Remembering Lee W. Lenz (1915–2019)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Geranium Family, Geraniaceae, and the Mallow Family, Malvaceae
THE GERANIUM FAMILY, GERANIACEAE, AND THE MALLOW FAMILY, MALVACEAE TWO SOMETIMES CONFUSED FAMILIES PROMINENT IN SOME MEDITERRANEAN CLIMATE AREAS The Geraniaceae is a family of herbaceous plants or small shrubs, sometimes with succulent stems • The family is noted for its often palmately veined and lobed leaves, although some also have pinnately divided leaves • The leaves all have pairs of stipules at their base • The flowers may be regular and symmetrical or somewhat irregular • The floral plan is 5 separate sepals and petals, 5 or 10 stamens, and a superior ovary • The most distinctive feature is the beak of fused styles on top of the ovary Here you see a typical geranium flower This nonnative weedy geranium shows the styles forming a beak The geranium family is also noted for its seed dispersal • The styles either actively eject the seeds from each compartment of the ovary or… • They twist and embed themselves in clothing and fur to hitch a ride • The Geraniaceae is prominent in the Mediterranean Basin and the Cape Province of South Africa • It is also found in California but few species here are drought tolerant • California does have several introduced weedy members Here you see a geranium flinging the seeds from sections of the ovary when the styles curl up Three genera typify the Geraniaceae: Erodium, Geranium, and Pelargonium • Erodiums (common name filaree or clocks) typically have pinnately veined, sometimes dissected leaves; many species are weeds in California • Geraniums (that is, the true geraniums) typically have palmately veined leaves and perfectly symmetrical flowers. Most are herbaceous annuals or perennials • Pelargoniums (the so-called garden geraniums or storksbills) have asymmetrical flowers and range from perennials to succulents to shrubs The weedy filaree, Erodium cicutarium, produces small pink-purple flowers in California’s spring grasslands Here are the beaked unripe fruits of filaree Many of the perennial erodiums from the Mediterranean make well-behaved ground covers for California gardens Here are the flowers of the charming E. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Fremontodendron Mexicanum (Mexican Flannelbush)
Fremontodendron mexicanum (Mexican flannelbush) 5-Year Review: Summary and Evaluation Fremontodendron mexicanum, Photo by J. Snapp-Cook, USFWS U.S. Fish and Wildlife Service Carlsbad Fish and Wildlife Office Carlsbad, California August 14, 2009 2009 5-year Review for Fremontodendron mexicanum 5-YEAR REVIEW Fremontodendron mexicanum (Mexican flannelbush) I. GENERAL INFORMATION Purpose of 5-Year Reviews: The U.S. Fish and Wildlife Service (Service) is required by section 4(c)(2) of the Endangered Species Act (Act) to conduct a review of each listed species at least once every 5 years. The purpose of a 5-year review is to evaluate whether or not the species’ status has changed since it was listed (or since the most recent 5-year review). Based on the 5-year review, we recommend whether the species should be removed from the list of endangered and threatened species, be changed in status from endangered to threatened, or be changed in status from threatened to endangered. Our original listing of a species as endangered or threatened is based on the existence of threats attributable to one or more of the five threat factors described in section 4(a)(1) of the Act, and we must consider these same five factors in any subsequent consideration of reclassification or delisting of a species. In the 5-year review, we consider the best available scientific and commercial data on the species, and focus on new information available since the species was listed or last reviewed. If we recommend a change in listing status based on the results of the 5-year review, we must propose to do so through a separate rule-making process defined in the Act that includes public review and comment. -
Enhancement of Growth and Flowering of Triteleia Laxa by Ethylene Susan S
J. AMER. SOC. HORT. SCI. 115(3):482-486. 1990. Enhancement of Growth and Flowering of Triteleia laxa by Ethylene Susan S. Han1, Abraham H. Halevy2, Roy M. Sachs, and Michael S. Reid Department of Environmental Horticulture, University of California, Davis, CA 95616 Additional index words. corms, apical meristem size, carbohydrate, respiration rate, brodiaea Abstract. Exposure of dormant corms of Triteleia laxa ‘Queen Fabiola’ to 20 ppm C2H4 for 7 days promoted flowering of small corms and resulted in increased apical meristem size, early sprouting, early flowering, more flowers per Inflorescence, and increased fresh weight of daughter corms and cormels. The respiration rate of the C&treated corms increased to four to five times that of the controls during the 7-day treatment, declined markedly after termination of the C2H4 treatment, but remained higher than that of the controls. The C2H4 effects were associated with increased growth rate and consequently a greater final size of the apical meristem (determined by scanning electron microscopy). Leaves produced by C2H4-treated corms were wider, longer, and weighed more than those of the controls. Ethylene is a plant hormone that has diverse effects on a wide in a greenhouse under natural daylengths. The inflorescences range of plant tissues (Reid, 1987). Depending on the species, were harvested when the first flowers reached anthesis. The C2H4 may promote flower initiation, stimulate flower devel- fresh weight of the daughter corm and cormels was measured opment, inhibit flower induction, or cause abortion. Japanese when the leaves had senesced. There were 10 replications (one bulb growers found that, after burning iris fields in the autumn corm each) per treatment. -
Five Types of Bulbs the Word “Bulb” Here Is Used As a Generic Term for Plants That Grow from Five Distinct Types of Underground Structures As Follows
Five Types of Bulbs The word “bulb” here is used as a generic term for plants that grow from five distinct types of underground structures as follows: True Bulbs (Hyacinth, Tulip, Daffodil) Tiny bulblets or bulbils attach themselves to the bulb. Dig bulbs and separate gently remove tiny bulbs from basal plate. Plant bulblets in out-of-the-way spot till mature enough for bloom. Corms (Gladiolus, Crocus, Freesia) to divide separate cormels from main corm. Plant in an out-of-the-way place till corms are large enough to flower. Tubers (Anemone (most), Tuberous Begonia, Florist Cyclamen) – To divide, dig and separate large tuber into two or more sections, making sure each section has at least one or two growth points. Rhizomes (Bearded Iris, Agapanthus, Anemone [some], Canna rhizomes produce new plants from growth points along their sides. To divide, break at narrowing points which seem to divide sections. Each “break” needs at least one growing point. Tuberous Roots – (Day Lily, Ranunculus, Dahlia) to divide, dig and cut apart so that each separated root has a growth bud. NOTE: Tulips and Hyacinth need winter chill for best bloom. Purchase bulbs around Labor Day and *chill in refrigerator in vented bag for at least six weeks prior to planting. *IMPORTANT: While bulbs are being stored in refrigerator it is important that no fruits are stored in same refrigerator. Bulbs in Pots: Planting depth: Mix at home potting medium: Daffodil 5 inches 1 part peat moss Hyacinth 4 inches 1 part compost Tulip 2½ times deep as bulb is wide 1 part builder’s sand Muscari 2-3 inches Fertilizer (according to package instructions) Crocus 2 inches Growing Instructions for bulbs pot: Place in full sunlight (at least six hours each day). -
TELOPEA Publication Date: 13 October 1983 Til
Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance. -
TAXON:Chiranthodendron Pentadactylon Larreat
TAXON: Chiranthodendron SCORE: -4.0 RATING: Low Risk pentadactylon Larreat. Taxon: Chiranthodendron pentadactylon Larreat. Family: Malvaceae Common Name(s): devil's hand tree Synonym(s): Cheirostemon platanoides Humb. & Bonpl. Mexican handplant monkey hand tree Assessor: Chuck Chimera Status: Assessor Approved End Date: 5 Dec 2016 WRA Score: -4.0 Designation: L Rating: Low Risk Keywords: Tropical Tree, Ornamental, Medicinal, Bat-Pollinated, Arillate Seeds Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 ? outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see -
Curriculum Vitae James R. Shevock Research Associate, Department Of
Curriculum Vitae James R. Shevock Research Associate, Department of Botany California Academy of Sciences 55 Music Concourse Drive, Golden Gate Park San Francisco, California 94118 USA [email protected] Education B.S. Botany (1976) and M.A. Biology (1978), California State University, Long Beach. Master’s Thesis: A vascular flora of Lloyd Meadows Basin, Sequoia National Forest, Tulare County, California. Federal Career with U.S. Forest Service and National Park Service *1978. Began 30+ year federal career with USDA Forest Service. First position was wilderness ranger for the Golden Trout Wilderness. *1979-84. Became the first forest botanist for the Sequoia National Forest. Developed and administered the botany/ecology program. *1984-86. Served on a special assignment on loan from the Forest Service to the California Department of Fish & Game as staff botanist to the Natural Diversity Data Base. Increased interagency use of this statewide resource. *1986-98. Served as Regional Botanist for the Pacific Southwest Region, USDA Forest Service. Administered the threatened, endangered and sensitive plant program. Developed regional guidelines for forest planning toward natural resources. *1998-2003. Associate Regional Director for Resources Stewardship, Partnerships & Science, National Park Service, Pacific West Region. Provided oversight for cultural and natural resources management across 58 park units within six western states and trust territories in the Pacific. *2004-2008. NPS Research Coordinator, Californian Cooperative Ecosystem -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. -
New Nomenclatural Combinations for Blue Dicks ( Dipterostemon Capitatus ; Asparagaceae: Brodiaeoideae)
Preston, R.E. 2017. New nomenclatural combinations for blue dicks ( Dipterostemon capitatus ; Asparagaceae: Brodiaeoideae). Phytoneuron 2017-15: 1–11. Published 22 February 2017. ISSN 2153 733X NEW NOMENCLATURAL COMBINATIONS FOR BLUE DICKS (DIPTEROSTEMON CAPITATUS; ASPARAGACEAE: BRODIAEOIDEAE) ROBERT E. PRESTON ICF 630 K Street, Suite 400 Sacramento, California 95814 [email protected] ABSTRACT Dichelostemma capitatum (Benth.) Alph.Wood, traditionally treated as one of five geophyte species included in Dichelostemma Kunth, a genus endemic to the western USA and northern Mexico, has been the subject of nearly perpetual taxonomic confusion since the early 19 th century. In this paper, I review the errors that perpetuated the misapplication of names to D. capitatum , resurrect Dipterostemon Rydb. as the alternative genus for D. capitatum , and propose new infraspecific combinations. Dichelostemma pulchellum (Salisb.) A. Heller, a name persistently misapplied to D. capitatum , is a confused name that is synonymous with D. congestum (Sm.) Kunth. Dipterostemon capitatus (Benth.) Rydb. subsp. pauciflorus (Torr.) R.E. Preston, comb. nov. , and D. capitatus (Benth.) Rydb. subsp. lacuna-vernalis (L.W. Lenz) R.E. Preston, comb. nov. , are proposed. The genus Dichelostemma traditionally has consisted of five geophyte species endemic to the western USA and northern Mexico (Pires 2002; Pires & Keator 2012). Phylogenetic studies place Dichelostemma in the Themidaceae (Fay & Chase 1996; Fay et al. 2000; Pires et al. 2001; Pires & Sytsma 2002) and more recently in the subfamily Brodiaeoideae of the Asparagaceae (Chase et al. 2009; Steele et al. 2012; Chen et al. 2013). These studies also indicate that Dichelostemma is not monophyletic; Dichelostemma capitatum (Benth.) Alph.Wood is sister to the clade that includes Brodiaea and the other four species of Dichelostemma . -
Evolution of the Californian Closed-Cone Pine Forest
EVOLUTION OF THE CALIFORNIAN CLOSED-CONE PINE FOREST Daniel I. Axelrod University of California, Los Angeles ABSTRACT Fossil closed-cone pines similar to Californian species that now inhabit maritime and interior areas were already established as distinct adaptive groups in Miocene time. Their fossil as sociates suggest that floristically the closed-cone pine forests are part of the Madro-Tertiary Geoflora. Species ancestral to the pines and their associated endemics evidently represented mem bers of a highly temperate phase of the geoflora that reached the coastal strip in Oligocene time. The pines and their associates probably did not evolve in insular isolation, but in the temperate uplands in the interior. As more extreme climates developed there, the pine forests migrated coast-ward to survive under mild maritime climate, and also southward where related species per sist in the uplands of Mexico under highly temperate climate. INTRODUCTION Closed-cone pines of California and Baja California contrib ute to forests dominated by trees of generally small size that have persistent cones. They comprise two divergent adaptive groups, maritime and interior. The maritime species (Pinus muri¬ cata, P. radiata, P. remorata) form stands that are scattered dis¬ continuously along the outer coast and on islands from near Trinidad Head south for 1,100 miles to Cedros Island (fig. 1). P. muricata has the greatest range, extending from the far north (Trinidad Head) to the far south (Cedros Island). P. radiata oc curs near Ano Nuevo Point, at Monterey-Carmel, San Simeon- Cambria, and on Guadalupe and Cedros1 islands where it is rep resented by the variety binata. -
Fremontodendron Coville: Fremontia, Flannelbush
F Sterculiaceae—Sterculia family Fremontodendron Coville fremontia, flannelbush Susan E. Meyer Dr. Meyer is a research ecologist at the USDA Forest Service, Rocky Mountain Research Station’s Shrub Sciences Laboratory, Provo, Utah Growth habit, occurrence, and use. The genus seeds are cast from the capsules by wind, hail, or animal Fremontodendron is endemic to California and adjacent disturbances (Nord 1974). The seeds have a more or less areas of Arizona and Baja California. It includes 2 common well-developed caruncle or elaiosome at the micropylar end and 1 rare species (table 1) (Kelman 1991). Fremontias are (figure 1), and there is good evidence of dispersal by har- shrubs or small trees with evergreen leaves that are alternate, vester ants, at least for eldorado fremontia (Boyd 1996). In entire to lobed, and covered with characteristic stellate hairs. that species, the testa is much thicker under the elaiosome They are components of chaparral vegetation and are able to than at other positions on the seed (figure 2), apparently as a resprout abundantly after fire. The resprouts are valuable protection from the ant dispersers that eat the elaiosomes. forage for deer and domestic livestock (Nord 1974). These ants act as predators on seeds that do not possess an Fremontias are handsome plants that are used extensively in elaiosome “bribe.” California for roadside and residential landscaping and are Seed collection, cleaning, and storage. Fremontias becoming known as native garden plants (Holmes 1993). grow rapidly and reach reproductive age the second season Interspecific hybrids such as F. mexicanum × F. californicum ‘California Glory’ have been developed for horticultural use.