Introduction Data Used Interpretation STRUCTURAL EVOLUTION

Total Page:16

File Type:pdf, Size:1020Kb

Introduction Data Used Interpretation STRUCTURAL EVOLUTION STRUCTURAL EVOLUTION OF THE BUENA VISTA AND ELK HILLS ANTICLINES AND HYDROCARBON TRAPPING POTENTIAL (SOUTH SAN JOAQUIN BASIN, CALIFORNIA) Radu Girbacea Rock Fracture Project, Department of Geological and Environmental Sciences, Stanford University, Stanford CA 94305-2115 and Occidental Oil and Gas Corporation P.O. Box 27757 Houston, TX 77227-7757 e-mail: [email protected] Introduction Andreas Fault. For exploration activities, the associa- The goal of this study was to provide a structural tion of thrusting and wrenching can provide additional model for the Buena Vista (BV) and Elk Hills (EH) structural trapping potential which might be underesti- anticlines (Fig. 1) and to add new insights into timing mated based on the previous structural models. and possible mecha-nisms of trap formation. The interpretation was based on balanced restoration of a Data used cross-section running from north of EH through BV and The data set used for this study consist of: up to the San Andreas Fault in the south. GeoSec2D • one 3-D seismic line (Line 574); was used to visualize and model critical points, as fold • one 2-D seismic line (Line SJ-132); geometry in connection to observed fault shape and slip • wells with picks and dipmeter data; amount, dif-ferences in forelimb/backlimb dips, and • surface geology (stratigraphy and structures). thinning of stratigraphic horizons across anticlines. The well and seismic line location is shown on the GeoSec2D was also used to unfold the studied cross- base map in Figure 2. The orientation of section 1-1’ section in steps corresponding to each stratigraphic top. (which is discussed here) was constrained by the regional This enabled the recon-struction of the incremental SJ-132 amd therefore is not perpendicular to the mean strains, the cal-culation of the amount of shortening, and fold axis orientation. The planned section 2-2’ may of- the prediction of possible structural features required fer additional calibration because it has more surface by the kinematic constraints and by the observed geologic control and runs perpendicular on the regional structural geometries. structural trends. The wells are listed in Table 1; Figure As a general concluding remark, the BV and EH 3 shows the stratigraphic profile and tops as used here. anticlines can be interpreted in 2D as folds related to a deep decollement with flat-and-ramp geometry. The Interpretation space problems observed during unfolding have been The overall geometry down to the Media top (con- attributed to a young episode of wrenching. However, sidered as being the base of Monterey and top of Tem- thrusting was still required during wrenching in order blor) was constructed using well picks, tops mapped on to account for the present fold geometry. Therefore the Line 574 and then by following the geometry of strong overall structural picture can be interpreted as gener- reflectors on Line SJ-132 (Fig. 4),. The following fea- ated due to thrusting followed by transpression. This is tures are visible on this seismic interpretation: a new interpretation for the structures associated with • a high-angle south-vergent fault (F1) developed up the San Andreas fault in the south San Joaquin basin, to the Tulare Fm. south of EH; which differ from both the pure wrenching (Harding, • a north-vergent fault (F2) developed up to the Reef 1976, Nicholson, 1990) and the pure thrusting (Davis Ridge Fm. north of EH; and Lagoe, 1988) models. Based on this interpretation, • thinning and pinchouts of the Reef Ridge Fm. on the EH and BV differ substantially from other features top of EH; located further south and north along the same struc- • thickening of the Monterey and Reef Ridge forma- tural trend, i.e., Wheeler Ridge (Medwedeff, 1992; tions on the southern limb of EH; Mueller and Suppe, 1997), Lost Hills (Medwedeff, 1989; • a change of fold axis vergence form northward to Wickham, 1995), and Kettleman Hills (Bloch et al., southward in EH; 1993). This difference indicates the high variability in • thinning of the Etchegoin and San Joaquin fms. on strain behavior and kinematic style along the San the northern limb of BV; Stanford Rock Fracture Project Vol. 11, 2000 P-F-1 • a high-angle north-vergent fault (F3), north of BV; Considering the rather small amount of offset mapped • a tight fold and a rapid shallowing of all tops to- on faults F1, F2, and F3, no folding mechanism tested ward the San Andreas fault south of BV; (i.e., fault-bend, fault-slip, and fault-propagation) is ca- • a north-verging reverse fault (F4) was inferred at pable of creating the observed folds. Furthermore the BV to account for the abnormal thickness of the fact that fault F1 is traced off the kink observed in the McDonald Fm. as observed in wells 25P-10D and Etchegoin and San Joaquin fms. on the south flank of 723-9D, and to explain the sudden change in dip of EH proves that the folding cannot be related to fault F1. the top McDonald on the northern flank of BV. Therefore, I suggest that the bulk folding was Several forward models were constructed in GeoSec2D achieved due to a deeper detachment fault with a flat in order to visualize the structural and depositional pro- and ramp geometry, while the faults F1, F2, and F3 are cesses which might have caused the observed features. in fact very young features which have a little impact Table 1 Wells used in this study (CWN-common well name: WO-well operator), Section 1-1’ Section 1-1’ TD No. CWN API WO FEET 1 341-18040293089900 CHEVRON 14011 213040293090100 SUPERIOR 14123 3 31-5040296967000 QUINTANA PROD. 16200 4 56X-10040295293200 BENDER E. A. 13531 5 55-15S040293747400 TENNECO 11315 6 52X-24040298008300 UO-NPR1 12020 7 5-321-26S040294529600 UO-NPR1 11478 8 64-26S040292582500 UO-NPR1 10641 9 316-26S040296510200 UO-NPR1 11000 10 5-377-34S 040295891600 UO-NPR1 11950 11 3-88-3G-RD1 040296865301 UO-NPR1 10000 12 326-9G 040296266700 UO-NPR1 11500 13 USTAN-PO 040296547900 PORTS-OF-CALL OIL 13600 14 1B&N 040296273100 OXY 13770 15 4-7-33G 040290247600 CHEVRON 5687 16 1-1-3D 040290272900 CHEVRON 5650 17 723-9D 040300030600 CHEVRON 11913 18 25P-10D 040291120500 HONOLULU OIL 14622 19 S-2-22D 040290316500 VISTA GRAN 7026 20 543X-27D 040294494700 CHEVRON 7728 21 52-34D 040290764400 CHEVRON 8004 22 401 040296471500 MOBIL 9784 23 1 040293606200 UNKNOWN 8641 24 2 040293541100 OCCIDENTAL 9005 P-F-2 Stanford Rock Fracture Project Vol. 11, 2000 Section 2-2’ TD No. CWN API WO FEET 1 USTAN-PO40296547900 PORTS-OF-CALL OIL 13600 2 1B-20G G201B UNION OIL 9542 3140292385100 UNKNOWN 2404 4 33X-3040291741000 UNKNOWN 10030 5240293919200 UNKNOWN 5011 6 518X-7D40298356600 CHEVRON 8993 784029058100 CHEVRON 3129 81440292595100 INDEPENDENT EXPL. 6030 95840292949400 SUPERIOR 14504 10 1-33 40296023200 TERRA RESOURCES 11011 11 78-31 40291537800 ARCO 11438 Coles Levee Deep Wells (used for stratigraphic control) TD No. CWN API WO FEET 1 71-1040292930900 Marathon 12486 2 22X-1040297696900 Channel Expl. 13522 3 26-2940296065000 Tenneco 17978 4 67-29T40290136500 Arco 17895 on the final fold shape. The inferred deep detachment B. These are fault segments originating from a deep fault is likely to have been originated within the ductile strike-slip fault and thus composing a flower structure. unit of the Kreyenhagen shale, which is also a potential The unfolding results presented in the next chapter in- source rock in this area. The high-angle geometry of dicate that probably this is the case. faults F1, F2, F3 suggests two possibilities: A. These are out-of-sequence faults because an ini- O tial thrust would propagate at angles lower than 45 (ac- Cross-section restoration and cording to the Mohr-Coulomb failure criterion). This angle is affected only if the initial fault becomes locked unfolding while the shortening continues—a case in which the de- The results of the cross-section restoration and un- formation is accommodated by out-of-sequence high- folding are shown in Figure 5a. The unfolding was done angle faults. The out-of-sequence faults are likely to root in six steps, by flattening the main stratigraphic tops, into the Kreyenhagen Fm., because this is a dominantly i.e., Tulare, San Joaquin, Etchegoin, Reef Ridge, shaly unit. Monterey, McDonald, and Temblor. The observed and In this model the locking of the initial fault is cru- inferred features are described below: cial; this might have happened in the study area due to • Step 1, top Temblor. The section has an initial length several possible reasons, such as: of 46.25 km and it shows the basin containing three rela- • changes in rheology toward the basin center due to tively elevated areas (two at BV zone, one at EH), which lithologic heterogeneities; were interpreted as horsts separating deeper areas in • approaching a structural high which acts as a but- between. The space problems (i.e. material missing) seen tress against fault propagation (in this case perhaps the at the northern end of the section indicates that the area Bakersfield arch?); was under extension from this stage to the next one. • decrease in pore pressure with decreasing depth due The normal faults are interpreted as being listric, there- to several ramping episodes. fore a basal extensional decollement is inferred; Stanford Rock Fracture Project Vol. 11, 2000 P-F-3 Channel Expl. Tenneco Arco 12486 13522 17978 17895 • Step 2, top McDonald. The section expands to 47.68 propagating in the basin as a triangle zone. The sole km by 4.35% stretching, this causing further normal thrust of this block can be the same fault causing faulting and deepening of the existing grabens; (through its ramps) the folding at BV and EH, while This extension correlates with an Oligocene-Early the roof fault is a back-thrust.
Recommended publications
  • Late Cenozoic Tectonics of the Central and Southern Coast Ranges of California
    OVERVIEW Late Cenozoic tectonics of the central and southern Coast Ranges of California Benjamin M. Page* Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 George A. Thompson† Department of Geophysics, Stanford University, Stanford, California 94305-2215 Robert G. Coleman Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 ABSTRACT within the Coast Ranges is ascribed in large Taliaferro (e.g., 1943). A prodigious amount of part to the well-established change in plate mo- geologic mapping by T. W. Dibblee, Jr., pre- The central and southern Coast Ranges tions at about 3.5 Ma. sented the areal geology in a form that made gen- of California coincide with the broad Pa- eral interpretations possible. E. H. Bailey, W. P. cific–North American plate boundary. The INTRODUCTION Irwin, D. L. Jones, M. C. Blake, and R. J. ranges formed during the transform regime, McLaughlin of the U.S. Geological Survey and but show little direct mechanical relation to The California Coast Ranges province encom- W. R. Dickinson are among many who have con- strike-slip faulting. After late Miocene defor- passes a system of elongate mountains and inter- tributed enormously to the present understanding mation, two recent generations of range build- vening valleys collectively extending southeast- of the Coast Ranges. Representative references ing occurred: (1) folding and thrusting, begin- ward from the latitude of Cape Mendocino (or by these and many other individuals were cited in ning ca. 3.5 Ma and increasing at 0.4 Ma, and beyond) to the Transverse Ranges. This paper Page (1981).
    [Show full text]
  • Joint Technical Document, MSW Landfill B-19, Kettleman Hills
    JOINT TECHNICAL DOCUMENT MSW LANDFILL B-19, KETTLEMAN HILLS FACILITY KINGS COUNTY, CALIFORNIA VOLUME 1 OF 2 June 2016 Prepared for: Chemical Waste Management, Inc. 35251 Old Skyline Road Kettleman City, California 93239 Original prepared by: EMCON/OWT, Inc. 1326 North Market Boulevard Sacramento, California 95834-1912 Project No.: 833760.02000000 JOINT TECHNICAL DOCUMENT MSW LANDFILL B-19, KETTLEMAN HILLS FACILITY KINGS COUNTY, CALIFORNIA PROFESSIONAL ENGINEERING CERTIFICATION This revision to the JTD was prepared under the supervision and direction of the undersigned. This report was prepared consistent with current and generally accepted geologic and environmental consulting principles and practices that are within the limitations provide herein. Scott Sumner, P.E. Engineering Manager, RCE 49769 B-19 JTD JUNE 2016 ii Table of Contents ________________________________________________ Title Page ............................................ ……………………………………………………………………………... i Professional Engineering Certification ……………………………………………………………………………... ii List of Figures ............................................................................................................................................... vii List of Appendices ........................................................................................................................................ vii CalRecycle/SWB Index………………………………………………………………………………………………viii 1.0 Introduction ....................................................................................................................................
    [Show full text]
  • Environmental Justice Litigation in California: How Effective Is Litigation in Addressing Slow Violence? Deedee Chao Claremont Mckenna College
    Claremont Colleges Scholarship @ Claremont CMC Senior Theses CMC Student Scholarship 2017 Environmental Justice Litigation in California: How Effective is Litigation in Addressing Slow Violence? Deedee Chao Claremont McKenna College Recommended Citation Chao, Deedee, "Environmental Justice Litigation in California: How Effective is Litigation in Addressing Slow Violence?" (2017). CMC Senior Theses. 1467. http://scholarship.claremont.edu/cmc_theses/1467 This Open Access Senior Thesis is brought to you by Scholarship@Claremont. It has been accepted for inclusion in this collection by an authorized administrator. For more information, please contact [email protected]. Claremont McKenna College Environmental Justice Litigation in California: How Effective is Litigation in Addressing Slow Violence? submitted to Professor Mary Evans and Professor Thomas McHenry by Deedee Chao for Senior Thesis Fall 2016 12/05/16 Table of Contents Acknowledgements ..............................................................................................................1 Abstract ................................................................................................................................2 Introduction ..........................................................................................................................3 Case Study 1: Hinkley Groundwater Contamination.........................................................18 Case Study 2: Kettleman Hills Hazardous Waste Facility.................................................28
    [Show full text]
  • Stratigraphy of the Southern Coast Ranges Near the San Andreas Fault from Cholame to Maricopa, California
    Stratigraphy of the Southern Coast Ranges near the San Andreas Fault from Cholame to Maricopa, California GEOLOGICAL SURVEY PROFESSIONAL PAPER 764 Stratigraphy of the Southern Coast Ranges near the San Andreas Fault from Gholame to Maricopa, California By T. W. DIBBLEE, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 764 A discussion of the regional stratigraphy of the McLure Valley area, Temblor Range, Carrizo Plain, Cuyama Valley, Caliente Range, La Panza Range, and Sierra Madre Mountains UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 72-600327 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Price: Paper cover-80 cents, domestic postpaid; 55 cents, GPO Bookstore. Stock No. 2401-00300 CONTENTS Page Page Abstract _ _ __________________________ 1 Middle Tertiary sedimentary sequence Continued Introduction _____________________________________ 1 Vaqueros and Temblor Formations Continued Scope and purpose ___________________________ 1 Temblor Formation Continued Problems of stratigraphic terminology _________ 3 Buttonbed Sandstone Member ______ 23 Chronology used _____________________________ 3 Monterey Shale ____________________ 24 Tectonic areas ____________________________ 5 Review of nomenclature _____ _ 24 Crystalline plutonic and metamorphic rocks ________ 5 Stratigraphic units southwest of the San Eugeosynclinal sedimentary
    [Show full text]
  • City of Avenal Water Transmission Pipeline Replacement Project
    Draft Initial Study / Mitigated Negative Declaration City of Avenal Water Transmission Pipeline Replacement Project PREPARED FOR: City of Avenal 919 Skyline Blvd. Avenal, CA 93204 March 2018 NOTICE OF PUBLIC REVIEW AND NOTICE OF INTENT TO ADOPT A MITIGATED NEGATIVE DECLARATION The City of Avenal proposes to adopt a Mitigated Negative Declaration (MND) pursuant to the California Environmental Quality Act of (Section 15000 et seq., Title 14, California Code of Regulations) (CEQA) for the Water Transmission Pipeline Replacement Project (project). The City of Avenal proposes to install a new 18- inch water transmission line to the east of State Route (SR) 269 between Interstate 5 and an existing water tank at Skyline Road. The new pipeline would replace an existing water transmission line of the same size that is located along the same alignment. The existing pipeline was installed in 1986 and require constant maintenance and repairs. The 30-day period for public review and comment on the proposed MND begins March 14, 2018. All comments must be submitted by April 13, 2018. Please address comments on the proposed MND as follows: City of Avenal Attn: Fernando Santillan 919 Skyline Blvd. Avenal, CA 93204 Or email: [email protected] A copy of the proposed MND and supporting documents can be reviewed at the City’s Community Development Department office at the above address. For further information regarding the proposed MND and the City’s schedule to consider adoption of the document, please contact Fernando Santillan at (559) 386-5782. City of Avenal Water Transmission Pipeline Replacement Project Draft Initial Study / Mitigated Negative Declaration PREPARED FOR: City of Avenal 919 Skyline Blvd.
    [Show full text]
  • BIRDS of the KETTLEMAN HILLS AREA, CALIFORNIA by IDA DEMAY WILSON
    July, 1945 149 BIRDS OF THE KETTLEMAN HILLS AREA, CALIFORNIA By IDA DEMAY WILSON It is always interesting to find out what sort of wild creatures manage to live in un- favorable regions which have little water or vegetation to make them habitable.,Such a region is the southwestern part of the San Joaquin Valley in California. Here, at about the half-way point on a straight line between Los Angeles and San Francisco, the Kettle- man Hills rise out of the dry, barren-looking flats. They extend northwestward from Kern County, through Kings County, into Fresno County, on the eastern edge of the Coast Range. The Kreyenhagen Hills and the Diablo Range, less than five miles away to the west across the Kettleman Plain, support more vegetation than the Kettleman Hills and provide suitable habitats for more kinds of animals. So also does the Coalinga area to the northwest (Arnold, Condor, 39, 1937 :31-35), about seventeen miles from the town of Avenal, which is situated on the Kettleman Plain just west of the north dome of the Kettleman Hills. The canals and low farm lands around Tulare Lake, about five miles east of the Hills, attract a wide variety of ducks, herons, and shore birds, but few of these stray to the Kettleman Hills. The highest point in the Kettleman Hills rises about 900 feet above the edge of the San Joaquin Valley and about 600 feet above the Kettleman Plain. It has an altitude of 1366 feet (Woodring, Stewart, and Richards, U.S. Dept. Int., Geol. Surv.
    [Show full text]
  • A Look at the Rise of the Waste Management Corporation from Rural California to the Rest of the World
    Corporation, People, and Government: A Look at the Rise of the Waste Management Corporation from Rural California to the Rest of the World By Yalda Asmatey A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Anthropology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Laura Nader, Chair Professor Nancy Scheper-Hughes Professor Liu Xin Professor Beatriz Manz Spring 2013 Copyright 2013 Abstract Corporation, People, and Government: A Look at the Rise of the Waste Management Corporation from Rural California to the Rest of the World By Yalda Asmatey Doctor of Philosophy in Anthropology University of California, Berkeley Professor Laura Nader, Chair This research project is a study of Kettleman City, California, home to the largest Class I toxic waste dump in the western United States, owned and operated by the public corporation Waste Management Inc. (WMI). The story of Kettleman City is a cautionary tale of hubris that warns of the consequences of the complete disregard for the natural environment and the tolerance for corporation’s profit-generating schemes that harm human health and the ecosystem. Divided into three parts, the project expands scholarship on the anthropology of disaster, the study of corporations in the United States within a framework of environmental justice, and the controlling processes underlying the dominant paradigms. The first part of the dissertation examines government and corporate neglect and acquiescence to the incremental degradation and devastation of California’s environment since the mid- nineteenth century involving the displacement and extermination of Native Americans and the Tulare Lake Basin, the killing and contamination of migratory birds in the Kesterson Wildlife Refuge, and the corruption and power of the agricultural industry.
    [Show full text]
  • Ground-Water Conditions in the Avenal-Mckittrick Area Kings and Kern Counties California
    Ground-Water Conditions in the Avenal-McKittrick Area Kings and Kern Counties California By P. R. WOOD and G. H. DAVIS GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1457 Prepared in cooperation with the U.S. Bureau of Reclamation ^NITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Wood, Perry Rowley, 1920- Ground-water conditions in the Avenal-McKittrick area, Kings and Kern Counties, California, by P. E. Wood and G. H. Davis. Washington, U.S. Govt. Print. Off., 1959. iv, 141 p. maps, diagrs., tables. 24 cm. (U.S. Geological Survey. Water-supply paper 1457) Part of illustrative matter folded in pocket. Prepared in cooperation with the U.S. Bureau of Reclamation. Bibliography: p. 62-64. 1. Water, Underground California Kern Co. 2. Water, Under­ ground California Kings Co. I. Davis, George Hamilton, 1921- joint author. II. Title: Avenal-McKittrick area, Kings and Kern Counties, California. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract. _____________________-_____-______________----____------_ 1 Introduction._ ____________________________________________________ 3 Location and general features of area.____________--_-_--_-----__ 3 Scope and purpose..___________________________________________ 4 Cli mate ______________________________________________________ 6 Acknowledgments. ______-_-____-___-_-_--___-_---_----_---_-__ 9 Well-numbering system._________________-_______-__--._---_--_ 10 Physiography _____________________________________________________ 11 Topography and drainage._____________________________________ 11 San Joaquin Valley______________-_______-______---_-.-__-__ 11 Dissected uplands._____.____...-_______--______-_-_.__ 11 Low plains and fans.__________________________________ 14 Overflow lands and lake bottoms.
    [Show full text]
  • U. S. DEPARTMENT of the INTERIOR U. S. GEOLOGICAL SURVEY Basic Data and Preliminary Density Profile from a Borehole Gravity Surv
    U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Basic Data and Preliminary Density Profile from a Borehole Gravity Survey Made in the 341-1 IP Well, Kettleman North Dome Oil Field, Kings County, California by L. A. Beyer1 , F. G. Clutsom2 and F. V. Grubb3 Open-File Report 95-54 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. !U.S. Geological Survey, 345 Middlefield Rd., MS 999, Menlo Park, CA 94025-3591 2U.S. Geological Survey, MS 964, Federal Center, Box 25046, Denver, CO 80225-0046 3U.S. Geological Survey, 2255 North Gemini Dr., Flagstaff, AZ 86001-1698 1995 INTRODUCTION This report presents (1) a short description of the Kettleman North Dome oil field, (2) a brief summary of the 341-1 IP well drilled between October 1989 and February 1990, and (3) the preliminary density profile and tabulation of basic data for a borehole gravity (BHGM) survey made by the Geological Survey in the 341-1 IP well during October 30 and November 5, 6, and 7, 1992. A brief summary of the borehole gravity (BHGM) method ^nd a description of the data reduction and error estimate procedures also is included. KETTLEMAN NORTH DOME OIL FIELD Kettleman North Dome oil field is located about 21 mi (35 km) south-southeast of the town of Coalinga along the central west side of the San Joaquin basin, California (Fig.
    [Show full text]
  • Middle Tertiary Stratigraphic Sequences of the San Joaquin Basin, California
    Petroleum Systems and Geologic Assessment of Oil and Gas in the San Joaquin Basin Province, California Chapter 6 Middle Tertiary Stratigraphic Sequences of the San Joaquin Basin, California By Cari L. Johnson1 and Stephan A. Graham2 Miocene strata of the central and southern San Joaquin Basin, Contents California, into a framework of nine stratigraphic sequences. These third- and higher-order sequences (<3 m.y. duration) Abstract.-------------------------------------------------------------------------------- 1 comprise the principal intervals for petroleum assessment for Introduction----------------------------------------------------------------------------- 1 Database-------------------------------------------------------------------------------- 2 the basin, including key reservoir and source rock intervals. Im- Methods--------------------------------------------------------------------------------- 2 portant characteristics of each sequence are discussed, including Eocene Through Lower Miocene Sequence Stratigraphy of the Central distribution and stratigraphic relationships, sedimentary facies, San Joaquin Basin--------------------------------------------------------------------4 regional correlation, and age relations. This higher-order strati- Upper Paleocene Through Lower Eocene Martinez Formation and Lodo graphic packaging represents relatively short-term fluctuations Formation-------------------------------------------------------------------------- 5 Distribution and Stratigraphic Relations-------------------------------------
    [Show full text]
  • Chemical Waste Management, Kettleman Hills Facility B-18 Landfill Expansion Project Biological Assessment July 2011 Revision
    Chemical Waste Management, Kettleman Hills Facility B-18 Landfill Expansion Project Biological Assessment July 2011 Revision Attachment 3 Chemical Waste Management, Inc. Kettleman City, CA Rare Plant Survey of the Kettleman Hills Hazardous Waste Disposal Facility Prepared by: Dean W. Taylor, Ph.D. Rexford E. Palmer, Ph.D. RayBuck Glen Clifton BIOSYSTEMS ANALYSIS, INC. 303 Potrero Street Santa Cruz, CA July 1988 J-354 TABIE OF CONTENTS 1.0 INTRODUCTION 1 1.1 Study Area. ... 2 1.2 Facility Expansion .. 2 1.3 Environmental Setting. 6 2.0 METHODS 8 3.0 RESULTS . 12 3.1 State and Federal Status Rare Plants. 12 3.2 Other Rare Plants. ......... 15 3.3 Other Habitat Features ....... 18 4.0 DISCUSSION AND RECOMMENDATIONS 22 4.1 Specific Recommendations 23 5.0 UTERATURE CITED. .... 24 APPENDIX 1 Agency Consultation Request and Responses APPENDIX 2 Status Reports of Sensitive Species Located Within the Chemical Waste Management Kettleman Hills Facility APPENDIX 3 Checklist of Vascular Plants Observed in 1988 Surveys of the Chemical Waste Management Kettleman Hills Facility liST OF TABLES Table 1 Status, distribution and habitat of rare plants at Kettleman Hills ... 9 liST OF FIGURES Figure 1 Location of the study area. 3 Figure 2 Topography of the study area 4 Figure 3 Proposed facility development. 5 Figure 4 Location ofEriogonum gossypinum . 13 Figure 5 Location ofDelphinium gypsophilum 16 Figure 6 Location ofHemizonia pal/ida . 17 Figure 7 Vegetaion map of the study area. 19 ii Executive Summary Chemical Waste Management's Kettleman Hills Facility supports a limited rare plant resource. Three CNPS List 4 plants species are present on the site: Cottony Buckwheat (Eriogonum gossypinum), Gypsum Larkspur (Delphinium gypsophilum ssp.
    [Show full text]
  • COCORP Seismic Profiles Near Coalinga, California: Subsurface Structure of the Western Great Valley
    COCORP seismic profiles near Coalinga, California: Subsurface structure of the western Great Valley Eric Fielding, Muawia Barazangi, Larry Brown, Jack Oliver, Sidney Kaufman Department of Geological Sciences, Cornell University, Ithaca, New York 14853 ABSTRACT INTRODUCTION COCORP seismic reflection profiles collected in 1977 on the west side of the San The Coalinga area is located at the western Joaquin Valley near Coalinga in southern California provide information on the Cenozoic edge of California's Great Valley, a large elon- and Mesozoic structures in the subsurface of the western Great Valley. The data show gate basin that stretches about 700 km north- evidence of significant normal faulting during the Cretaceous, when this part of California south (Fig. 1). Most of the sedimentary rocks was the site of a forearc basin. Neogene compression, probably associated with transform that have filled this basin since Late Jurassic motion on the nearby San Andreas fault system, may be reactivating these pre-existing faults time and the basement beneath them are ex- in a reverse sense and causing the active folding of the southern Coast Ranges. The recent posed only around the edges of the Great Val- Coalinga earthquake sequence that began on May 2,1983, appears to correspond to ley (e.g., Blake and Jones, 1981). The thick movement on the high-angle reverse fault within the basement that is inferred from the Cenozoic strata conceal the essentially un- COCORP lines. known deep structure of the valley. The east side of the Great Valley clearly lies upon the down-tilted edge of the Sierra Nevada block (e.g., Ingersoll, 1982), but the nature of the basement of the western flank has long been a problem.
    [Show full text]