine Commons Florez-Cuadros, Melina, "EFFECTS OF TEMPERATURE AND DIET IN STABLE FLY (DIPTERA: MUSCIDAE) DEVELOPMENT" (2017). Dissertations and Student Research in Entomology. 48. http://digitalcommons.unl.edu/entomologydiss/48 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EFFECTS OF TEMPERATURE AND DIET IN STABLE FLY (DIPTERA: MUSCIDAE) DEVELOPMENT by Melina Florez-Cuadros A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partially Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Entomology Under the Supervision of Professors David B. Taylor and Gary Brewer Lincoln, Nebraska March, 2017 EFFECTS OF TEMPERATURE AND DIET IN STABLE FLY (DIPTERA: MUSCIDAE) DEVELOPMENT Melina Florez-Cuadros, Ph.D. University of Nebraska, 2017 Advisers: David B. Taylor and Gary Brewer Stable flies are among the most important blood feeding ectoparasites of cattle worldwide. The livestock industry is losing more than $2 billion dollar annually in the United States alone. Moist decaying vegetative material with bacteria supports larval de- velopment. -
Tinjauan Ilmiah Black Soldier Fly Dan Peluang Pemanfaatanya
TINJAUAN ILMIAH BLACK SOLDIER FLY DAN PELUANG PEMANFAATANNYA Prof. Damayanti Buchori, M.Sc, PhD Departemen Proteksi Tanaman, Faperta Center for Transdisciplinary and Sustainability Sciences IPB University Webinar: Asosiasi Profesor Indonesia- Dewan Guru Besar – Institut Pertanian Bogor, 16 Februari 2021 TINJAUAN ILMIAH BLACK SOLDIER FLY DAN PELUANG PEMANFAATANNYA: THE KNOWN AND UNKNOWN • Bioekologi BSF • Pengembangan Riset BSF Di Bidang Pertanian • Peluang Pemanfaatan BSF di Masa Yang Akan Datang Bioekologi BSF Evolusi BSF Primary terrestrial lineages of the suborder Brachyera, including the infraorder Stratiomyomorpha, diversified in the early Jurassic (160 mya, 54 ). However, the common ancestor of the Stratiomyidae family originated more recently in a radiation event during the early Cretaceous period (around 129 mya, 52 ). The major radiation of clades in Stratiomyidae, such as Hermetiinae, is estimated to be around 60-80 mya using molecular data 52 . The last common ancestor of H. illucens has been estimated to appear during the early Cenozoic (around 40 mya, 52 ). Kim W, Bae S, Kim A, Park K, Lee S, Choi Y, Han S, Park Y, Koh Y. 2011. Characterization of the molecular features and expression patterns of two serine proteases in Hermetia illucens (Diptera: Stratiomyidae) larvae. BMB Reports. DOI 10.5483/BMBRep.2011.44.6.387. Morfologi BSF • Black Soldier Fly berwarna hitam, bagian segmen basal abdomen berwarna transparan (wasp waist) sehingga sekilas menyerupai abdomen lebah. • Panjang berkisar antara 15-20 mm. • Saat lalat dewasa berkembang dari pupa, kondisi sayap masih terlipat kemudian mulai mengembang sempurna hingga menutupi bagian toraks. • Lalat dewasa tidak memiliki bagian mulut yang fungsional, karena lalat dewasa hanya beraktivitas untuk kawin dan bereproduksi sepanjang hidupnya. -
Natural Enemies of True Fruit Flies 02/2004-01 PPQ Jeffrey N
United States Department of Agriculture Natural Enemies of Marketing and Regulatory True Fruit Flies Programs Animal and Plant Health (Tephritidae) Inspection Service Plant Protection Jeffrey N. L. Stibick and Quarantine Psyttalia fletcheri (shown) is the only fruit fly parasitoid introduced into Hawaii capable of parasitizing the melon fly (Bactrocera cucurbitae) United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 4700 River Road Riverdale, MD 20737 February, 2004 Telephone: (301) 734-4406 FAX: (301) 734-8192 e-mail: [email protected] Jeffrey N. L. Stibick Introduction Introduction Fruit flies in the family Tephritidae are high profile insects among commercial fruit and vegetable growers, marketing exporters, government regulatory agencies, and the scientific community. Locally, producers face huge losses without some management scheme to control fruit fly populations. At the national and international level, plant protection agencies strictly regulate the movement of potentially infested products. Consumers throughout the world demand high quality, blemish-free produce. Partly to satisfy these demands, the costs to local, state and national governments are quite high and increasing as world trade, and thus risk, increases. Thus, fruit flies impose a considerable resource tax on participants at every level, from producer to shipper to the importing state and, ultimately, to the consumer. (McPheron & Steck, 1996) Indeed, in the United States alone, the running costs per year to APHIS, Plant Protection and Quarantine (PPQ), (the federal Agency responsible) for maintenance of trapping systems, laboratories, and identification are in excess of US$27 million per year and increasing. This figure only accounts for a fraction of total costs throughout the country, as State, County and local governments put in their share as well as the local industry affected. -
Exposure Time and Age Links Parasitism, Emergence And
Science Letters ISSN 2345-5463 DOI: https://doi.org/10.47262/SL/8.3.132020015 https://doi.org/10.47262/SL/8.2.132020011https: https://doi.org/10.47262/SL/8.2.132020011https: Research article 2020 | Volume 8 | Issue 3 | Pages 104-107 ARTICLE INFO Open Access Received Exposure Time and Age Links Parasitism, August 02, 2020 Revised Emergence and Development of Pupal October 10, 2020 Accepted Parasitoid Dirhinus giffardii Against October 13, 2020 Published Bactrocera zonata November 15, 2020 Muhammad Awais*, Niaz Hussain Khuhro, Muhammad Hamayoon Khan, Raza Muhammad Memon, Muhammad Usman *Corresponding author Asif Mohammad Awais E-mail Plant Protection Division, Nuclear Institute of Agriculture (NIA), Tandojam, Sindh, [email protected] Pakistan Phone +92-300-9003207 Abstract The parasitism, emergence and development of pupal parasitoid, Dirhinus giffardii (Silvestri) was assessed against the pupae of the fruit fly, Keywords Bactrocera zonata (Saunders), under laboratory conditions. The fruit fly Artificial diet and D. giffardii were reared in glass cages on the artificial diet, and a known Biological control number of different 1-hour (fresh), 1-day, 2-day, 3-day and 4-day old pupae Fruit fly were offered to the respective parasitoids for a period of 6, 12, 18 and 24 Oviposition hours. It was noted that the parasitism was increased gradually with an Parasitism increase in pupal age and exposure time. The highest parasitism occurred on 3-day old pupae followed by 4-day, 2-day, 1-day and 1 hour (fresh) old pupae. The studies also manifested that exposure time and host age have a How to cite significant effect on the oviposition, per female parasitism, percent Awais M, Khuhro NH, Khan parasitism, emergence and development of pupal parasitoid, D. -
(Bactrocera Invadens and Ceratitis Cosyra)?
This copy contains a shortened version of the PhD dissertation thesis presented to the PhD evaluation committee, in accordance to the “Promotionsordnung (Dr. rer. nat.) der Universität Bremen für den Fachbereich 2 (Biologie/Chemie)” vom 08.07.2015, paragraph 12. In particular, for chapter 2 and 4, only the Abstract are presented as the content of these chapters has been already published. Indication on the scientific journals where to find the full content of these chapters is given at the beginning of the respective chapter. 6 7 8 1. General Introduction 9 1.1. Trophic interactions and their role in structuring ecological communities A large part of the diversity we observe today in nature is a result of interactions taking place in species communities: it is difficult to think about a species living in complete isolation from other species. Major events in diversification have been due to the appearance of novel assemblages of species, which gave rise to new sets of interacting species (Thompson 1999). The way in which species that occupy the same environment relate to each other ultimately determines the structure of their ecological community (Chase et al. 2002). Often, species assemblages may fluctuate around stable states of interacting populations, revealing a certain organization among the species that share the same area (Hairston and Hairston 1997). Species co-existence is usually the product of an evolutionary process, which can involve several forces, positive and negative, based on the nature of the interactions taking place within a given community. Perturbations in the composition of species, such as the planned or accidental introduction of novel species, may interfere with the already structured web of interactions.