APS News, March 2018, Vol. 27, No. 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Simulating Physics with Computers
International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California Institute of Technology, Pasadena, California 91107 Received May 7, 1981 1. INTRODUCTION On the program it says this is a keynote speech--and I don't know what a keynote speech is. I do not intend in any way to suggest what should be in this meeting as a keynote of the subjects or anything like that. I have my own things to say and to talk about and there's no implication that anybody needs to talk about the same thing or anything like it. So what I want to talk about is what Mike Dertouzos suggested that nobody would talk about. I want to talk about the problem of simulating physics with computers and I mean that in a specific way which I am going to explain. The reason for doing this is something that I learned about from Ed Fredkin, and my entire interest in the subject has been inspired by him. It has to do with learning something about the possibilities of computers, and also something about possibilities in physics. If we suppose that we know all the physical laws perfectly, of course we don't have to pay any attention to computers. It's interesting anyway to entertain oneself with the idea that we've got something to learn about physical laws; and if I take a relaxed view here (after all I'm here and not at home) I'll admit that we don't understand everything. -
Wiki Template-1Eb7p59
Wikipedia Reader https://en.wikipedia.org/wiki/Aurora Selected by Julie Madsen - Entry 10 1 Aurora From Wikipedia, the free encyclopedia An aurora, sometimes referred to as a polar lights or north- ern lights, is a natural light display in the sky, predominantly seen in the high latitude (Arctic and Antarctic) regions.[1] Au- roras are produced when the magnetosphere is sufficiently disturbed by the solar wind that the trajectories of charged particles in both solar wind and magnetospheric plasma, mainly in the form of electrons and protons, precipitate them into the upper atmosphere (ther- mosphere/exosphere), where their energy is lost. The resulting ion- ization and excitation of atmospheric constituents emits light of varying color and complexity. The form of the aurora, occur- ring within bands around both polar regions, is also dependent on the amount of acceleration imparted to the precipitating parti- cles. Precipitating protons generally produce optical emissions as incident hydrogen atoms after gaining electrons from the atmosphere. Proton Images of auroras from around the world, auroras are usually observed at including those with rarer red and blue lower latitudes.[2] lights Wikipedia Reader 2 May 1 2017 Contents 1 Occurrence of terrestrial auroras 1.1 Images 1.2 Visual forms and colors 1.3 Other auroral radiation 1.4 Aurora noise 2 Causes of auroras 2.1 Auroral particles 2.2 Auroras and the atmosphere 2.3 Auroras and the ionosphere 3 Interaction of the solar wind with Earth 3.1 Magnetosphere 4 Auroral particle acceleration 5 Auroral events of historical significance 6 Historical theories, superstition and mythology 7 Non-terrestrial auroras 8 See also 9 Notes 10 References 11 Further reading 12 External links Occurrence of terrestrial auroras Most auroras occur in a band known as the auroral zone,[3] which is typically 3° to 6° wide in latitude and between 10° and 20° from the geomagnetic poles at all local times (or longitudes), most clearly seen at night against a dark sky. -
Feynman-Richard-P.Pdf
A Selected Bibliography of Publications by, and about, Richard Phillips Feynman Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 07 June 2021 Version 1.174 Title word cross-reference $14.95 [Oni15]. $15 [Ano54b]. $18.00 [Dys98]. $19.99 [Oni15]. 2 + 1 [Fey81, Fey82c]. $22.00 [Dys98]. $22.95 [Oni15]. $24.95 [Dys11a, RS12]. $26.00 [Bro06, Ryc17, Dys05]. $29.99 [Oni15, Roe12, Dys11a]. $30.00 [Kra08, Lep07, W¨ut07]. $35 [Ano03b]. $50.00 [DeV00, Ano99]. $500 [Ano39]. $55.00 [Noe11]. $80.00hb/$30.00pb [Cao06]. $9.95 [Oni15]. α [GN87, Sla72]. e [BC18]. E = mc2 [KN19]. F (t) · r [BS96]. λ [Fey53c, Fey53a]. SU(3) [Fey65a]. U(6) ⊗ U(6) [FGMZ64]. π [BC18]. r [EFK+62]. -Transition [Fey53a]. 0-19-853948-7 [Tay97]. 0-226-42266-6 [W¨ut07]. 0-226-42267-4 [Kra08]. 0-691-03327-7 [Bro96c]. 0-691-03685-3 [Bro96c]. 1965 [Fey64e]. 1988 [Meh02]. 1 2 2.0 [BCKT09]. 2002 [FRRZ04]. 2007 [JP08]. 2010 [KLR13]. 20th [Anoxx, Bre97, Gin01, Kai02]. 235 [FdHS56]. 3 [Ish19, Ryc17]. 3.0 [Sem09]. 3.2 [Sem16]. 40th [MKR87]. 469pp [Cao06]. 8 [Roe12]. 9 [BFB82]. 978 [Ish19, Roe12, Ryc17]. 978-0-06135-132-7 [Oni15]. 978-0-300-20998-3 [Ryc17]. 978-0-8090-9355-7 [Oni15]. 978-1-58834-352-9 [Oni15]. -
Interplanetary Magnetic Field Control of the Entry of Solar Energetic Particles Into the Magnetosphere R
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A8, 1184, 10.1029/2001JA000099, 2002 Interplanetary magnetic field control of the entry of solar energetic particles into the magnetosphere R. L. Richard, M. El-Alaoui, M. Ashour-Abdalla,1 and R. J. Walker2 Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles, California, USA Received 2 April 2001; revised 6 February 2002; accepted 18 March 2002; published 15 August 2002. [1] We have investigated the entry of energetic ions of solar origin into the magnetosphere as a function of the interplanetary magnetic field orientation. We have modeled this entry by following high energy particles (protons and 3He ions) ranging from 0.1 to 50 MeV in electric and magnetic fields from a global magnetohydrodynamic (MHD) model of the magnetosphere and its interaction with the solar wind. For the most part these particles entered the magnetosphere on or near open field lines except for some above 10 MeV that could enter directly by crossing field lines due to their large gyroradii. The MHD simulation was driven by a series of idealized solar wind and interplanetary magnetic field (IMF) conditions. It was found that the flux of particles in the magnetosphere and transport into the inner magnetosphere varied widely according to the IMF orientation for a constant upstream particle source, with the most efficient entry occurring under southward IMF conditions. The flux inside the magnetosphere could approach that in the solar wind implying that SEPs can contribute significantly to the magnetospheric energetic particle population during typical SEP events depending on the state of the magnetosphere. -
16 Super Brain
Engineering and Physical Sciences Research Council SPECIAL EDITION: SCIENCE FOR 16 A CONNECTED NATION Super brain Professor Steve Furber – building a computer to think like a human Greener trucking Cooler ice cream Safer water Smarter energy networks Faster supercomputers CONTENTS 4-5: News Recent EPSRC research and training investments 12 6-9: What we’ve learned Snapshots of EPSRC research and training from the world of engineering and physical sciences 10-15: People Movers, shakers and science in action – from slower melting ice cream, to pioneering technology to 34 help in the global fight against water pollution and water-borne parasites 16-23: Science for a connected nation EPSRC’s portfolio of investments spans the UK economy and society. Chief Executive Professor 26 Philip Nelson describes how it is more than the sum of its parts 24-25: Joined-up thinking New technologies for a smarter, safer, more connected world 26-27: Quantum ballet Doctoral student Merritt Moore describes her dual careers – quantum physics and professional ballet 28-33: Super brain Professor Steve Furber’s remarkable career reaches new heights 34-35: Driving ambition New research cuts road freight emissions and fuel bills by seven per cent 36-39: Only connect Professors Goran Strbac and Tim Green rewrite the 28 energy grid rulebook 40-41: Connected for success Young entrepreneurs’ brilliant businesses span the digital economy 42-43: Swinging wings Bat flight 44 inspires a new generation of micro air vehicles 44-49: EPSRC Science Photo Editor: Mark Mallett ([email protected]) EPSRC works alongside other Research Councils which have responsibility in other research areas. -
Causes of Extremely Fast Cmes
Solar Activity and its Magnetic Origin Proceedings IAU Symposium No. 233, 2006 c 2006 International Astronomical Union V. Bothmer & A. A. Hady, eds. doi:10.1017/S1743921306002146 Causes of extremely fast CMEs Joan Feynman and Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA email: [email protected] Abstract. We study CMEs observed by LASCO to have plane of the sky velocities exceeding 1500 km/sec. We find that these extremely fast CMEs are typically associated with flares ac- companied by erupting prominences. Our results are consistent with a single CME initiation process that consists of three stages. The initial stage is brought about by the emergence of new magnetic flux, which interacts with the pre-existing magnetic configuration and results in a slow rise of the magnetic structure. The second stage is a fast reconnection phase with flaring, filament eruption and a sudden increase of the rise velocity of the magnetic structure (CME). The third stage consists of propagation in the corona. We discuss the sources of these CMEs and the need for improved understanding of the first and third stages. Keywords. Sun:coronal mass ejections (CMEs), Sun: prominences, Sun: flares, Sun: magnetic fields 1. Introduction The distribution of the plane of the sky velocities of CMEs observed by SOHO is showninFigure1(Yurchyshynet al., 2005). This distribution of 4315 CMEs shows few CMEs with velocities greater than 1500 km/sec and none with velocities exceeding 2000 km/sec. However these are the CMEs that cause the most important solar energetic particle events and the most intense geomagnetic storms. -
Edward P. Richards, the Lessons of Human Adaptation to Climate
RICHARDS - FINAL WORD (DO NOT DELETE) 11/30/2018 11:02 AM 18 Hous. J. Health L. & Pol’y 131 Copyright © 2018 Edward P. Richards Houston Journal of Health Law & Policy THE SOCIETAL IMPACTS OF CLIMATE ANOMALIES DURING THE PAST 50,000 YEARS AND THEIR IMPLICATIONS FOR SOLASTALGIA AND ADAPTATION TO FUTURE CLIMATE CHANGE1 Edward P. Richards INTRODUCTION................................................................................................ 132 I. PRE-SCIENTIFIC KNOWLEDGE OF THE NATURAL WORLD .......................... 134 II. UNDERSTANDING CLIMATE CHANGE AND CLIMATE ANOMALIES .......... 140 III. MEDIEVAL WARM PERIOD/MEDIEVAL CLIMATE ANOMALY IN THE AMERICAS ............................................................................................ 146 IV. IMPACT OF POST-LAST GLACIAL MAXIMUM SEA LEVEL RISE ................. 150 V. THE NEW THREAT: HEAT........................................................................... 154 VI. SENSE OF PLACE AND CLIMATE CHANGE DRIVEN MIGRATION ............. 158 VII. SOLASTALGIA AND FUTURE ENVIRONMENTAL RISK .............................. 164 CONCLUSION ................................................................................................... 167 1 This paper does not deal with mitigating global warming and ocean acidification through limiting carbon dioxide and other greenhouse gases. It also does not deal with potential con- sequences of ocean acidification. RICHARDS - FINAL WORD (DO NOT DELETE) 11/30/2018 11:02 AM 132 HOUS. J. HEALTH L. & POL’Y INTRODUCTION The earth is warming, local -
Early Prediction of Geomagnetic Storms (And Other Space Weather Hazards) Abstract Introduction
1 Early Prediction of GeomagneticStorms (andOther Space WeatherHazards) David H. Collins and Joan Feynman Jet Propulsion Laboratory, California Institute of Technology Abstract A detailed conceptual design has been developed for a mission and microspacecraft that can provide information needed to answer key questions about the physics of space weather and also both provide and validate a system for early warning of hazardous space weather. A single small launch vehicleand individually tailored Venus gravity assists disperse nine microspacecraft in a 0.53-0.85 AU band around the Sun. Collectively, the microspacecraft can investigate large-scale organization of coronal mass ejections (CMEs) andparticle acceleration mechanisms near their shocks. Radial and longitudinaldependencies, magnetohydrodynamic (MHD) turbulence in the solar wind, and variations in solar wind velocities and densities can allbe studied.Simultaneously, at least one of themicrospacecraft is nearthe Sun-Earthline almost continuously and can be monitored for earlywarning of hazardous space weather. Introduction In their paper, “On Space Weather Consequences and Predictions,” Feynman and Gabriel [2000]conclude that an important next step in thedevelopment of the understanding and prediction of hazardous space weather is to observe CMEs at 2 heliocentric distances significantly less than 1 AU and along the Sun-Earth line. These observations are needed to test interplanetary shock acceleration and release models for protons and ions with energies >10 MeV and to provide improved long- lead-time predictions of geomagnetic storms. High-velocity CMEs cause geomagnetic storms [Tsurutani and Gonzalez, 19971 and energetic particle events [Kahler et a/., 1984; Gosling, 19931 that present major hazards to both space systems and humans in space [Feynmanand Gabriel, 20001. -
The Physical Sciences Why They Matter
The Physical Sciences Why they matter #PhysicalSciencesImpact Professor Kyriakos Porfyrakis, with a model of the world’s most expensive material (pages 12-13). 2 The Physical Sciences Why they matter Physics, chemistry and materials science – the physical sciences – comprise our global DNA. By understanding the fundamental building blocks of our universe – heat, light, atoms, the elements, matter, gravity itself – EPSRC-supported physical scientists are unlocking its secrets and providing solutions to the key questions of our age. Without the fundamental research carried out by physical scientists, the internet would run at a snail’s pace, not light-speed; doctors would still be using scalpels to see inside the human body, not X-rays; electric vehicles would barely make it to the shops and back; the water in our homes would not be safe to drink; and computer data would be stored in bungalows, not tiny memory chips. And electric light, fridges, television and mobile phones? There wouldn’t be any. Physical sciences is, above all, discovery-led, through which physicists, chemists and materials scientists ask vital new questions as current ones are answered. Theirs is a continuous process of enquiry and exploration, opening-up new boundaries in space, matter and time itself (pages 16-17). Because this research is fundamental and high-risk, its socio-economic impact can be many years away. For example, in 1917, Einstein proposed the process that makes lasers possible. But it would take nearly 40 years before scientists found a way to harness their potential. EPSRC has invested in fundamental research into lasers for many decades. -
16 Super Brain
Engineering and Physical Sciences Research Council SPECIAL EDITION: SCIENCE FOR 16 A CONNECTED NATION Super brain Professor Steve Furber – building a computer to think like a human Greener trucking Cooler ice cream Safer water Smarter energy networks Faster supercomputers CONTENTS 4-5: News Recent EPSRC research and training investments 12 6-9: What we’ve learned Snapshots of EPSRC research and training from the world of engineering and physical sciences 10-15: People Movers, shakers and science in action – from slower melting ice cream, to pioneering technology to 34 help in the global fight against water pollution and water-borne parasites 16-23: Science for a connected nation EPSRC’s portfolio of investments spans the UK economy and society. Chief Executive Professor 26 Philip Nelson describes how it is more than the sum of its parts 24-25: Joined-up thinking New technologies for a smarter, safer, more connected world 26-27: Quantum ballet Doctoral student Merritt Moore describes her dual careers – quantum physics and professional ballet 28-33: Super brain Professor Steve Furber’s remarkable career reaches new heights 34-35: Driving ambition New research cuts road freight emissions and fuel bills by seven per cent 36-39: Only connect Professors Goran Strbac and Tim Green rewrite the 28 energy grid rulebook 40-41: Connected for success Young entrepreneurs’ brilliant businesses span the digital economy 42-43: Swinging wings Bat flight 44 inspires a new generation of micro air vehicles 44-49: EPSRC Science Photo Editor: Mark Mallett ([email protected]) EPSRC works alongside other Research Councils which have responsibility in other research areas. -
Annual Report 2010 Supporting Only the Best, So That They Can Become Even Better
Foundation for Polish Science Annual Report 2010 Supporting only the best, so that they can become even better The programmes WELCOME, International PhD Projects (MPD), TEAM, VENTURES, HOMING PLUS and PARENT-BRIDGE are co-financed from the European Regional Development Fund within the Innovative Economy Operational Programme. annual report 2010 he Foundation for Polish Science is a non-governmental, apolitical, non-profit organization active T since 1991. Its mission is to support science in Poland. The Foundation fulfils its statutory role by financing individual projects of scientists and research teams, as well as initiatives serving Polish science. As the largest Polish non-budgetary source of funding scientific research, the Foundation also tries to propagate throughout society an understanding of the significance of science in the development of Poland. The Foundation presents individual awards, scholarships and research grants to the best scholars, while actively supporting international scientific cooperation and the development of initiatives that foster greater academic independence among young researchers. Beneficiaries of the Foundation’s programmes are selected through competitions. All the applications for competitions are assessed by way of the peer- -review system; the review body working with the Foundation comprises several thousand scientists from Poland and abroad, who are renowned specialists in their fields. The most important criterion for awarding financial support is the quality of the candidate’s scientific knowledge and achievements, in accordance with the Foundation’s guiding motto: Supporting only the best, so that they can become even better. The Foundation’s founding capital of 95 million zlotys originated from the Central Fund for the Development of Science and Technology, which was liquidated in 1990, whereupon the capital was directed to the FNP by a decision of the Polish parliament. -
Annual Report 2018
Annual Report 2018 The NQIT Entangler, developed by the University of Southampton / Paul Gow & Paolo Mennea Contributors Andru Gheorghiu Animesh Datta Chris Wade David Nadlinger Dominic O’Brien Evert Geurtsen Ezra Kassa Frances Sweeney Hannah Rowlands Ian Walmsley Iris Choi Jaewoo Joo Jason Smith Jonas Becker Nathan Walk Niel de Beaudrap Peter Leek Petros Wallden Philip Inglesant Rishi Deshmukh Rupesh Srivastava Simon Benjamin Weida Zhang Winfried Hensinger Xiao Yuan Editors Frances Sweeney Hannah Rowlands Rupesh Srivastava Design and Print Hunts Core Engineering Capabilities . 30 Contents Architecture Progress . 31 Qubits: quality vs . quantity . 33 Applications & Software . 34 Foreword . 1 Applications Introduction . 34 Introduction . 3 Secure Network Applications . 35 Year Three Achievements . 5 Networked Quantum Sensors . 35 Programme Structure . 6 Quantum Enabled Discovery . 36 The NQIT Consortium . 7 Quantum/Classical Emulation and Interfacing . 36 UK Partners Map . 8 Development of Quantum Applications . 38 Industry and Strategic Partners . 9 Quantum Optimisation and People . 10 Machine Learning . 39 NQIT Ecosystem . 12 How does quantum computing intersect Quantum Computing in a Global Context . 13 with machine learning? . 40 Science and Innovation Audit for Oxfordshire . 15 Wider Engagement . 41 Industry Engagement . 16 Responsible Research and Innovation . 41 NQIT Industry Day 2017 . 17 Public Engagement . 42 National Quantum An Evening of Quantum Discovery . 43 Technologies Showcase 2017 . 18 Quantum Photography Competition . 44 IBM Q Collaboration . 19 Walk-in Quantum Computer Installation . 45 Wireless Radio Frequency Inter-Hub Collaboration . 45 Feedthrough for Ion Traps with ColdQuanta . 20 Skills and Training . 46 Spinout Companies . 21 Oxford Quantum Circuits . 22 Future Plans . 47 Innovate UK: Commercialisation of Beecroft Building . 48 Quantum Technologies .