Experiments and Numerical Model Studies on Interfaces Work Package ACED
Total Page:16
File Type:pdf, Size:1020Kb
Deliverable D2.5: Experiments and numerical model studies on interfaces Work Package ACED The project leading to this application has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847593. http://www.ejp-eurad.eu/ EURAD Deliverable D2.5 – Experiments and numerical model studies on interfaces Document information Project Acronym EURAD Project Title European Joint Programme on Radioactive Waste Management Project Type European Joint Programme (EJP) EC grant agreement No. 847593 Project starting / end date 1st June 2019 – 30 May 2024 Work Package No. 2 Work Package Title Assessment of Chemical Evolution of ILW and HLW Disposal Cells Work Package Acronym ACED Deliverable No. D2.5 Deliverable Title Experiments and numerical model studies on interfaces Lead Beneficiary FZJ Contractual Delivery Date M5 Actual Delivery Date 12/05/2021 Type Report Dissemination level PU Authors Guido Deissmann (FZJ), Naila Ait Mouheb (FZJ), Christelle Martin (Andra), Maria J. Turrero (CIEMAT), Elena Torres (CIEMAT), Bruno Kursten (SCK CEN), Eef Weetjens (SCK CEN), Diederik Jacques (SCK CEN), Jaime Cuevas (UAM), Javier Samper (UDC), Luis Montenegro (UDC), Markku Leivo (VTT), Mervi Somervuori (VTT), Leena Carpen (VTT) To be cited as: Deissmann G., Ait Mouheb N., Martin C., Turrero, M.J., Torres, E., Kursten, B., Weetjens, E., Jacques, D., Cuevas, J., Samper, J., Montenegro, L., Leivo, M., Somervuori, M., Carpen, L. (2021): Experiments and numerical model studies on interfaces. Final version as of 12.05.2021 of deliverable D2.5 of the HORIZON 2020 project EURAD. EC Grant agreement no: 847593. Disclaimer All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user, therefore, uses the information at its sole risk and liability. For the avoidance of all doubts, the European Commission has no liability in respect of this document, which is merely representing the authors' view. Acknowledgement This document is a deliverable of the European Joint Programme on Radioactive Waste Management (EURAD). EURAD has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847593. EURAD (Deliverable n° D2.5) - Experiments and numerical model studies on interfaces Dissemination level: PU Date of issue of this report: 12.05.2021 Page 2 EURAD Deliverable D2.5 – Experiments and numerical model studies on interfaces Status of deliverable By Date Delivered (Lead Beneficiary) G. Deissmann (FZJ) 2021-04-01 Verified and reviewed (WP D. Jacques (SCK CEN) 2021-05-11 Leader) Approved (PMO) L. Théodon (Andra) 2021-05-11 Submitted to EC (Coordinator) Andra 2021-05-12 EURAD (Deliverable n° D2.5) - Experiments and numerical model studies on interfaces Dissemination level: PU Date of issue of this report: 12.05.2021 Page 3 EURAD Deliverable D2.5 – Experiments and numerical model studies on interfaces Executive Summary The main objective of the EURAD work package (WP) ACED (Assessment of Chemical Evolution of ILW and HLW Disposal Cells) is to improve methodologies to obtain multi-scale quantitative models for the description of the chemical evolution at the disposal cell scale and to derive robust mathematical models including the most relevant processes. The WP seeks to compile and integrate the process level knowledge and description of reactivity at the interfaces between materials relevant for ILW and HLW disposal cells and evaluates how process level knowledge can be incorporated in models describing chemical evolution between waste forms (e.g. glass or cemented waste) and the near field materials to assess the evolution of the buffer, container and waste matrix accounting for transport of reactive species and/or other drivers for geochemical alterations. During repository evolution, a significant chemical/geochemical evolution of near field interfaces will occur due to steep chemical gradients, and, for HLW disposal cells, thermal gradients in the first hundreds to thousand years. Within ACED, we start from the knowledge available at the scale of interfaces between two materials in order to build models for assessing the chemical evolution at the cell disposal scale. This deliverable describes the existing knowledge on the relevant processes and transients occurring at the interfaces between materials, focussing on materials combinations relevant for the chemical evolution ILW and HLW disposal cells in European repository concepts. It addresses the following interfaces as basis for the work to be performed in ACED tasks 2 to 4: glass-steel, cement/mortar-granite, cement/concrete-clay, steel/iron-bentonite, steel/iron-cement/concrete, and steel/iron-granite. This deliverable provides a structured overview on i) existing (experimental) data on relevant processes occurring at the interfaces, ii) information on natural/archaeological/industrial analogues that provide insight/data for long-term processes relevant to the chemical evolution at the interfaces not accessible in short-term (laboratory) experiments, and iii) conceptual and mathematical models used to describe the processes occurring at the different interfaces. This information forms the basis for conceptualisation of the chemical evolution at these interfaces in the ACED tasks 2 to 4 and will be used to support model validation and parametrisation of models. EURAD (Deliverable n° D2.5) - Experiments and numerical model studies on interfaces Dissemination level: PU Date of issue of this report: 12.05.2021 Page 4 EURAD Deliverable D2.5 – Experiments and numerical model studies on interfaces Table of content Executive Summary ................................................................................................................................. 4 Table of content ....................................................................................................................................... 5 List of Figures .......................................................................................................................................... 7 List of Tables ......................................................................................................................................... 11 Abbreviations ......................................................................................................................................... 12 1. Introduction .................................................................................................................................... 14 1.1 Aims and scope ..................................................................................................................... 14 1.2 Structure of the report ............................................................................................................ 15 1.3 References ............................................................................................................................ 15 2. Interface "glass – steel" ................................................................................................................. 16 2.1 Processes at the interface ..................................................................................................... 16 2.2 Evidence from experiments and analogues .......................................................................... 18 Nature of the iron/steel corrosion products ................................................................... 18 Studies of glass/iron (or CPs) interactions: experimental approach ............................. 19 Glass alteration in the presence of iron or corrosion products ...................................... 20 Mechanisms ................................................................................................................... 26 2.3 Application of conceptual and mathematical models ............................................................ 36 Sorption models ............................................................................................................. 36 Precipitation of iron silicates .......................................................................................... 38 2.4 Resume ................................................................................................................................. 39 2.5 References ............................................................................................................................ 40 3. Interface "cement/mortar – granite" ............................................................................................... 45 3.1 Processes at the interface ..................................................................................................... 45 Concrete ........................................................................................................................ 45 Granite ........................................................................................................................... 47 3.2 Evidence from experiments and analogues .......................................................................... 48 Concrete ........................................................................................................................ 48 Granite ........................................................................................................................... 50 3.3 Application of conceptual and mathematical models ...........................................................