ASSOCIATIONS OF CARRION (COLEOPTERA: ) COMMUNITIES FOUND ON SMALL MAMMAL CARRION IN THE KANSAS FLINT HILLS

A Thesis by

Emmy L. Engasser

Bachelor of Science, Wichita State University, 2014

Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science

December 2017

© Copyright 2017 by Emmy L. Engasser

All Rights Reserved

HABITAT ASSOCIATIONS OF CARRION BEETLE (COLEOPTERA: SILPHIDAE) COMMUNITIES FOUND ON SMALL MAMMAL CARRION IN THE KANSAS FLINT HILLS

The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences.

______Mary Liz Jameson, Committee Chair

______Leland Russell, Committee Member

______Peer Moore-Jansen, Committee Member

iii

There are two things after death: putrefaction, the work of microbes, and disappearance, the work of . -Yovanovitch, 1888

iv ACKNOWLEDGMENTS

First, I would like to thank Dr. Mary Liz Jameson. Her passion inspired me to pursue entomology. Without her support and guidance, I would not be the same person I am today. I thank Wichita State University for funding and use of their facilities, and the well-known Maria

Martino and Marcia Norton (Wichita State University) for help with putting out fires and anything we needed.

Thanks to my committee members, Dr. Leland Russell for his help with experimental design and statistical questions and Dr. Peer Moore-Jansen for providing forensic expertise, the funds needed to initiate this research, and granting access to WSU’S Skeleton Acres Research

Facility. Their assistance and constructive criticism during this project was greatly appreciated.

Special thanks to Rachel Stone, the other carrion queen, who was beside me through all the laughter, blood, sweat, and tears of this project. We did it! Rachel and I would not have been able to execute this research without the wonderful help of our research technicians: Jackie

Baum, Jacqueline Nascimento, Brandon Hein, Breanna Sayers, Ethan Grennan, Niall Horton,

Hannah Hoetmer, Faith Hanna, Morgan Trible, Theresa Wolff, and Nicole Brown. Thank you for stepping up to the stinky tasks!

My sincere gratitude also goes out to: Drs. Brett Ratcliffe and MJ Paulsen (University of

Nebraska-Lincoln) for assistance in identification of ; Dr. Josh Perkin (Texas A&M

University) for guidance with statistical analyses; Juju Wellemeyer (Missouri Department of

Conservation) for helping with statistics, brainstorming and being the best motivator a friend could ask for; Ranger Randy Just and Seth Turner (Kansas Department of Wildlife, Parks and

Tourism) for their coordination and approval to conduct research at El Dorado State Park; Joyce

Dudeck, Kim and Scott Bays for allowing this research to be conducted on their beautiful

v property; Larry Slayton (Sedgwick County Zoo, Wichita) for ordering many rats for this research; and Matthias Seidel and Axel Gonzalez for help with Czech translation (Univerzita

Karlova v Praze, Czech Republic).

I am also thankful for my supportive family during this time, especially my parents, Mike and Gigi Dudeck; my husband, Kyle Engasser; and my friends that have been here for me throughout the entire process and new friends I have made along the way. I love you all.

vi ABSTRACT

Necrophagous insects play an important role in and nutrient recycling of decomposing . Ecological studies of carrion-associated beetles enhance forensic investigations by providing information about community assemblages and predictable patterns of succession. Gaps in , include: 1) repeatable, replicable ecological research, 2) research sites across all geographic zones, and 3) research conducted throughout a full annual cycle. To address these gaps and observe habitat associations of carrion beetles, the influence of habitat (woodlands versus grasslands) and abiotic factors on carrion beetle

(Coleoptera: Silphidae) communities were examined at three sites located within the Kansas

Flint Hills. A total of 3,333 adult carrion beetles in nine species were collected from pitfall traps baited with rat carrion over twelve 4-week collecting periods. Silphid beetle community differed in species composition between grassland and woodland , but communities did not differ significantly in overall mean abundance, mean species richness, or mean species diversity. Six species exhibited strong habitat associations; two associated with grassland habitats

(Nicrophorus marginatus and Necrodes surinamensis), and four with woodland habitats

(Nicrophorus orbicollis, Necrophila americana, noveboracense, and Nicrophorus pustulatus). These results are relevant for predicting patterns of silphid beetle communities in the

Kansas Flint Hills and assist in determining corpse relocation in forensic studies.

vii TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION………………………………………………………………………...1

II. MATERIALS AND METHODS………………………………………………………….5

STUDY SITES……………………………………………………………………5 SAMPLING PROTOCOL………………………………………………………...8 MEASUREMENT OF ABIOTIC VARIABLES…………………………………9 LABORATORY METHODS……………………………………………………10 ANALYSES……………………………………………………………………...10

III. RESULTS……………………………………………………………………………...... 14

IV. DISCUSSION……………………………………………………………………………18

REFERENCES……………………………………………………………………………...…...21

APPENDICES…………………………………………………………………………………...26

viii CHAPTER 1

INTRODUCTION

Carrion, or decomposing tissue, is an important ephemeral, nutrient resource for many organisms, including microbial, plant, invertebrate, and communities (Barton et al. 2013, Benbow et al. 2016). Necrophagous insects, primarily Diptera and Coleoptera, play a large role in decomposition and nutrient recycling of these decaying animals (Payne 1965,

Ratcliffe 1996, Kočárek 2003). Studies observing the environmental influences upon these assemblages have applications for community ecologists and forensic entomologists.

An important concept of community ecology is that biotic and abiotic factors in the environment limit community assemblages and species interactions. Many insect species exhibit strong habitat associations (Bajerlein et al. 2011, Parry et al. 2016), and reasonable evidence supports the hypothesis that habitat types influence community composition of Silphidae species

(Walker 1957, Anderson 1982, Shubeck 1983, Kentner and Streit 1990, Lingafelter 1995).

Kočárek (2003) found that rat carrion in an open meadow site decayed much faster than rat carrion in a forest site, which suggests that these habitats play a significant role in rates of decomposition. This information is relevant in predicting patterns of insect communities with forensic importance. For example, some species of necrophagous beetles are used to determine if a corpse has been relocated after death in forensic investigations (Matuszewski et al. 2013,

Madra et al. 2014).

Forensic entomology relies on experimental data of necrophagous insects in the United

States as evidence in criminal cases to determine postmortem interval (PMI) or period of insect activity (PIA) (Tomberlin et al. 2011, Harvey et al. 2016). However, lack of standardized research protocols and credibility of scientific information derived from these studies requires

1 wholesale changes to serve society more effectively (National Research Council 2009). Many

gaps remain within forensic research involving necrophagous insects, including: 1) repeatable,

replicable ecological research, 2) research sites across all geographic zones, and 3) research

conducted throughout a full annual cycle (Tomberlin et al. 2011, Michaud et al. 2012, Tomberlin

et al. 2012). An unreplicated treatment (or simple pseudoreplication; Benbow et al. 2016) is the

most common experimental design error in forensic science articles published between 1985-

2009 (Michaud et al. 2012). This leads to inflated power of statistical tests and makes it more

likely that researchers will conclude that an effect exists when it may not (Hurlbert 1984).

Another problem with pseudoreplication is that the treatment level is confounded with natural

variation that occurs within that treatment level, such as site effects. Pseudoreplication is avoided

by conducting and designing experiments that have adequate replications using multiple

carcasses within replicated treatments. Forensic entomology research that encompasses natural

variability should be performed in all biogeographic regions, ecosystems, and habitats; multiple

study sites within broad regions are needed to measure site effects and variability between sites

(Michaud et al. 2012). Studies that are designed in this fashion will add validity to evidence at

crime scenes that may take place in areas with no previous record of necrophagous insects. To

address these gaps in forensic ecological research in the Kansas Flint Hills, we developed a repeatable framework that lacks pseudoreplication and includes natural variability for one full year.

Existing research on carcass decomposition has primarily revolved around the succession and composition of species (Diptera) (Bala and Singh 2015, Nadeau et al. 2015). Beetles

(Coleoptera) have received less consideration for estimating PMI within forensic science

(Midgley et al. 2010), but carrion beetles (Coleoptera: Silphidae) occupy a unique niche and are

2 actively involved with decomposition and nutrient cycling because of their necrophagous and predatory behaviors (Ratcliffe 1996, Kočárek 2003, Nadeau et al. 2015). Previous studies show that silphids can be reliable for estimating Post-mortem Interval [PMI] (Midgley et al. 2010,

Ridgeway et al. 2013; more appropriately termed Period of Insect Activity [PIA] of Tomberlin et al. 2011). Many species of adult Silphidae are large and conspicuous elements (Plate 1) of the entomofauna and are easier to identify compared to adult that require examination of wing veins and setae (chaetotaxy) (Ratcliffe 1996).

In Kansas, Silphidae beetles are of interest because of the historic distribution of the endangered American , Nicrophorus americanus (Peck and Miller 1993). Studies conducted in Kansas have involved surveys for this endangered beetle and other silphids, but they lacked standardization and statistical power (Lingafelter 1995, Miller and McDonald 1997,

Rintoul et al. 2005). These studies, however, provide a baseline for comparison of habitats and species distributions.

To address these gaps in forensic ecological research in Kansas, we developed a repeatable framework that contains true replication, not pseudoreplication, across habitat types and includes natural variability for one full year. Our research is set at three sites in the Flint

Hills ecoregion of the Great Plains, and it examines the influence of grassland versus woodland habitats as well as abiotic factors (wind speed, light availability, soil surface temperature, and soil surface humidity) on carrion beetle communities found on small mammal carcasses. It is possible that these abiotic factors affect carrion detection (Petruska 1975, Tomberlin et al. 2011).

For example, wind speed and direction can affect odors and how they are perceived by the antennae of these beetles, thus impacting how they search for the carrion resource (Petruska

1975, Murlis et al. 1992). Another example of potential influences of abiotic factors upon carrion

3 beetle movement patterns and community composition is ambient temperature because this

affects flight activity of these beetles (Merrick and Smith 2004). These abiotic factors are

important drivers of both beetle behavior and habitat characterization, and it is possible that

some silphid species correlate with abiotic variables.

This study was aimed at determining environmental conditions that influence silphid beetle community assemblages and habitat fidelity of silphid beetles. Based on previous studies conducted in Kansas (Lingafelter 1995), we expect that 1) silphid beetle communities will differ in grassland and woodland habitats and 2) some silphid species will exhibit strong habitat associations.

PLATE 1: Exemplar Silphidae of Kansas. Photos taken by E.L. Engasser. From left to right: Necrophila americana (L.), Necrodes surinamensis (Fabr.), Nicrophorus tomentosus Weber, Nicrophorus pustulatus Herschel.

4 CHAPTER 2

MATERIALS AND METHODS

Study Sites

We sampled three sites in the Kansas Flint Hill Uplands physiographic region (Kansas

Geological Survey 1997): El Dorado State Park (37.8466°N, 96.8270°W), Skeleton Acres

Research Facility (37.7377°N, 96.6623°W), and “The 80” (37.3840°N, 96.7333°W) (Fig. 1). The

Greater Flint Hills, a fifty-mile wide band stretching from north to south across east-central

Kansas and south into Oklahoma, holds approximately two-thirds of remaining native tallgrass

prairie (Obermeyer 2014). The Flint Hills were formed during the Permian period with the

erosion of Permian-age limestone and shales (Kansas Geological Survey 1999). Limestone in

this area contains many bands of chert, also known as flint. The clayey soil is full of cherty

gravel that is better suited for rangeland than farming. Each site has a mean annual temperature

of 13° C and mean annual precipitation of 994.9 mm (Tomlinson and Knapp 2012). Our sites

span 52 kilometers in the Flint Hills region. The shortest distance between sites is 19 km

(distance from El Dorado State Park to “The 80” is 52 km, from El Dorado State Park to

Skeleton Acres Research Facility is 19 km, and from Skeleton Acres Research Facility to “The

80” is 40 km). Based upon the shortest distance, it is unlikely that beetles disperse between sites

(Shubeck 1968, Petruska 1975). For example, Thanatophilus sinuatus is known to disperse 0.395

km over the course of 24 hours (Petruska 1975).

El Dorado State Park (EDSP) is a 1,618.7 ha (4,000 acres) property located in Butler

county at an elevation of approximately 395-402 m above sea level. The property is composed of

a reservoir (the seventh largest in Kansas) surrounded by prairies and woodlands utilized for

recreational purposes. Predominant tree species in the woodlands include Burr Oak (Quercus

5 macrocarpa), Siberian Elm (Ulmus pumila), and Black Walnut (Juglans nigra); predominant

understory species include Pawpaw (Asimina triloba), Coral Berry (Symphoricarpos

orbiculatus), and Wild Gooseberry (Ribes missouriense). Predominant grass species in the

grasslands include Indian Grass (Sorghastrum nutans), Little Bluestem (Schizachyrium

scoparium), and Big Bluestem (Andropogon gerardii); predominant forbs include goldenrod

(Solidago spp.), Blue Sage (Salvia azurea), and sage (Artemesia spp.). The adjacent properties

are utilized for urban development and pastures. The soils are comprised of Labette-Dwight

complex, Labette-Sogn silty clay loam, and Verdigris silt loam (Web Soil Survey 2017). The El

Dorado Reservoir was constructed in 1981 by the U.S. Army Corps of Engineers. Currently,

management of the reservoir is overseen by Kansas Department of Wildlife, Parks, and Tourism.

After acquisition of the property, it was seeded with native species (Big Bluestem, Little

Bluestem, etc.). Management consists of haying, mowing and burning on a two to three year

rotation. The last controlled burn occurred in 2014 (Seth Turner, February 2017, Personal

Communication).

Skeleton Acres Research Facility (SARF) is a 3.2 ha (8 acres) property located in Butler county at an elevation of approximately 430-445 m above sea level. The property is composed of

an upland prairie sloping down into hedgerows of trees surrounding an area that was previously

used for agriculture. Predominant tree species in the woodlands include Hackberry (Celtis

occidentalis), Green Ash (Fraxinus pennsylvanica), and Burr Oak (Quercus macrocarpa);

predominant understory species include Wild Gooseberry (Ribes missouriense), Poison Ivy

(Taraxacum officinale), and Smilax (Smilax spp.). Predominant grass species in the grasslands

include Indian Grass (Sorghastrum nutans), Little Bluestem (Schizachyrium scoparium), and

Switch Grass (Panicum virgatum); predominant forbs include Compass Plant (Silphium

6 laciniatum), goldenrod (Solidago spp.), and Horseweed (Conyza canadensis). The adjacent properties are used for pastures, agriculture, and grazing with nearby water sources. The soils are comprised of Clime-Sogn complex, Florence cherty silt loam, and Verdigris silt loam (Web Soil

Survey 2017). Skeleton Acres Research Facility was acquired as a permanent easement to Dr.

Peer Moore-Jansen in Wichita State University’s Anthropology Department in 2004 for research purposes. On occasion, carrion has been deposited on this land to study decomposition.

Management consists of mowing two times annually in March-April and September-October.

Since acquisition, the property has not been burned except for accidental burns in mid-April of

2016 and 2017. A small agricultural field was tilled until approximately 2011 for planting of wheat and corn on the property (Dr. Peer Moore-Jansen, February 2017, Personal

Communication).

“The 80” is a 32.4 ha (80 acres) privately-owned property located in Cowley county at an elevation of approximately 427-439 m above sea level. The property is composed of rolling hills with grasslands divided by hedgerows and an intermittent creek. Predominant tree species in the woodlands include Osage orange (Maclura pomifera), Hackberry (Celtis occidentalis), and Red

Cedar (Juniperus virginiana); predominant understory species include Coral Berry

(Symphoricarpos orbiculatus), honeysuckle (Lonicera spp.), and Smilax (Smilax spp.).

Predominant grass species in the grasslands include Big Bluestem (Andropogon gerardii), Indian

Grass (Sorghastrum nutans), and Switch Grass (Panicum virgatum); predominant forbs include

Blue Sage (Salvia azurea), Aster (Aster spp.), and Pale Coneflower (Echinacea pallida). The adjacent properties are utilized for pastures and grazing. The soil is comprised of Dwight silt loam and Florence cherty silt loam (Web Soil Survey 2017). The 80 was acquired by Joyce

Dudeck and Kim and Scott Bays in 1993. Management consists of haying every summer; the

7 property has not been burned since acquisition. Milo, corn, and soybeans have been grown on designated areas adjacent to our transects (Scott and Kim Bays, January 2017, Personal

Communication).

Sampling Protocol

To compare habitat effects upon insect community structure, each site included two separate, north-south transects: one in a grassland habitat and one in a woodland habitat. In this study, we defined a wooded area as an area with high tree density that provides nearly constant canopy shade from spring through early fall. We defined a prairie as an area with high density of grasses and forbs that does not have an overhead tree canopy. Closest distance between transects at El Dorado State Park was 94.2 m, “The 80” was 54.9 m, and Skeleton Acres Research Facility was 176.8 m (Fig. 1).

Each transect contained eight points spaced 10 m apart. Of the eight points, six were baited with one large rat (Rattus norvegicus) carcass and two points were controls that contained no bait (Fig. 2). Control points allowed us to filter out insects that are not involved in carrion decomposition. All points contained two pitfall traps to collect samples of Coleoptera attracted to the carrion. This resulted in a total of 48 points and 96 samples for all habitats and sites per monthly collection period. Rat carcasses were obtained from MiceDirect (Cleveland, GA, www.micedirect.com) and were described as “large rats” (174 - 274 grams) that were 43 to 60 days old when euthanized by CO2 gas. Carrion was kept frozen (-20°C) until 24 hours before deployment. Rat carcasses were positioned laterally between the pitfall traps with the head oriented westward and the tail oriented eastward. Pitfall traps were placed flush with the surface of the ground. Pitfall traps were 946 ml (32 fluid ounces) plastic cups with drain holes to prevent water-logging (Fig. 3). The cups were filled with approximately 160 ml of 50% propylene glycol

8 (99.9% USP grade) and 50% tap water. The pitfall traps were covered with a lid that had a triangular opening (3.8 cm height x 7.5 cm base) facing the anterior or posterior end of the rat carcass. Lids were designed to prevent waterlogging and funnel the insects into the preservative fluid. Points were covered with a wire exclosure made of 1 cm mesh to prevent scavenging by (internal dimensions = 55.88 cm x 27.94 cm) (Fig. 3). Exclosures were nested to the ground surface with four to ten 15.5 cm garden staples. Each collection period took place over four weeks and were repeated for 12 months. This allowed for collection of the full succession of

Silphidae through all decompositional stages (fresh stage, bloated stage, active decay stage, advanced decay stage and dry stage [Anderson and VanLaerhoven 1996]). Previous studies show that all decomposition stages for rat carrion can take from 18 to 22 days in winter, the season with the slowest decomposition rate in a temperate region (Kočárek 2003, Tomberlin and Alder

1998). Every four weeks a new rat carcass was deployed, habitat variables were recorded, and samples were collected and replaced with new pitfall traps. The decayed rat carcasses were removed from the sites to avoid sampling bias.

Measurement of Abiotic Variables

We examined the influence of four abiotic variables on forensic insect community structure: light availability, wind speed, soil surface humidity, and soil surface temperature.

Measurements were recorded at each point every four weeks and were repeated for 12 months.

To quantify differences in light availability to the carcass in each habitat, a light ceptometer (Decagon Devices, Inc. AccuPAR PAR/LAI model LP-80, Pullman, WA, www.decagon.com) was used at each point. The photosynthetically active radiation was recorded from the surface of the exclosure at each point (15 cm from the surface of the ground). A total of

3 readings at each point were taken at 30 second intervals between 9:30 am to 3:00 pm.

9 To quantify differences in wind speed at each habitat, an anemometer was used (Nielsen-

Kellerman Kestrel 1000, Boothwyn, PA, www.NKhome.com). The device was held facing into the wind at a height 0.91 meters above each point. Wind speed was logged for a total of one minute and both average and maximum wind speed (meters/second) were recorded.

To quantify differences in soil surface humidity and soil surface temperature at each habitat, an external thermometer-hygrometer (H-B Instruments DURAC 3735 Hygro-

Thermometer, Wayne, NJ, www.belart.com) was used at each point. The probe was placed on the top of the soil near the venter of the rat and acclimated for 5 minutes, and humidity and temperature were recorded.

Laboratory Methods

All specimens acquired were examined using a dissecting microscope (Leica M80 0.8x-

1.0x achromatic lens, Buffalo Grove, IL, http://www.leica-microsystems.com) and sorted by beetle families (Coleoptera: Silphidae, Staphylinidae, Trogidae, Histeridae, Dermestidae) and by-catch (non-target insects). Once sorted, adult specimens from the beetle family Silphidae were identified to species using various identification keys (Anderson and Peck 1985, Ratcliffe

1996, Monk et al. 2016, Smith 2016). Insect abundance (numbers) and richness (species) were organized in Microsoft Excel (version 15.20). Voucher specimens were deposited at the following collections: Wichita State University Invertebrate Collection (WICHI), University of

Nebraska at Lincoln (UNSM), University of Kansas (SEMC), United States National Museum of

Natural History (USNM), and Carnegie Museum of Natural History (CMNH).

Analyses

Pitfall traps from head and tail were pooled at each point and the number of species and individual abundance per point were recorded. Control cups were included when they contained

10 silphids because it is known that silphid beetle life history revolves around carrion (they are not incidental). To characterize if carrion beetle communities differ significantly between habitats, mean species richness, mean total abundance, and mean species diversity were calculated and a paired Wilcoxon signed rank test in R was performed. The Shannon-Wiener’s diversity index was used to evaluate diversity in the “vegan” package in R version 3.2.3 and RStudio version

0.99.491 (R Core Team 2015). Shannon-Wiener index was used because it is a common way to evaluate biodiversity using species richness (number of species) and species abundance (number of individuals) (Spellerberg and Fedor 2003). Differences between mean environmental conditions (soil surface temperature, soil surface humidity, wind speed, and light availability) were evaluated with a paired Wilcoxon signed rank test in R. A non-metric multidimensional scaling (NMDS) ordination using the Bray-Curtis dissimilarity measure was performed to visualize the relationships in the entire community (between samples, species, habitats and abiotic variables) (“vegan” in RStudio [Oksanen et al. 2016]). Indicator values (IndVal) were performed to view grassland or woodland habitat preferences of silphid beetle species using the

“labdsv” package in R (Roberts 2016). This tests for good indicator species of habitats by examining species abundance in a specific habitat type (specificity) and if that species is predominantly found in that specific habitat (fidelity).

11

Google earth image Google earth image

http://www.kgs.ku.edu/Physio/physio.htm l Google earth image FIGURE 1: Satellite images of our sites and their locations in the Kansas Flint Hills. Site names in order starting from top left and working clockwise: El Dorado State Park, Skeleton Acres Research Facility, and “The 80”.

12

FIGURE 2: The layout of one 80 m transect containing 8 points separated by 10 m; 6 points baited with large rats and 2 control points without rat carrion. At each point, two pitfall traps were placed near the anterior and posterior end of the rat. These traps collected the insects for our samples.

FIGURE 3: The schematics used to design the exclosures to prevent vertebrate thievery at each point along a transect. Lines in red indicate cuts and lines in black indicate folds to make the final 3D box. The design of the pitfall trap cups with red holes representing the drilled holes in each cup to prevent overflowing from rainfall. Diagrams made by R.L. Stone.

13 CHAPTER 3

RESULTS

Across all sites, we collected 3,333 individuals from nine species in five genera from the family Silphidae (Coleoptera) (Table 3). Mean species richness, abundance, and diversity differed between habitats and sites, but not significantly (Table 1, Fig. 4). Species richness was highest at “The 80” with nine species. One species, Thanotophilus truncatus, was collected only from that site. All sites were combined to examine mean abundance in each habitat (woodland and grassland); abundance was consistently highest in the woodland habitats (Table 1, Fig. 4).

Abundance was lowest in December and January, with no silphids collected during those months. Species diversity was highest in the grassland at Skeleton Acres Research Facility

(H = 1.744) and lowest in the grassland at El Dorado State Park (H = 0.348) (Table 1).

Abiotic variables (Table 2) were examined for significant differences between habitats.

Significant differences between mean light availability, mean wind speed, mean soil surface humidity, and mean soil surface temperature were not observed between the woodlands and grasslands. However, grasslands had consistently higher temperatures, lower humidity, higher light availability, and higher wind speed. Nonmetric multidimensional scaling (NMDS) ordination plotted points as a visual representation of the community space, and each point contains the species composition and species abundance collected in one sample. Abiotic variable vectors (soil surface temperature, soil surface humidity, wind speed, and light availability) are also plotted and provide a graphical representation to observe relationships between the abiotic variables, patterns in habitat types, and species correlations. The NMDS shows a distinct cluster of samples from woodlands and grasslands (Fig. 5). The stress of the

NMDS was 0.12 and the similarity matrix was plotted on two axes indicating that the ordination

14 summarized the observed distances between samples accurately. Stress levels above 0.20 are usually interpreted with caution (Clark and Warwick 2001), but the stress of our NMDS was less than 0.20 which indicates that our data was well represented within the community space. Some species showed strong habitat associations and abiotic variable correlations. For example,

Nicrophorus marginatus is oriented near the cluster of grassland samples and is correlated with high light availability. The IndVal analysis showed six out of nine species had habitat associations and were strong indicators of habitat type (Table 3). Nicrophorus marginatus (P =

0.001) and Necrodes surinamensis (P = 0.002) were significant indicators of grassland habitats.

When looking at abundance data of these species, Nicrophorus marginatus is 20 times more likely to be found in the grassland habitat and Necrodes surinamensis is five times more likely to be found in the grassland habitat. Nicrophorus orbicollis (P = 0.001), Necrophila americana (P

= 0.004), Oiceoptoma noveboracense (P = 0.002), and Nicrophorus pustulatus (P = 0.003) were significant indicators of woodland habitats. When looking at abundance data of these species,

Nicrophorus orbicollis is seven times more likely to be found in the woodland habitats.

Necrophila americana is two times more likely, Oiceoptoma noveboracense is four times more likely, and Nicrophorus pustulatus is six times more likely to be found in woodland habitats.

TABLE 1: Comparison of abundance, richness, and species diversity within each site and habitat.

Site Habitat Abundance Species Richness Shannon-Wiener Diversity Index (H) EDSP Grassland 367 6 0.348 Woodland 706 7 0.918 SARF Grassland 397 8 1.744 Woodland 539 8 1.590 “The 80” Grassland 660 9 1.350 Woodland 664 8 1.617

15 800 10 2 Grasslands Woodlands 9 1.8 700 8 1.6 600 7 1.4 500 6 1.2

400 5 1

Abundance 4 0.8 300 Species Richness Species 3 Diversity Species 0.6 200 2 0.4 100 1 0.2

0 0 0 Habitat

FIGURE 4: Mean (± Standard error) abundance, species richness, and species diversity of Silphidae beetles collected for one full year across all sites. No significant difference was observed in mean total abundance between grasslands and woodlands (P = 0.25), mean species richness between grasslands and woodlands (P = 1), and mean species diversity between grasslands and woodlands (P = 0.5).

TABLE 2: Maximum, minimum, median and means recorded in the grassland and woodland habitats combined at all sites. Habitat Maximum Minimum Median Mean variables Grasslands Woodlands Grasslands Woodlands Grasslands Woodlands Grasslands Woodlands

Soil surface temperature 49.30 35.00 -4.40 -3.40 21.45 20.05 19.90 17.33 (C°) Soil surface 87.00 96.00 0 0 53.00 62.00 52.00 59.01 humidity (%) Average wind 7.70 5.90 0 0 1.40 0.60 1.80 0.86 speed (m/s) Maximum wind 14.50 8.80 0 0 2.85 1.00 3.35 1.49 speed (m/s) Light availability 2211.70 1594.70 104.70 4.00 800.50 137.80 875.69 205.29 (µmol m-2 s-1)

16

TABLE 3: All species collected and their total abundance in grassland and woodland habitats with their respective indicator values (IndVal), P-values, and frequency among samples. Silphidae Species Abundance IndVal (Habitat) P-value Freq Subfamily: Grasslands Woodlands Necrodes surinamensis (Fabr.) 89 16 0.106 (G) 0.002 41 Necrophila americana (L.) 71 169 0.174 (W) 0.004 99 Oiceoptoma inequale (Fabr.) 839 956 - - - Oiceoptoma novaboracense (Forster) 27 116 0.106 (W) 0.002 42 Thanatophilus truncatus (Say) 2 0 - - - Subfamily: Nicrophorinae Nicrophorus marginatus Fabr. 199 9 0.284 (G) 0.001 78 Nicrophorus orbicollis Say 57 431 0.349 (W) 0.001 127 Nicrophorus pustulatus Herschel 7 48 0.063 (W) 0.003 23 Nicrophorus tomentosus Weber 133 164 - - -

Grasslands Woodlands

FIGURE 5: Nonmetric multidimensional scaling ordination plot examining similarities of samples with the Bray-Curtis dissimilarity matrix. Abiotic vectors and community relationships between taxa have been overlain to observe all interactions.

17 CHAPTER 4

DISCUSSION

Based on abiotic variables such as the effect of wind (Pretruska 1975, Murlis et al. 1992,

Tomberlin et al. 2011) and temperature (Merrick and Smith 2004), we predicted that silphid beetle communities would differ between grassland and woodland habitats. The silphid beetle community differed in species composition between grassland and woodland habitats (Fig. 5,

Table 3), but did not differ significantly in mean total abundance, mean species richness or mean species diversity (Fig. 4, Table 1). When comparing means of abiotic variables (Table 2) (soil surface temperature, soil surface humidity, wind speed, and light availability), there was not a significant difference between woodland and grassland habitats. This may be partly due to pooling the measurements across all seasons, high variability in abiotic conditions between habitat types, and a sample size of three sites. However, light availability and wind speed were higher in the grassland than the woodlands, and humidity was higher in the woodlands than the grasslands (Table 2). This leads us to believe there are other factors that impact the silphid community, including geographic location, seasonality, interspecific competition and many other factors.

Based on previous studies on silphid beetle community assemblages (Walker 1957,

Anderson 1982, Shubeck 1983, Lingafelter 1995), we predicted that some species of silphids would have strong habitat associations (IndVal; Table 3). We found that Nicrophorus orbicollis,

Oiceoptoma novaboracense, Nicrophorus pustulatus, and Necrophila americana exhibited strong habitat associations with woodlands (P = 0.001, P = 0.002, P = 0.003, and P = 0.004, respectively). Necrodes surinamensis and Nicrophorus marginatus exhibited strong habitat associations with grasslands (P = 0.002 and P = 0.001, respectively). Nicrophorus orbicollis had

18 the highest abundance in woodland or forest habitats in previous studies (Walker 1957 [Camden,

TN], Anderson 1982 [Toronto, Ontario, Canada], and Shubeck 1983 [Great Swamp National

Wildlife Refuge, NJ), but Lingafelter (1995) collected the species almost equally across woods, prairies, and intermediate zones between both habitats in Kansas. Oiceoptoma novaboracense exhibited strong associations for woodland areas (Lingafelter 1995, Shubeck 1983). Anderson

(1982) found the highest abundance in the forests, but this was a weaker association.

Nicrophorus pustulatus is almost exclusively associated with forest or woodland habitats

(Walker 1957, Anderson 1982, and Shubeck,1983). Previous research in Kansas, found

Nicrophorus pustulatus primarily in woods and borders of prairies and woodlands (Lingafelter

1995). Necrophila americana had strong associations with woodlands (Walker 1957, Lingafelter

1995), but Anderson (1982) and Shubeck (1983) found a strong association with marshes and open fields. Necrodes surinamensis showed strong correlations with open areas, thus corroborating previous findings in Kansas (Lingafelter 1995) and Toronto (Anderson 1982), but differing from forest associations that were recorded in more eastern locations (Walker 1957,

Shubeck 1983). Nicrophorus marginatus was strongly associated with grasslands, thus corroborating previous habitat information (Lingafelter 1995, Anderson 1982, Shubeck 1983).

Based upon these findings, it is likely that differences in habitat associations are due to differences in geographic locations, seasonality, and intraspecific interactions. These strongly supported habitat associations can be applied to criminal investigations.

This study reveals silphid beetle community assemblages differ between habitats with some species showing strong habitat associations (grassland or woodland) within the Kansas

Flint Hills. With this research, we connected carrion ecology and applied forensic entomology by developing a research protocol that includes ecological aspects and baseline information that can

19 be used in Kansas criminal justice cases. Our results should be limited to extrapolation in the

Kansas Flint Hills because of differences in silphid species distributions, geology, and community composition of habitats between other geographic locations. Gaps in forensic entomology, such as: 1) repeatable, replicable ecological research, 2) research sites across all geographic zones, and 3) research conducted throughout a full annual cycle (Tomberlin et al.

2011, Michaud et al. 2012, Tomberlin et al. 2012) were addressed in this study. This research adds more evidence to our understanding of habitat associations and community assemblage, and it provides rigorous statistical and ecological value. It also bolsters knowledge of silphid beetle distributions in the Kansas Flint Hills, enables predictable community patterns of silphid beetles, and creates repeatable protocol that could be used in other geographic localities.

20

REFERENCES

21 REFERENCES

Anderson, G.S. and VanLaerhoven, S.L. 1996. Initial studies on insect succession on carrion in southwestern British Columbia. Journal of Forensic Science, 41(4), pp.617-625.

Anderson, R.S. 1982. Resource partitioning in the carrion beetle (Coleoptera: Silphidae) fauna of southern Ontario: ecological and evolutionary considerations. Canada Journal of Zoology, 60, pp.1314- 1325.

Anderson, R.S. and Peck, S.B. 1985. The carrion beetles of Canada and Alaska. Coleoptera: Silphidae and Agyrtidae. The Insects and Arachnids of Canada. Agriculture Canada, Part 13.

Bajerlein, D., Matuszewski, S. and Konwerski, S. 2011. Insect succession on carrion: seasonality, habitat preference and residency of histerid beetles (Coleoptera: Histeridae) visiting pig carrion exposed in various forests (Western Poland). Polish Journal of Ecology, 59(4), pp.787-797.

Bala, M., and Singh, N. 2015. Beetles and forensic entomology: A comprehensive review. Journal of Entomological Research, 39(4), pp.293-302.

Barton, P.S., Cunningham, S.A., Lindenmayer, D.B. and Manning, A.D. 2013. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia, 171, pp.761-772. https://doi.org/10.1007/s00442-012-2460-3

Benbow, M.E., Tomberlin, J.K. and Tarone, A.M. eds. 2015. Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, Florida.

Clark, K.R. and Warwick, R.M. eds. 2001. Change in marine communities: An approach to statistical analysis and interpretation. PRIMER-E Ltd, Plymouth, United Kingdom.

Harvey, M.L., Gasz, N.E. and Voss, S.C. 2016. Entomology-based methods for estimation of postmortem interval. Research and Reports in Forensic Medical Science, 6, pp.1-9.

Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54(2), pp.187-211.

Kansas Geological Survey. 1999. Geofacts by the Kansas Geological Survey on Flint Hills: Rocks and Minerals. URL: http://www.kgs.ku.edu/Extension/flinthills/FH_factsheet1.pdf. Accessed 17 Sept. 2017.

Kansas Geological Survey, 1997. Physiogeographic Map of Kansas. URL: http://www.kgs.ku.edu/Physio/physio.html. Accessed 17 Sept. 2017.

22 Kentner, E. and Streit, B. 1990. Temporal distribution and habitat preference of congeneric insect species found at rat carrion. Pedobiologia, 34(6), pp.347-359.

Kočárek, P. 2003. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. European Journal of Soil Biology, 39(1), pp.31-45.

Lingafelter, S.W. 1995. Diversity, habitat preferences, and seasonality of Kansas carrion beetles (Coleoptera: Silphidae). Journal of the Kansas Entomological Society, 68(2), pp.214-223.

Madra, A., Konwerski, S. and Matuszewski, S. 2014. Necrophilous Staphylininae (Coleoptera: Staphylinidae) as indicators of season of death and corpse relocation. Forensic Science International, 242, pp.32-37.

Matuszewski, S., Szafalowicz, M. and Jarmusz, M. 2013. Insects colonising carcasses in open and forest habitats of Central Europe: search for indicators of corpse relocation. Forensic Science International, 231, pp.234-239.

Merrick, M.J. and Smith, R.J. 2004. Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature. The Journal of Experimental Biology, 207, pp.723-733.

Michaud, J.P., Schoenly, K.G. and Moreau, G. 2012. Sampling flies or sampling flaws? Experimental design and inference strength in forensic entomology. Journal of Medical Entomology, 49(1), pp.1-10.

Midgley J., Richards C., Villet M. 2010. The utility of Coleoptera in forensic investigations. In: Amendt J., Goff M., Campobasso C., Grassberger M. (eds) Current concepts in forensic entomology. Springer Netherlands, Dordrecht, pp.57–68.

Miller, E.J. and McDonald, L. 1997. Rediscovery of Nicrophorus americanus Olivier (Coleoptera: Silphidae) in Kansas. The Coleopterists' bulletin (USA), 51(1), pp.22.

Monk, E., Hinson, K., Szewcyzk, T., D’Oench, H., and C. M. McCain. 2016. Key to the carrion beetles (Silphidae) of Colorado and neighboring states. URL: http://spot.colorado.edu/~mccainc/PDFs/Key to Silphidae of Colorado.pdf. Accessed 10 Sept. 2016.

Murlis, J., Elkinton, J.S. and Carde, R.T. 1992. Odor plumes and how insects use them. Annual Review of Entomology, 37, pp.505-532.

Nadeau, P., Thibault, M., Horgan, F.G., Michaud, J.P., Gandiaga, F., Comeau, C. and Moreau, G. 2015. Decaying matters: Coleoptera involved in heterotrophic systems. Beetles: biodiversity. Ecology and Role in the Environment. Nova Publisher, New York, New York, USA, pp.125-174.

National Research Council. 2009. Strengthening forensic science in the United States: A path forward. National Academies Press, Washington D.C. DOI:10.17226/12589.

23 Obermeyer, B. 2014. Sustainable Prairie. Symphony in the Flint Hills Field Journal. URL: http://newprairiepress.org/sfh/2014/flinthills/3. Accessed 20 Aug. 2017.

Oksanen, J., Blanchet, F. G., Friendly M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H., Szoecs, E. and Wagner, H. 2016. vegan: Community Ecology Package. R package version 2.4-1. https://CRAN.R- project.org/package=vegan

Parry, N. J., Mansell, M.W., and Weldon, C.W. 2016. Seasonal, locality, and habitat variation in assemblages of carrion-associated Diptera in Gauteng Province, South Africa. Journal of Medical Entomology, 53(6), pp.1322-1329.

Payne, J. A. 1965. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology, 46(5), pp.592-602.

Peck, S.B. and Miller, S.E. 1993. A Catalog of the Coleoptera of America North of Mexico. Family: Silphidae. United States Department of Agriculture, Agriculture Handbook Number 529-28.

Petruska, F. 1975. The Effect of predominating winds on the flight of some species of beetles from the group of Silphidae into pitfall traps. Acta Universitatis Palackianae Olomucensis Facultas Rerum Naturalium, 51, pp.155-176.

Ratcliffe, B.C. 1996. The Carrion Beetles (Coleoptera: Silphidae) of Nebraska. Bulletin of the University of Nebraska State Museum, Lincoln, NE, no. 13.

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

Rintoul, D. A., Krueger, L. M., Woodard, C., and Throne, J.E. 2005. Carrion beetles (Coleoptera: Silphidae) of the Konza Prairie Biological Station. Journal of the Kansas Entomological Society, 78(2), pp.124-133.

Roberts, D.W. 2016. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.8-0. URL: https://CRAN.R-project.org/package=labdsv.

Shubeck, P. P. 1983. Habitat preferences of carrion beetles in the great swamp national wildlife refuge, New Jersey (Coleoptera: Silphidae, Dermestidae, Nitidulidae, Histeridae, Scarabaeidae). Journal of the New York Entomological Society, 91, pp.333-341.

Smith, C.E. 2016. Illustrated Key to the Burying Beetles (Nicrophorus spp.) of Minnesota. URL: http://www.fieldecology.com/blog/burying-beetles. Accessed 04 Sept. 2016.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. URL: https://websoilsurvey.sc.egov.usda.gov/. Accessed 26 Jan 2017.

24 Spellerberg, I.F. and Fedor, P.J. 2003. A Tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon-Wiener’ index. Global Ecology and Biogeography, 12(3), pp.177-179.

Tomberlin, J.K. and Adler, P.H. 1998. Seasonal colonization and decomposition of rat carrion in water and on land in an open field in South Carolina. Journal of Medical Entomology, 35(5), pp.704-709.

Tomberlin, J.K., Byrd, J.H., Wallace, J.R. and Benbow, M.E. 2012. Assessment of decomposition studies indicates need for standardized and repeatable research methods in forensic entomology. Journal of Forensic Research, 3, pp.147.

Tomberlin, J.K., Mohr, R., Benbow, M.E., Tarone, A.M. and VanLaerhoven, S. 2011. A roadmap for bridging basic and applied research in forensic entomology. Annual Review of Entomology, 56, pp.401-421.

Tomlinson, P.J. and Knapp, M. 2012. Efficient crop water use in Kansas. Kansas State University, Agricultural Experiment Station and Cooperative Extension Service. Report MF3066.

Walker, T.J. 1957. Ecological studies of the associated with certain decaying materials in four habitats. Ecology, 38, pp.262-276.

Zanetti, N.I., Camina, R., Visciarelli, E.C. and Centeno, N.D. 2016. Active search on carcasses versus pitfall traps: a comparison of sampling methods. Neotropical Entomology, 45(2), pp.221- 226.

25

APPENDICES

26

APPENDIX A

TABLE A: Abundance data of silphids collected

Sites = 80: “The 80”, EDSP: El Dorado State Park, SARF: Skeleton Acres Research Facility HabitatTransect = G: Grassland, W: Woodland

Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 6/25/16 80 G 2 3 6 21 0 6 0 0 11 0 6/25/16 80 G 3 2 13 5 0 1 1 0 1 0 6/25/16 80 G 4 1 3 6 0 3 0 0 0 0 6/25/16 80 G 5 0 5 19 0 2 0 0 0 0 6/25/16 80 G 6 0 2 9 0 3 1 0 0 0 6/25/16 80 G 7 2 1 13 1 0 1 0 0 0 6/25/16 80 W 2 5 7 19 1 1 16 4 1 0 6/25/16 80 W 3 5 5 5 0 0 7 0 3 0 6/25/16 80 W 4 0 1 1 0 0 5 0 5 0 6/25/16 80 W 5 2 2 2 0 0 8 0 1 0 6/25/16 80 W 6 0 3 11 0 0 5 0 7 0 6/25/16 80 W 7 0 1 5 0 0 1 0 7 0 6/25/16 EDSP G 2 0 0 5 0 2 0 0 0 0 6/25/16 EDSP G 3 1 1 23 0 0 0 0 0 0 6/25/16 EDSP G 4 0 0 3 0 0 0 0 0 0 6/25/16 EDSP G 5 0 0 0 0 0 0 0 0 0 6/25/16 EDSP G 6 2 0 18 0 0 0 0 0 0 6/25/16 EDSP G 7 0 0 3 0 0 0 0 0 0 6/25/16 EDSP W 1 0 1 0 0 0 0 0 0 0 6/25/16 EDSP W 2 1 0 13 0 0 1 0 0 0 6/25/16 EDSP W 3 2 0 1 0 0 9 0 0 0

27

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 6/25/16 EDSP W 4 0 0 1 0 0 0 0 0 0 6/25/16 EDSP W 5 0 0 3 0 0 0 0 0 0 6/25/16 EDSP W 6 3 1 83 0 0 8 0 6 0 6/25/16 EDSP W 7 1 0 0 0 0 6 0 0 0 6/25/16 SARF G 2 3 0 9 0 6 0 0 0 0 6/25/16 SARF G 3 0 0 2 0 1 0 0 0 0 6/25/16 SARF G 4 0 0 0 1 1 0 0 1 0 6/25/16 SARF G 5 1 1 3 0 5 0 0 0 0 6/25/16 SARF G 6 0 0 5 1 8 0 0 0 0 6/25/16 SARF G 7 2 6 35 0 7 2 0 3 0 6/25/16 SARF W 2 0 0 0 0 0 0 0 0 0 6/25/16 SARF W 3 10 0 15 0 0 21 0 9 0 6/25/16 SARF W 4 6 1 6 0 0 2 0 2 0 6/25/16 SARF W 5 1 1 9 1 0 5 0 1 0 6/25/16 SARF W 6 14 3 35 0 0 21 2 31 0 6/25/16 SARF W 7 6 1 62 0 0 0 0 6 0 7/23/16 80 G 2 0 0 0 0 0 1 0 0 0 7/23/16 80 G 3 0 1 0 0 1 1 0 0 0 7/23/16 80 G 4 2 0 0 0 0 0 1 0 0 7/23/16 80 G 5 1 3 0 0 4 3 1 0 0 7/23/16 80 G 6 0 0 0 0 1 0 0 0 0 7/23/16 80 G 7 0 1 0 0 0 3 0 0 0 7/23/16 80 W 2 1 0 0 0 1 9 2 0 0 7/23/16 80 W 3 0 0 0 0 0 1 1 0 0 7/23/16 80 W 4 2 0 0 0 0 1 0 0 0 7/23/16 80 W 5 3 0 0 0 0 22 0 0 0

28

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 7/23/16 80 W 6 1 0 1 0 0 21 1 0 0 7/23/16 80 W 7 3 1 0 0 0 12 0 0 0 7/23/16 EDSP G 2 1 0 0 0 0 0 0 0 0 7/23/16 EDSP G 3 0 0 0 0 0 0 0 0 0 7/23/16 EDSP G 4 0 0 0 0 0 0 0 0 0 7/23/16 EDSP G 5 0 0 0 0 0 0 0 0 0 7/23/16 EDSP G 6 0 0 0 0 0 0 0 0 0 7/23/16 EDSP G 7 2 0 0 0 0 0 0 0 0 7/23/16 EDSP W 2 5 0 0 0 0 4 0 0 0 7/23/16 EDSP W 3 3 0 0 0 0 0 0 0 0 7/23/16 EDSP W 4 2 1 0 0 0 3 0 0 0 7/23/16 EDSP W 5 1 0 0 0 0 3 0 0 0 7/23/16 EDSP W 6 10 1 0 0 0 4 0 0 0 7/23/16 EDSP W 7 1 0 0 0 0 5 0 0 0 7/23/16 EDSP W 8 0 0 0 0 0 21 0 0 0 7/23/16 SARF G 2 3 2 0 1 6 0 0 0 0 7/23/16 SARF G 3 0 0 0 0 1 0 0 0 0 7/23/16 SARF G 4 0 0 0 0 1 0 0 0 0 7/23/16 SARF G 5 0 1 0 0 0 0 0 0 0 7/23/16 SARF G 6 1 0 0 0 1 0 0 0 0 7/23/16 SARF G 7 0 4 0 1 3 0 0 0 0 7/23/16 SARF G 8 0 0 0 0 1 0 0 0 0 7/23/16 SARF W 2 10 2 0 0 0 12 5 0 0 7/23/16 SARF W 3 1 0 0 0 0 4 2 0 0 7/23/16 SARF W 4 4 2 0 0 0 3 0 1 0 7/23/16 SARF W 5 0 1 0 0 0 1 0 0 0

29

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 7/23/16 SARF W 6 1 0 0 0 0 0 0 0 0 7/23/16 SARF W 7 1 0 1 0 0 1 0 0 0 8/20/16 80 G 1 0 1 0 0 0 0 0 0 0 8/20/16 80 G 2 0 0 0 0 0 0 0 0 0 8/20/16 80 G 3 0 1 0 0 0 0 0 0 0 8/20/16 80 G 4 0 1 0 0 1 0 0 0 0 8/20/16 80 G 5 0 0 0 0 0 0 0 0 0 8/20/16 80 G 6 0 0 0 0 0 0 0 0 0 8/20/16 80 G 7 0 0 0 0 1 2 0 0 0 8/20/16 80 W 2 0 0 0 0 2 3 1 0 0 8/20/16 80 W 3 0 1 0 0 1 1 0 0 0 8/20/16 80 W 4 4 0 0 0 0 3 0 0 0 8/20/16 80 W 5 1 0 0 0 0 0 0 0 0 8/20/16 80 W 6 1 1 0 0 0 0 0 0 0 8/20/16 80 W 7 0 0 0 0 0 8 0 0 0 8/20/16 EDSP G 2 0 0 0 0 0 0 0 0 0 8/20/16 EDSP G 3 0 0 0 0 0 0 0 0 0 8/20/16 EDSP G 4 0 0 0 0 1 0 0 0 0 8/20/16 EDSP G 5 0 0 0 0 0 0 0 0 0 8/20/16 EDSP G 6 1 0 0 0 0 0 0 0 0 8/20/16 EDSP G 7 0 0 0 0 0 0 0 0 0 8/20/16 EDSP W 2 0 0 0 0 1 0 0 0 0 8/20/16 EDSP W 3 0 0 0 0 0 3 0 0 0 8/20/16 EDSP W 4 3 0 0 0 0 2 0 0 0 8/20/16 EDSP W 5 7 0 1 0 0 0 0 1 0 8/20/16 EDSP W 6 1 0 0 0 0 1 0 0 0

30

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 8/20/16 EDSP W 7 0 0 0 0 0 0 0 0 0 8/20/16 SARF G 2 1 0 0 1 2 0 0 0 0 8/20/16 SARF G 3 2 0 0 0 0 0 0 0 0 8/20/16 SARF G 4 3 0 0 0 1 0 0 0 0 8/20/16 SARF G 5 4 1 0 0 1 0 0 0 0 8/20/16 SARF G 6 2 0 0 0 0 2 1 0 0 8/20/16 SARF G 7 3 0 0 0 2 0 0 0 0 8/20/16 SARF G 8 0 0 0 0 0 1 0 0 0 8/20/16 SARF W 2 1 1 0 0 0 8 0 0 0 8/20/16 SARF W 3 1 0 0 0 0 4 0 0 0 8/20/16 SARF W 4 0 0 0 0 0 1 0 0 0 8/20/16 SARF W 5 0 0 0 0 0 1 0 0 0 8/20/16 SARF W 6 1 0 0 0 0 0 0 0 0 8/20/16 SARF W 7 2 0 0 0 0 0 0 0 0 9/17/16 80 G 2 0 0 0 1 0 0 0 0 0 9/17/16 80 G 3 2 0 0 0 2 1 0 0 0 9/17/16 80 G 4 0 0 0 0 0 1 0 0 0 9/17/16 80 G 5 1 0 0 0 1 0 0 0 0 9/17/16 80 G 6 0 1 0 0 1 3 0 0 1 9/17/16 80 G 7 0 0 0 0 0 1 0 0 0 9/17/16 80 W 2 0 0 0 0 0 1 0 0 0 9/17/16 80 W 3 0 1 0 0 0 1 0 0 0 9/17/16 80 W 4 0 0 0 0 0 0 0 0 0 9/17/16 80 W 5 0 0 0 0 0 0 0 0 0 9/17/16 80 W 6 0 0 0 0 0 0 0 0 0 9/17/16 80 W 7 0 0 0 0 0 3 0 0 0

31

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 9/17/16 EDSP G 2 0 0 0 0 0 0 0 0 0 9/17/16 EDSP G 3 0 0 0 0 0 0 0 0 0 9/17/16 EDSP G 4 0 0 0 0 1 0 0 0 0 9/17/16 EDSP G 5 1 0 0 1 0 0 0 0 0 9/17/16 EDSP G 6 0 0 0 0 0 0 0 0 0 9/17/16 EDSP G 7 0 0 0 0 0 0 0 0 0 9/17/16 EDSP W 2 0 0 0 0 0 3 0 0 0 9/17/16 EDSP W 3 1 0 0 0 0 7 0 0 0 9/17/16 EDSP W 4 0 0 0 0 0 3 0 0 0 9/17/16 EDSP W 5 0 0 0 0 0 5 0 0 0 9/17/16 EDSP W 6 0 1 0 0 0 1 0 0 0 9/17/16 EDSP W 7 1 0 0 0 0 1 0 0 0 9/17/16 SARF G 2 2 0 0 5 1 1 0 0 0 9/17/16 SARF G 3 1 1 0 0 0 0 0 0 0 9/17/16 SARF G 4 0 0 0 0 2 1 0 0 0 9/17/16 SARF G 5 2 1 0 3 8 0 0 0 0 9/17/16 SARF G 6 1 1 0 0 2 2 0 0 0 9/17/16 SARF G 7 3 1 0 3 1 3 0 0 0 9/17/16 SARF G 8 0 1 0 0 1 0 0 0 0 9/17/16 SARF W 2 0 0 0 0 0 0 0 0 0 9/17/16 SARF W 3 2 0 0 0 0 3 0 0 0 9/17/16 SARF W 4 0 1 0 0 0 1 0 0 0 9/17/16 SARF W 5 1 0 0 0 0 2 0 0 0 9/17/16 SARF W 6 0 0 0 0 0 7 0 0 0 9/17/16 SARF W 7 0 0 0 0 0 4 0 0 0 10/15/16 80 G 2 0 0 0 1 2 1 0 0 0

32

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 10/15/16 80 G 3 0 0 0 1 4 1 0 0 0 10/15/16 80 G 4 0 1 0 1 6 2 0 0 0 10/15/16 80 G 5 0 2 0 0 4 0 0 0 0 10/15/16 80 G 6 0 12 0 0 7 1 0 0 0 10/15/16 80 G 7 0 2 0 0 2 0 0 0 0 10/15/16 80 W 2 0 2 0 0 0 2 0 0 0 10/15/16 80 W 3 0 5 0 0 0 1 0 0 0 10/15/16 80 W 4 0 0 0 0 0 0 0 0 0 10/15/16 80 W 5 0 3 0 0 0 4 0 0 0 10/15/16 80 W 6 0 22 0 0 0 1 0 0 0 10/15/16 80 W 7 0 6 0 0 0 3 0 0 0 10/15/16 EDSP G 2 0 0 0 0 0 0 0 0 0 10/15/16 EDSP G 3 0 1 0 0 0 0 0 0 0 10/15/16 EDSP G 4 1 0 0 0 0 1 0 0 0 10/15/16 EDSP G 5 0 0 0 0 0 0 0 0 0 10/15/16 EDSP G 6 0 0 0 0 0 0 0 0 0 10/15/16 EDSP G 7 0 0 0 0 0 0 0 0 0 10/15/16 EDSP W 2 0 12 0 0 0 2 0 0 0 10/15/16 EDSP W 3 0 0 0 0 0 1 0 0 0 10/15/16 EDSP W 4 0 0 0 0 0 1 0 0 0 10/15/16 EDSP W 5 0 0 0 0 0 0 0 0 0 10/15/16 EDSP W 6 0 0 0 0 0 0 0 0 0 10/15/16 EDSP W 7 0 0 0 0 0 4 0 0 0 10/15/16 SARF G 2 0 16 0 1 5 4 0 0 0 10/15/16 SARF G 3 0 0 0 0 0 0 0 0 0 10/15/16 SARF G 4 0 2 0 0 1 0 0 0 0

33

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 10/15/16 SARF G 5 0 16 0 0 12 0 0 0 0 10/15/16 SARF G 6 1 1 0 0 0 2 0 0 0 10/15/16 SARF G 7 0 0 0 0 0 0 0 0 0 10/15/16 SARF W 2 0 8 0 0 0 5 0 0 0 10/15/16 SARF W 3 0 0 0 0 0 1 0 0 0 10/15/16 SARF W 4 2 20 0 0 2 7 0 0 0 10/15/16 SARF W 5 0 0 0 0 0 1 0 0 0 10/15/16 SARF W 6 0 5 0 0 0 11 0 0 0 10/15/16 SARF W 7 0 1 0 0 0 6 0 0 0 11/12/16 80 G 2 0 0 0 7 1 0 0 0 1 11/12/16 80 G 3 0 1 0 0 0 0 0 0 0 11/12/16 80 G 4 0 0 0 0 0 0 0 0 0 11/12/16 80 G 5 0 0 0 0 2 0 0 0 0 11/12/16 80 G 6 0 1 0 1 0 0 0 0 0 11/12/16 80 G 7 0 2 0 0 1 0 0 0 0 11/12/16 80 W 2 0 5 0 0 0 2 0 0 0 11/12/16 80 W 3 0 3 0 0 0 0 0 0 0 11/12/16 80 W 4 0 0 0 0 0 0 0 0 0 11/12/16 80 W 5 0 3 0 0 0 0 0 0 0 11/12/16 80 W 6 0 0 0 0 0 0 0 0 0 11/12/16 80 W 7 0 2 0 1 0 3 0 0 0 11/12/16 EDSP G 2 0 0 0 1 0 0 0 0 0 11/12/16 EDSP G 3 0 0 0 0 0 0 0 0 0 11/12/16 EDSP G 4 0 0 0 0 0 0 0 0 0 11/12/16 EDSP G 5 0 0 0 0 0 0 0 0 0 11/12/16 EDSP G 6 0 0 0 0 0 0 0 0 0

34

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 11/12/16 EDSP G 7 0 0 0 0 0 0 0 0 0 11/12/16 EDSP W 2 0 0 1 0 0 0 0 0 0 11/12/16 EDSP W 3 0 1 0 0 0 0 0 0 0 11/12/16 EDSP W 4 0 0 0 0 0 0 0 0 0 11/12/16 EDSP W 5 0 0 0 0 0 0 0 0 0 11/12/16 EDSP W 6 0 1 0 0 0 0 0 0 0 11/12/16 EDSP W 7 0 1 0 0 0 0 0 0 0 11/12/16 SARF G 2 0 0 0 24 1 1 0 0 0 11/12/16 SARF G 3 0 0 0 1 0 0 0 0 0 11/12/16 SARF G 4 0 1 0 3 0 0 0 0 0 11/12/16 SARF G 5 0 2 0 8 0 0 0 0 0 11/12/16 SARF G 6 0 1 0 1 0 0 0 0 0 11/12/16 SARF G 7 1 4 0 8 1 0 0 0 0 11/12/16 SARF W 2 0 9 0 0 0 0 0 0 0 11/12/16 SARF W 3 0 3 0 0 0 0 0 0 0 11/12/16 SARF W 4 0 4 0 0 0 0 0 0 0 11/12/16 SARF W 5 1 1 0 0 0 0 0 0 0 11/12/16 SARF W 6 0 3 0 0 0 2 1 0 0 11/12/16 SARF W 7 0 2 1 0 0 1 0 0 0 12/10/16 80 G 2 0 0 0 0 0 0 0 0 0 12/10/16 80 G 3 0 0 0 0 0 0 0 0 0 12/10/16 80 G 4 0 0 0 0 0 0 0 0 0 12/10/16 80 G 5 0 0 0 0 0 0 0 0 0 12/10/16 80 G 6 0 0 0 0 0 0 0 0 0 12/10/16 80 G 7 0 0 0 0 0 0 0 0 0 12/10/16 80 W 2 0 0 0 0 0 0 0 0 0

35

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 12/10/16 80 W 3 0 0 0 0 0 0 0 0 0 12/10/16 80 W 4 0 0 0 0 0 0 0 0 0 12/10/16 80 W 5 0 0 0 0 0 0 0 0 0 12/10/16 80 W 6 0 0 0 0 0 0 0 0 0 12/10/16 80 W 7 0 0 0 0 0 0 0 0 0 12/10/16 EDSP G 2 0 0 0 0 0 0 0 0 0 12/10/16 EDSP G 3 0 0 0 0 0 0 0 0 0 12/10/16 EDSP G 4 0 0 0 1 0 0 0 0 0 12/10/16 EDSP G 5 0 0 0 0 0 0 0 0 0 12/10/16 EDSP G 6 0 0 0 0 0 0 0 0 0 12/10/16 EDSP G 7 0 0 0 0 0 0 0 0 0 12/10/16 EDSP W 2 0 0 0 0 0 0 0 0 0 12/10/16 EDSP W 3 0 0 0 0 0 0 0 0 0 12/10/16 EDSP W 4 0 0 0 0 0 0 0 0 0 12/10/16 EDSP W 5 0 0 0 0 0 0 0 0 0 12/10/16 EDSP W 6 0 0 0 0 0 0 0 0 0 12/10/16 EDSP W 7 0 0 0 0 0 0 0 0 0 12/10/16 SARF G 2 0 0 0 0 0 0 0 0 0 12/10/16 SARF G 3 0 0 0 0 0 0 0 0 0 12/10/16 SARF G 4 0 0 0 0 1 0 0 0 0 12/10/16 SARF G 5 0 0 0 0 0 0 0 0 0 12/10/16 SARF G 6 0 0 0 0 0 0 0 0 0 12/10/16 SARF G 7 0 0 0 0 0 0 0 0 0 12/10/16 SARF W 2 0 0 0 0 0 0 0 0 0 12/10/16 SARF W 3 0 0 0 0 0 0 0 0 0 12/10/16 SARF W 4 0 0 0 0 0 0 0 0 0

36

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 12/10/16 SARF W 5 0 0 0 0 0 0 0 0 0 12/10/16 SARF W 6 0 0 0 0 0 0 0 0 0 12/10/16 SARF W 7 0 0 0 0 0 0 0 0 0 1/7/17 80 G 2 0 0 0 0 0 0 0 0 0 1/7/17 80 G 3 0 0 0 0 0 0 0 0 0 1/7/17 80 G 4 0 0 0 0 0 0 0 0 0 1/7/17 80 G 5 0 0 0 0 0 0 0 0 0 1/7/17 80 G 6 0 0 0 0 0 0 0 0 0 1/7/17 80 G 7 0 0 0 0 0 0 0 0 0 1/7/17 80 W 2 0 0 0 0 0 0 0 0 0 1/7/17 80 W 3 0 0 0 0 0 0 0 0 0 1/7/17 80 W 4 0 0 0 0 0 0 0 0 0 1/7/17 80 W 5 0 0 0 0 0 0 0 0 0 1/7/17 80 W 6 0 0 0 0 0 0 0 0 0 1/7/17 80 W 7 0 0 0 0 0 0 0 0 0 1/7/17 EDSP G 2 0 0 0 0 0 0 0 0 0 1/7/17 EDSP G 3 0 0 0 0 0 0 0 0 0 1/7/17 EDSP G 4 0 0 0 0 0 0 0 0 0 1/7/17 EDSP G 5 0 0 0 0 0 0 0 0 0 1/7/17 EDSP G 6 0 0 0 0 0 0 0 0 0 1/7/17 EDSP G 7 0 0 0 0 0 0 0 0 0 1/7/17 EDSP W 2 0 0 0 0 0 0 0 0 0 1/7/17 EDSP W 3 0 0 0 0 0 0 0 0 0 1/7/17 EDSP W 4 0 0 0 0 0 0 0 0 0 1/7/17 EDSP W 5 0 0 0 0 0 0 0 0 0 1/7/17 EDSP W 6 0 0 0 0 0 0 0 0 0

37

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 1/7/17 EDSP W 7 0 0 0 0 0 0 0 0 0 1/7/17 SARF G 2 0 0 0 0 0 0 0 0 0 1/7/17 SARF G 3 0 0 0 0 0 0 0 0 0 1/7/17 SARF G 4 0 0 0 0 0 0 0 0 0 1/7/17 SARF G 5 0 0 0 0 0 0 0 0 0 1/7/17 SARF G 6 0 0 0 0 0 0 0 0 0 1/7/17 SARF G 7 0 0 0 0 0 0 0 0 0 1/7/17 SARF W 2 0 0 0 0 0 0 0 0 0 1/7/17 SARF W 3 0 0 0 0 0 0 0 0 0 1/7/17 SARF W 4 0 0 0 0 0 0 0 0 0 1/7/17 SARF W 5 0 0 0 0 0 0 0 0 0 1/7/17 SARF W 6 0 0 0 0 0 0 0 0 0 1/7/17 SARF W 7 0 0 0 0 0 0 0 0 0 2/4/17 80 G 2 0 0 0 0 0 0 0 0 0 2/4/17 80 G 3 0 0 0 0 0 0 0 0 0 2/4/17 80 G 4 0 0 0 0 0 0 0 0 0 2/4/17 80 G 5 0 0 0 0 0 0 0 0 0 2/4/17 80 G 6 0 0 0 0 0 0 0 0 0 2/4/17 80 G 7 0 0 0 0 0 0 0 0 0 2/4/17 80 W 2 0 0 0 0 0 0 0 0 0 2/4/17 80 W 3 0 0 0 0 0 0 0 0 0 2/4/17 80 W 4 0 0 0 0 0 0 0 0 0 2/4/17 80 W 5 0 0 0 0 0 0 0 0 0 2/4/17 80 W 6 0 0 0 0 0 0 0 0 0 2/4/17 80 W 7 0 0 0 0 0 0 0 0 0 2/4/17 EDSP G 2 0 0 0 0 0 0 0 0 0

38

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 2/4/17 EDSP G 3 0 0 0 0 0 0 0 0 0 2/4/17 EDSP G 4 0 0 0 0 0 0 0 0 0 2/4/17 EDSP G 5 0 0 0 0 0 0 0 0 0 2/4/17 EDSP G 6 0 0 0 0 0 0 0 0 0 2/4/17 EDSP G 7 0 0 0 0 0 0 0 0 0 2/4/17 EDSP W 2 0 0 0 0 0 0 0 0 0 2/4/17 EDSP W 3 0 0 0 0 0 0 0 0 0 2/4/17 EDSP W 4 0 0 0 0 0 0 0 0 0 2/4/17 EDSP W 5 0 0 0 0 0 0 0 0 0 2/4/17 EDSP W 6 0 0 0 0 0 0 0 0 0 2/4/17 EDSP W 7 0 0 0 0 0 0 0 0 0 2/4/17 SARF G 2 0 0 0 0 0 0 0 0 0 2/4/17 SARF G 3 0 0 0 0 0 0 0 0 0 2/4/17 SARF G 4 0 0 0 0 0 0 0 0 0 2/4/17 SARF G 5 0 0 0 0 0 0 0 0 0 2/4/17 SARF G 6 0 0 0 0 0 0 0 0 0 2/4/17 SARF G 7 0 0 0 0 0 0 0 0 0 2/4/17 SARF W 2 0 0 0 0 0 0 0 0 0 2/4/17 SARF W 3 0 0 0 0 0 0 0 0 0 2/4/17 SARF W 4 0 0 0 0 0 0 0 0 0 2/4/17 SARF W 5 0 0 0 0 0 0 0 0 0 2/4/17 SARF W 6 0 0 0 0 0 0 0 0 0 2/4/17 SARF W 7 0 0 0 0 0 0 0 0 0 3/4/17 80 G 2 0 0 27 0 0 0 1 2 0 3/4/17 80 G 3 0 0 22 0 0 0 0 2 0 3/4/17 80 G 4 0 0 15 0 0 0 0 1 0

39

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 3/4/17 80 G 5 0 0 12 0 0 0 0 0 0 3/4/17 80 G 6 0 0 16 0 0 0 0 0 0 3/4/17 80 G 7 0 0 46 0 0 0 0 3 0 3/4/17 80 W 2 0 0 2 0 0 0 0 0 0 3/4/17 80 W 3 0 0 10 0 0 0 0 2 0 3/4/17 80 W 4 0 0 12 0 0 0 0 6 0 3/4/17 80 W 5 0 0 11 0 0 0 0 2 0 3/4/17 80 W 6 0 0 10 0 0 0 0 2 0 3/4/17 80 W 7 0 0 7 0 0 0 0 0 0 3/4/17 EDSP G 2 0 0 25 0 0 0 0 0 0 3/4/17 EDSP G 3 0 0 11 0 0 0 0 0 0 3/4/17 EDSP G 4 0 0 3 0 0 0 0 0 0 3/4/17 EDSP G 5 0 0 6 0 0 0 0 0 0 3/4/17 EDSP G 6 0 0 27 0 0 0 0 0 0 3/4/17 EDSP G 7 0 0 8 0 0 0 0 0 0 3/4/17 EDSP W 2 0 0 29 0 0 0 0 1 0 3/4/17 EDSP W 3 0 0 32 0 0 0 0 0 0 3/4/17 EDSP W 4 0 0 17 0 0 0 0 0 0 3/4/17 EDSP W 5 0 0 30 0 0 0 0 1 0 3/4/17 EDSP W 6 0 0 21 0 0 0 0 0 0 3/4/17 EDSP W 7 0 0 13 0 0 0 0 0 0 3/4/17 SARF G 2 0 0 3 0 0 0 0 1 0 3/4/17 SARF G 3 0 0 6 0 0 0 0 0 0 3/4/17 SARF G 4 0 0 0 0 0 0 0 0 0 3/4/17 SARF G 5 0 0 8 0 0 0 0 0 0 3/4/17 SARF G 6 0 0 1 0 0 0 0 0 0

40

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 3/4/17 SARF G 7 0 0 8 0 0 0 0 0 0 3/4/17 SARF W 2 0 0 1 0 0 0 0 0 0 3/4/17 SARF W 3 0 0 6 0 0 0 0 1 0 3/4/17 SARF W 4 0 0 15 0 0 0 0 0 0 3/4/17 SARF W 5 0 0 4 0 0 0 0 0 0 3/4/17 SARF W 6 0 0 5 0 0 0 0 0 0 3/4/17 SARF W 7 0 0 10 0 0 0 0 2 0 4/1/17 80 G 2 0 0 53 0 0 0 0 0 0 4/1/17 80 G 3 0 0 13 0 0 0 0 0 0 4/1/17 80 G 4 0 0 4 0 0 0 0 0 0 4/1/17 80 G 5 0 0 14 0 1 0 0 1 0 4/1/17 80 G 6 0 0 7 0 0 0 0 0 0 4/1/17 80 G 7 0 0 42 0 0 1 0 0 0 4/1/17 80 W 2 0 0 6 0 0 0 1 1 0 4/1/17 80 W 3 0 0 16 0 0 0 0 1 0 4/1/17 80 W 4 0 0 25 3 0 0 0 0 0 4/1/17 80 W 5 0 0 29 0 0 0 0 3 0 4/1/17 80 W 6 0 0 0 1 0 0 0 0 0 4/1/17 80 W 7 0 0 40 2 0 0 0 4 0 4/1/17 EDSP G 2 0 0 26 0 0 0 0 0 0 4/1/17 EDSP G 3 0 0 41 0 0 0 0 0 0 4/1/17 EDSP G 4 0 0 24 0 0 0 0 0 0 4/1/17 EDSP G 5 0 0 7 0 0 0 0 0 0 4/1/17 EDSP G 6 0 0 12 0 0 0 0 0 0 4/1/17 EDSP G 7 0 0 28 0 1 0 0 0 0 4/1/17 EDSP W 2 0 0 28 0 0 0 0 0 0

41

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 4/1/17 EDSP W 3 0 0 35 0 0 0 0 0 0 4/1/17 EDSP W 4 0 0 56 0 0 0 0 1 0 4/1/17 EDSP W 5 0 0 25 0 0 0 0 0 0 4/1/17 EDSP W 6 0 0 25 0 0 0 0 0 0 4/1/17 EDSP W 7 0 0 15 0 0 0 0 0 0 4/1/17 SARF G 2 0 0 0 0 0 0 0 0 0 4/1/17 SARF G 3 0 0 1 0 0 0 0 0 0 4/1/17 SARF G 4 0 0 0 0 0 0 0 0 0 4/1/17 SARF G 5 0 0 0 0 0 0 0 0 0 4/1/17 SARF G 6 0 0 0 0 0 0 0 0 0 4/1/17 SARF G 7 0 0 0 0 0 0 0 0 0 4/1/17 SARF W 2 0 0 0 0 0 0 0 0 0 4/1/17 SARF W 3 0 0 3 0 0 0 0 0 0 4/1/17 SARF W 4 0 0 0 0 0 0 0 0 0 4/1/17 SARF W 5 0 0 0 0 0 0 0 0 0 4/1/17 SARF W 6 0 0 0 0 0 0 0 0 0 4/1/17 SARF W 7 0 0 0 0 0 0 0 0 0 5/2/17 80 G 2 0 0 0 1 0 0 0 0 0 5/2/17 80 G 3 0 0 4 5 3 0 0 0 0 5/2/17 80 G 4 0 0 3 0 4 0 0 0 0 5/2/17 80 G 5 0 0 2 0 1 0 0 0 0 5/2/17 80 G 6 2 0 3 1 5 1 0 0 0 5/2/17 80 G 7 2 0 7 0 10 3 0 1 0 5/2/17 80 W 2 1 0 7 2 0 3 1 5 0 5/2/17 80 W 3 0 0 4 1 1 4 2 1 0 5/2/17 80 W 4 1 0 6 0 0 2 0 0 0

42

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 5/2/17 80 W 5 0 0 1 1 0 0 7 0 0 5/2/17 80 W 6 0 0 0 0 0 0 0 0 0 5/2/17 80 W 7 0 0 4 0 0 5 8 1 0 5/2/17 EDSP G 2 0 0 11 0 0 0 0 0 0 5/2/17 EDSP G 3 0 0 6 0 2 0 0 0 0 5/2/17 EDSP G 4 0 0 7 0 2 0 0 0 0 5/2/17 EDSP G 5 0 0 4 0 0 0 0 0 0 5/2/17 EDSP G 6 0 0 6 0 0 0 0 0 0 5/2/17 EDSP G 7 0 0 8 0 0 0 0 0 0 5/2/17 EDSP W 2 0 0 5 0 0 0 0 0 0 5/2/17 EDSP W 3 0 0 9 0 0 1 0 0 0 5/2/17 EDSP W 4 0 0 7 0 0 0 0 0 0 5/2/17 EDSP W 5 0 0 4 0 0 0 0 0 0 5/2/17 EDSP W 6 0 0 10 0 0 0 0 0 0 5/2/17 EDSP W 7 0 0 6 0 0 0 1 0 0 5/2/17 SARF G 2 0 0 0 0 7 0 0 0 0 5/2/17 SARF G 3 0 0 0 0 0 0 0 0 0 5/2/17 SARF G 4 0 0 0 0 0 0 0 0 0 5/2/17 SARF G 5 0 0 0 0 4 0 0 0 0 5/2/17 SARF G 6 0 0 0 0 0 0 0 0 0 5/2/17 SARF G 7 0 0 0 0 0 0 0 0 0 5/2/17 SARF W 2 0 0 0 0 0 0 0 0 0 5/2/17 SARF W 3 0 0 0 0 0 0 0 0 0 5/2/17 SARF W 4 0 0 0 0 0 1 0 0 0 5/2/17 SARF W 5 0 0 0 0 0 0 0 0 0 5/2/17 SARF W 6 0 0 0 0 0 0 0 0 0

43

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 5/2/17 SARF W 7 0 0 0 0 0 0 0 0 0 5/29/17 80 G 2 0 0 3 0 4 0 0 0 0 5/29/17 80 G 3 0 0 0 0 0 0 0 0 0 5/29/17 80 G 4 1 2 3 0 1 0 2 0 0 5/29/17 80 G 5 0 1 19 2 2 3 1 0 0 5/29/17 80 G 6 0 0 4 0 1 2 0 0 0 5/29/17 80 G 7 2 0 8 0 1 1 0 0 0 5/29/17 80 W 2 0 0 2 0 0 1 0 0 0 5/29/17 80 W 3 2 1 10 1 0 4 0 0 0 5/29/17 80 W 4 2 0 2 0 0 3 7 0 0 5/29/17 80 W 5 1 0 0 2 0 2 0 0 0 5/29/17 80 W 6 0 0 4 0 0 0 2 0 0 5/29/17 80 W 7 3 0 13 0 0 8 0 0 0 5/29/17 EDSP G 2 0 0 1 0 0 0 0 0 0 5/29/17 EDSP G 3 0 0 1 0 0 0 0 0 0 5/29/17 EDSP G 4 0 0 9 0 0 0 0 0 0 5/29/17 EDSP G 5 1 0 9 0 0 0 0 0 0 5/29/17 EDSP G 6 0 0 1 0 0 0 0 0 0 5/29/17 EDSP G 7 1 0 8 0 0 0 0 0 0 5/29/17 EDSP W 2 2 0 4 0 0 3 0 0 0 5/29/17 EDSP W 3 4 0 5 0 0 0 0 1 0 5/29/17 EDSP W 4 1 0 0 0 0 0 0 0 0 5/29/17 EDSP W 5 1 0 2 0 0 3 0 0 0 5/29/17 EDSP W 6 1 0 10 0 0 4 0 0 0 5/29/17 EDSP W 7 6 0 14 0 0 2 0 0 0 5/29/17 SARF G 2 0 2 5 0 0 0 0 0 0

44

TABLE A (continued) Habitat Necrophila Nicrophorus Oiceoptoma Necrodes Nicrophorus Nicrophorus Nicrophorus Oiceoptoma Thanatophilus Date Site Point Transect Americana Tomentosus Inaequale Surinamensis Marginatus Orbicollis Pustulatus Noveboracense Truncatus 5/29/17 SARF G 3 0 0 0 0 0 0 0 0 0 5/29/17 SARF G 4 0 0 0 0 0 0 0 0 0 5/29/17 SARF G 5 0 0 0 0 0 0 0 0 0 5/29/17 SARF G 6 2 0 0 0 2 0 0 0 0 5/29/17 SARF G 7 1 3 12 2 5 2 0 0 0 5/29/17 SARF W 2 0 0 0 0 0 0 0 0 0 5/29/17 SARF W 3 0 0 0 0 0 0 0 0 0 5/29/17 SARF W 4 7 0 8 0 0 4 0 0 0 5/29/17 SARF W 5 0 0 0 0 0 0 0 0 0 5/29/17 SARF W 6 0 0 0 0 0 2 0 0 0 5/29/17 SARF W 7 2 0 5 0 0 2 0 0 0

45

APPENDIX B

TABLE B: Abiotic variables recorded

Sites = 80: “The 80”, EDSP: El Dorado State Park, SARF: Skeleton Acres Research Facility HabitatTransect = G: Grassland, W: Woodland SoilTempC = Soil surface temperature in Celsius (°C) SoilHumidity = Soil surface humidity in percentages (%) WindMax = Maximum wind speed in meters per second (m/s) WindAvg = Average wind speed in meters per second (m/s) LightAvg = Average light availability in photosynthetic photon flux density (µmol m-2 s-1)

Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 6/25/16 80 G 2 37.4 41 1.5 0.6 1834 6/25/16 80 G 3 39.3 35 1.1 0.4 1480.666667 6/25/16 80 G 4 35 39 1.8 0.5 1845.333333 6/25/16 80 G 5 33 39 1.6 0.8 1794.666667 6/25/16 80 G 6 39.5 43 1.6 0.7 1785 6/25/16 80 G 7 38.8 39 1 0.5 1585.333333 6/25/16 80 W 2 22.3 58 0 0 30 6/25/16 80 W 3 23 67 0 0 30.33333333 6/25/16 80 W 4 24.4 72 0 0 127 6/25/16 80 W 5 23.3 66 0 0 85.66666667 6/25/16 80 W 6 22.9 72 0 0 11 6/25/16 80 W 7 25 78 0 0 49.66666667 6/25/16 EDSP G 2 27.3 62 3.1 1.5 1541.666667 6/25/16 EDSP G 3 23.5 54 2.2 0.9 1594.333333 6/25/16 EDSP G 4 26.1 54 2.7 1.5 1558.666667 6/25/16 EDSP G 5 26.9 66 2 1.3 1723.666667

46

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 6/25/16 EDSP G 6 27 44 2.6 1.7 1113.333333 6/25/16 EDSP G 7 31.2 47 0.5 0 1032.666667 6/25/16 EDSP W 1 25 72 0.4 0 605.6666667 6/25/16 EDSP W 2 20.6 68 0.4 0.2 13.33333333 6/25/16 EDSP W 3 20.7 72 2.1 1.5 80 6/25/16 EDSP W 4 21.2 72 0.4 0 17.66666667 6/25/16 EDSP W 5 20.8 72 0 0 10.33333333 6/25/16 EDSP W 6 20.1 76 0.8 0.4 15 6/25/16 EDSP W 7 20 80 0.8 0.4 12.33333333 6/25/16 SARF G 2 33.5 48 3.2 2.2 1282.666667 6/25/16 SARF G 3 32.5 49 5.6 2.6 1214.666667 6/25/16 SARF G 4 32.8 58 2.1 1.4 2186.666667 6/25/16 SARF G 5 34.6 54 3.2 2.1 2211.666667 6/25/16 SARF G 6 32.8 59 2.4 1.3 440.3333333 6/25/16 SARF G 7 34.1 59 3.6 2.3 1819.666667 6/25/16 SARF W 2 24 57 1.2 0.8 41.66666667 6/25/16 SARF W 3 27 56 1.1 0.6 99.66666667 6/25/16 SARF W 4 23.6 68 0.7 0.4 191 6/25/16 SARF W 5 25.8 66 0.6 0.3 1054.666667 6/25/16 SARF W 6 26.5 66 0 0 35.33333333 6/25/16 SARF W 7 23.4 72 0 0 257.3333333 7/23/16 80 G 2 38.8 41 2.3 1 1165 7/23/16 80 G 3 38.9 33 3.4 1.5 1338.666667 7/23/16 80 G 4 36 38 2.1 0.8 1412.666667 7/23/16 80 G 5 37.5 35 2.6 0.8 1474 7/23/16 80 G 6 41.9 36 2.5 1.2 1511.333333

47

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 7/23/16 80 G 7 39.1 36 5 2.7 1443 7/23/16 80 W 2 28.7 56 4.3 2.8 70.66666667 7/23/16 80 W 3 29.1 55 3.5 2.5 58 7/23/16 80 W 4 32.1 69 1.3 0.9 59 7/23/16 80 W 5 29.1 66 1 0.6 36 7/23/16 80 W 6 29.1 61 0.8 0.3 224 7/23/16 80 W 7 28.1 67 0.6 0.4 37.33333333 7/23/16 EDSP G 2 30 55 3 1.8 1295.666667 7/23/16 EDSP G 3 34.7 47 3.2 1.7 1327.666667 7/23/16 EDSP G 4 29.8 53 1.4 0.8 847 7/23/16 EDSP G 5 29.6 49 3.1 1.7 1289.333333 7/23/16 EDSP G 6 28.9 51 3.4 1.2 722 7/23/16 EDSP G 7 36.4 52 3.8 2 1395.333333 7/23/16 EDSP W 2 27 66 0 0 11.66666667 7/23/16 EDSP W 3 27 78 0 0 36 7/23/16 EDSP W 4 26.4 78 0 0 61.33333333 7/23/16 EDSP W 5 26.4 78 0 0 38.33333333 7/23/16 EDSP W 6 26 82 0 0 55.66666667 7/23/16 EDSP W 7 26.9 84 0.3 0 165.6666667 7/23/16 EDSP W 8 27.3 86 0 0 667 7/23/16 SARF G 2 44.5 29 5.4 3.6 2115.666667 7/23/16 SARF G 3 49.3 21 5.1 3.3 2018.666667 7/23/16 SARF G 4 47.4 29 4.3 2.9 2074 7/23/16 SARF G 5 43.7 33 3.4 2.1 1603.333333 7/23/16 SARF G 6 45.9 24 5.2 2.2 1690.333333 7/23/16 SARF G 7 41.1 35 4.7 3 1985.333333

48

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 7/23/16 SARF G 8 44.3 29 4.1 2.7 2069.333333 7/23/16 SARF W 2 32.1 55 2.1 1.4 53.66666667 7/23/16 SARF W 3 31.4 50 1.5 1.1 97 7/23/16 SARF W 4 31.1 54 2.2 1.2 65 7/23/16 SARF W 5 33.5 65 1.3 0.9 424 7/23/16 SARF W 6 31.5 55 1.1 0.8 51.33333333 7/23/16 SARF W 7 31.2 61 1 0.6 288.3333333 8/20/16 80 G 1 38.7 51 1.7 1 1196.333333 8/20/16 80 G 2 39.7 36 1 0.5 1153 8/20/16 80 G 3 38.9 34 2.3 0.7 1218 8/20/16 80 G 4 38.4 28 2.4 1.2 1364.333333 8/20/16 80 G 5 37.6 26 2.4 1.4 1258.666667 8/20/16 80 G 6 42.6 34 1.8 1 1338.666667 8/20/16 80 G 7 42.2 27 1.7 1.2 1317.333333 8/20/16 80 W 2 31.6 41 2.8 2.1 49 8/20/16 80 W 3 33.6 42 2.1 1.7 356 8/20/16 80 W 4 32.5 54 1.1 0.6 58.33333333 8/20/16 80 W 5 30.8 54 0 0 76 8/20/16 80 W 6 31.2 52 0 0 107.6666667 8/20/16 80 W 7 31 56 0 0 299 8/20/16 EDSP G 2 29.1 73 1.1 0.6 451.3333333 8/20/16 EDSP G 3 30.7 63 0.8 0.4 646.6666667 8/20/16 EDSP G 4 30.5 71 1 0.5 263.6666667 8/20/16 EDSP G 5 29.5 74 1 0.6 455 8/20/16 EDSP G 6 28.7 66 1 0.5 219.3333333 8/20/16 EDSP G 7 32.1 61 1.8 0.8 572.3333333

49

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 8/20/16 EDSP W 2 28.6 67 0 0 18 8/20/16 EDSP W 3 28.3 71 0 0 50.66666667 8/20/16 EDSP W 4 27.2 74 0 0 5.666666667 8/20/16 EDSP W 5 27 77 0 0 64 8/20/16 EDSP W 6 27.2 77 0 0 10.33333333 8/20/16 EDSP W 7 28 78 0 0 14.66666667 8/20/16 SARF G 2 37 39 3.8 2.7 2067.333333 8/20/16 SARF G 3 41.6 41 3.1 2 1876.666667 8/20/16 SARF G 4 38.1 45 3.8 2.2 1646.333333 8/20/16 SARF G 5 39.2 55 2.7 1.3 1712.666667 8/20/16 SARF G 6 45.9 35 3.1 1.7 1842.666667 8/20/16 SARF G 7 39.2 39 5.4 3.6 1574 8/20/16 SARF G 8 41.1 60 3.2 2 1540 8/20/16 SARF W 2 32.1 57 1 0.6 888.3333333 8/20/16 SARF W 3 32.2 54 1.2 0.9 134.6666667 8/20/16 SARF W 4 32.3 61 0.8 0.6 352 8/20/16 SARF W 5 35 52 0.8 0.5 480 8/20/16 SARF W 6 33.8 56 0.8 0.5 117 8/20/16 SARF W 7 32.7 54 0.9 0.6 117.3333333 9/17/16 80 G 2 25.4 59 4.1 2.3 1141.333333 9/17/16 80 G 3 24.7 73 4.5 2.2 1145.333333 9/17/16 80 G 4 25.8 60 3.3 1 1172.666667 9/17/16 80 G 5 25.4 62 6 2.6 1096.666667 9/17/16 80 G 6 26.6 67 2.6 1.4 1125.333333 9/17/16 80 G 7 28.2 68 1.1 0.5 1171.333333 9/17/16 80 W 2 21.1 72 3.7 1.7 59.33333333

50

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 9/17/16 80 W 3 23.1 83 1.6 1.2 674.3333333 9/17/16 80 W 4 26 78 1.6 1.2 97 9/17/16 80 W 5 21 74 1.8 1.1 187.3333333 9/17/16 80 W 6 23.5 81 2.4 1.4 60 9/17/16 80 W 7 23.2 83 3.3 1.6 54.66666667 9/17/16 EDSP G 2 20.4 72 3.2 1.9 721.6666667 9/17/16 EDSP G 3 22.3 73 2.5 1.4 792 9/17/16 EDSP G 4 19.9 78 3 1.3 474 9/17/16 EDSP G 5 24.5 71 3.2 1.7 922 9/17/16 EDSP G 6 20.4 72 2.6 1.5 318.6666667 9/17/16 EDSP G 7 26.2 84 0.6 0.3 964.3333333 9/17/16 EDSP W 2 20.2 75 0.9 0.6 15 9/17/16 EDSP W 3 20.8 79 1 0.4 41 9/17/16 EDSP W 4 20.5 85 0 0 4 9/17/16 EDSP W 5 20.9 89 0.4 0 71.66666667 9/17/16 EDSP W 6 21 88 0.4 0.2 16.33333333 9/17/16 EDSP W 7 23.8 96 0.5 0.2 14.33333333 9/17/16 SARF G 2 29 46 1.9 0.9 1723.333333 9/17/16 SARF G 3 27.2 53 3.3 1.5 1675 9/17/16 SARF G 4 28.4 56 2.8 1.3 1147.666667 9/17/16 SARF G 5 28 51 3 1.1 1443.666667 9/17/16 SARF G 6 28.1 49 2.5 1.1 1630.333333 9/17/16 SARF G 7 28.5 58 1.1 0.5 1076.333333 9/17/16 SARF G 8 30 62 1.1 0.4 1722.333333 9/17/16 SARF W 2 24.1 69 0.9 0.6 69 9/17/16 SARF W 3 22.3 70 0.5 0.4 137.6666667

51

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 9/17/16 SARF W 4 23 76 1.1 0.6 44.66666667 9/17/16 SARF W 5 27.5 76 1 0.5 130.6666667 9/17/16 SARF W 6 24 70 1 0.4 95.33333333 9/17/16 SARF W 7 22.8 79 0.9 0.6 117 10/15/16 80 G 2 24.6 81 1.6 1 989.6666667 10/15/16 80 G 3 24 78 2.4 1.2 899 10/15/16 80 G 4 23.6 78 1.6 0.8 932.6666667 10/15/16 80 G 5 25.7 65 1.6 0.7 894.3333333 10/15/16 80 G 6 25.3 74 0.7 0.5 756.6666667 10/15/16 80 G 7 24.4 70 0.7 0.5 802 10/15/16 80 W 2 21.9 69 0 0 52 10/15/16 80 W 3 22 83 0.7 0.3 112.6666667 10/15/16 80 W 4 22.1 83 0 0 98.66666667 10/15/16 80 W 5 21.6 82 0.3 0 29.66666667 10/15/16 80 W 6 27 78 0 0 222 10/15/16 80 W 7 23.8 77 0.3 0 33.33333333 10/15/16 EDSP G 2 21.6 84 0.8 0.4 372 10/15/16 EDSP G 3 21 81 0.7 0.4 321.6666667 10/15/16 EDSP G 4 21.8 83 0.4 0.3 370.6666667 10/15/16 EDSP G 5 22 86 1.3 0.4 319.6666667 10/15/16 EDSP G 6 22.4 85 0.7 0.3 390.6666667 10/15/16 EDSP G 7 23.1 84 0.3 0 353.3333333 10/15/16 EDSP W 2 20.3 78 0.4 0.3 35.66666667 10/15/16 EDSP W 3 21.2 82 0 0 59 10/15/16 EDSP W 4 20.3 85 0 0 11.33333333 10/15/16 EDSP W 5 20.1 86 0 0 13.66666667

52

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 10/15/16 EDSP W 6 20.4 89 0 0 18 10/15/16 EDSP W 7 20.8 90 0 0 20.66666667 10/15/16 SARF G 2 33.3 69 1.7 0.5 1561.333333 10/15/16 SARF G 3 27.9 65 0.9 0.4 1547.333333 10/15/16 SARF G 4 23.7 63 0.8 0.4 932.3333333 10/15/16 SARF G 5 28.2 62 0.6 0.3 1444 10/15/16 SARF G 6 30 62 0.4 0.2 1709.666667 10/15/16 SARF G 7 27.2 61 0.5 0 1355.333333 10/15/16 SARF W 2 25 65 0.6 0.5 492 10/15/16 SARF W 3 24 71 1.1 0.6 160 10/15/16 SARF W 4 25.3 77 0 0 56.66666667 10/15/16 SARF W 5 25.3 78 0 0 39.66666667 10/15/16 SARF W 6 23.7 70 0.4 0.3 55 10/15/16 SARF W 7 26 75 0 0 1594.666667 11/12/16 80 G 2 21.6 79 8.6 3.1 291 11/12/16 80 G 3 21.8 81 6.1 2.1 520.3333333 11/12/16 80 G 4 20.2 71 5.4 2.4 329.6666667 11/12/16 80 G 5 21 72 6.6 2.7 513.3333333 11/12/16 80 G 6 22.5 75 5.1 2.5 515.3333333 11/12/16 80 G 7 21.5 73 6.6 3 432.3333333 11/12/16 80 W 2 23.6 77 8.8 5.9 98 11/12/16 80 W 3 23.5 75 4.1 3.3 142 11/12/16 80 W 4 23.3 80 4.1 2.2 121.3333333 11/12/16 80 W 5 23.5 79 1.7 1.1 88 11/12/16 80 W 6 24.4 75 0.9 0.5 142 11/12/16 80 W 7 22.1 77 1.8 1 110.6666667

53

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 11/12/16 EDSP G 2 18.4 87 4.6 2.2 148 11/12/16 EDSP G 3 18.8 84 3.4 1.6 140.3333333 11/12/16 EDSP G 4 18.7 86 3 1.7 125 11/12/16 EDSP G 5 19.7 87 3.6 1.8 158.3333333 11/12/16 EDSP G 6 19.2 87 3.9 0.8 186.3333333 11/12/16 EDSP G 7 20 85 2.9 1.4 154.3333333 11/12/16 EDSP W 2 19.6 82 0.4 0 12 11/12/16 EDSP W 3 19.5 83 0.3 0.2 43.66666667 11/12/16 EDSP W 4 19.5 84 1 0.4 7.333333333 11/12/16 EDSP W 5 19.5 83 0.7 0.3 8 11/12/16 EDSP W 6 19.7 85 0.4 0.2 16 11/12/16 EDSP W 7 19.3 87 0.6 0.3 12.33333333 11/12/16 SARF G 2 23.1 72 6.4 3.9 373.3333333 11/12/16 SARF G 3 23.7 69 6.2 3 407.3333333 11/12/16 SARF G 4 24.7 63 5.7 3.7 356.3333333 11/12/16 SARF G 5 27.3 63 7.7 3.2 231.3333333 11/12/16 SARF G 6 26.2 64 7.1 4.2 322 11/12/16 SARF G 7 27.6 58 6.4 4.1 405.3333333 11/12/16 SARF W 2 23 71 3.7 2.4 114.3333333 11/12/16 SARF W 3 22.9 68 3.1 2.2 96.33333333 11/12/16 SARF W 4 24.2 66 3.5 2.5 108.6666667 11/12/16 SARF W 5 23.1 64 4 2.6 182.3333333 11/12/16 SARF W 6 24.9 68 3.3 2.3 291.3333333 11/12/16 SARF W 7 23.4 66 2.8 1.8 479.3333333 12/10/16 80 G 2 14.6 60 2.9 1.4 745 12/10/16 80 G 3 13.5 50 1.9 1.2 751

54

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 12/10/16 80 G 4 12.7 67 2.8 1.8 823.6666667 12/10/16 80 G 5 12.7 47 1.9 1.1 829.3333333 12/10/16 80 G 6 14.3 48 2 1 799 12/10/16 80 G 7 16.1 67 2.1 1.6 844.3333333 12/10/16 80 W 2 16.1 36 1.7 1 482.6666667 12/10/16 80 W 3 14.3 48 1.5 0.8 101.3333333 12/10/16 80 W 4 11.8 61 1.6 0.8 142.6666667 12/10/16 80 W 5 12.3 57 1.6 1 279.6666667 12/10/16 80 W 6 14 51 0 0 463.3333333 12/10/16 80 W 7 11.8 60 1 0.6 164.6666667 12/10/16 EDSP G 2 12 66 1.4 0.6 665.6666667 12/10/16 EDSP G 3 10.4 66 0.6 0.3 714.6666667 12/10/16 EDSP G 4 12.1 70 1.3 0.5 668.3333333 12/10/16 EDSP G 5 11.6 75 1.2 0.5 670.3333333 12/10/16 EDSP G 6 11.7 76 0.8 0.3 444.3333333 12/10/16 EDSP G 7 14.7 65 0.7 0.4 746.3333333 12/10/16 EDSP W 2 11.3 57 0.9 0.6 92.33333333 12/10/16 EDSP W 3 14.5 59 0.8 0.5 184.6666667 12/10/16 EDSP W 4 10.9 56 0.9 0.4 38.33333333 12/10/16 EDSP W 5 11.8 66 0 0 138 12/10/16 EDSP W 6 12.1 69 0.5 0.3 42 12/10/16 EDSP W 7 15.4 55 0.7 0.3 60 12/10/16 SARF G 2 23.2 49 2 0.6 1113.333333 12/10/16 SARF G 3 18.4 40 2.1 1.5 1127 12/10/16 SARF G 4 24.4 26 2.5 1.7 1162 12/10/16 SARF G 5 22.5 22 1.1 0.6 1085

55

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 12/10/16 SARF G 6 27.7 21 0.4 0.3 1159 12/10/16 SARF G 7 28.3 25 1.9 0.7 1132.666667 12/10/16 SARF W 2 15.7 33 0 0 184.3333333 12/10/16 SARF W 3 17.7 40 1.1 0.7 536 12/10/16 SARF W 4 16.3 31 1.1 0.5 198.6666667 12/10/16 SARF W 5 19.4 27 0.6 0.4 622 12/10/16 SARF W 6 19.8 52 0.8 0.5 531.3333333 12/10/16 SARF W 7 20.5 39 0.4 0 319 1/7/17 80 G 2 2.7 46 4.3 2.3 285.3333333 1/7/17 80 G 3 2.3 50 3.9 2.2 276 1/7/17 80 G 4 1.8 45 4.4 2.5 268.3333333 1/7/17 80 G 5 2.5 50 2.4 1.7 255 1/7/17 80 G 6 1.3 50 4.5 2.8 255.6666667 1/7/17 80 G 7 1.3 52 4 1.7 249.3333333 1/7/17 80 W 2 1.9 54 6 4.2 149 1/7/17 80 W 3 1.1 55 3.6 2.2 130.6666667 1/7/17 80 W 4 1.3 65 2.2 1.6 130 1/7/17 80 W 5 1.9 58 1.9 0.8 108 1/7/17 80 W 6 4.1 57 1.1 0.8 103.3333333 1/7/17 80 W 7 1.9 61 1.2 0.6 120.3333333 1/7/17 EDSP G 2 5.7 42 1.7 0.7 476.6666667 1/7/17 EDSP G 3 2.5 50 1.4 0.6 453 1/7/17 EDSP G 4 1.9 59 1.9 0.6 435.3333333 1/7/17 EDSP G 5 2.7 57 1.1 0.5 421 1/7/17 EDSP G 6 2.4 59 0.7 0.3 379 1/7/17 EDSP G 7 2.7 52 0 0 445.3333333

56

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 1/7/17 EDSP W 2 2.2 54 0.5 0.3 135 1/7/17 EDSP W 3 2.6 58 0.6 0.3 162 1/7/17 EDSP W 4 3.3 59 0.8 0.3 141 1/7/17 EDSP W 5 2.9 56 1.1 0.5 150 1/7/17 EDSP W 6 28 55 0.9 0.5 137.3333333 1/7/17 EDSP W 7 4 52 0.9 0.3 110 1/7/17 SARF G 2 4.7 36 4.2 2.7 333.3333333 1/7/17 SARF G 3 4.2 37 4.4 2.5 378.6666667 1/7/17 SARF G 4 3.2 39 5 3.2 344 1/7/17 SARF G 5 3.5 42 4.5 2.3 327 1/7/17 SARF G 6 3.3 41 3.3 1.7 341 1/7/17 SARF G 7 3 45 5.1 3.5 345.3333333 1/7/17 SARF W 2 3.3 46 2 1.1 144 1/7/17 SARF W 3 2 58 1.8 1.1 97.66666667 1/7/17 SARF W 4 4.1 46 1.8 1 129 1/7/17 SARF W 5 3.6 49 2.4 1.1 126 1/7/17 SARF W 6 5.4 42 2 1.1 85.66666667 1/7/17 SARF W 7 5.2 55 2.1 1.3 88 2/4/17 80 G 2 0 0 3.4 1.4 473.3333333 2/4/17 80 G 3 -1.4 57 2.9 2 458.3333333 2/4/17 80 G 4 -2.1 57 2.1 1.1 512 2/4/17 80 G 5 -0.8 0 2 1 552 2/4/17 80 G 6 -1.5 61 1.9 1.1 542.6666667 2/4/17 80 G 7 -0.8 61 1.5 0.8 585.3333333 2/4/17 80 W 2 -1.9 48 0 0 226.3333333 2/4/17 80 W 3 -1.7 0 0 0 192.6666667

57

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 2/4/17 80 W 4 -2 0 1 0.3 184.3333333 2/4/17 80 W 5 -0.3 58 0 0 194.3333333 2/4/17 80 W 6 -1.4 52 0.9 0.3 284.3333333 2/4/17 80 W 7 -2.5 0 0.9 0.6 180 2/4/17 EDSP G 2 -0.9 48 1.9 1.1 512.3333333 2/4/17 EDSP G 3 -3.5 0 2.3 1.2 683.3333333 2/4/17 EDSP G 4 -4.2 0 1.6 1.1 610.6666667 2/4/17 EDSP G 5 -3.1 0 1.6 1 712.6666667 2/4/17 EDSP G 6 -4.4 0 1.5 0.8 432 2/4/17 EDSP G 7 -0.5 66 1.2 0.4 638.6666667 2/4/17 EDSP W 2 -1.3 0 0.8 0.5 181.3333333 2/4/17 EDSP W 3 -2.6 0 0.7 0.3 333.3333333 2/4/17 EDSP W 4 -1.8 0 0.8 0.5 325.3333333 2/4/17 EDSP W 5 -1.8 0 1.2 0.8 222 2/4/17 EDSP W 6 -3.4 0 1.4 0.9 118 2/4/17 EDSP W 7 -2.6 0 0.8 0.6 98 2/4/17 SARF G 2 8.2 32 1.9 0.6 899.3333333 2/4/17 SARF G 3 3.2 30 0.7 0.3 906.3333333 2/4/17 SARF G 4 4.9 28 1 0.5 1061.333333 2/4/17 SARF G 5 6.4 26 2.6 1.4 1137 2/4/17 SARF G 6 5 25 1 0.5 1138 2/4/17 SARF G 7 7.1 24 1.3 0.6 1223.666667 2/4/17 SARF W 2 7 40 0.6 0.3 383.3333333 2/4/17 SARF W 3 4.8 34 0.7 0.4 409 2/4/17 SARF W 4 2.4 32 0.5 0.3 551 2/4/17 SARF W 5 2.9 38 0.6 0.3 396

58

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 2/4/17 SARF W 6 5.9 33 0.8 0.3 431.3333333 2/4/17 SARF W 7 4.6 33 0.4 0.3 293.3333333 3/4/17 80 G 2 3.9 37 3 1.3 144.3333333 3/4/17 80 G 3 1.9 41 4.6 2.5 149.3333333 3/4/17 80 G 4 2.8 49 5.7 2.5 192.3333333 3/4/17 80 G 5 2.9 45 5 2 193.6666667 3/4/17 80 G 6 2.6 46 5.6 2.9 209 3/4/17 80 G 7 3 46 4.5 1.8 200 3/4/17 80 W 2 2 46 5.3 3.5 139.3333333 3/4/17 80 W 3 2.9 45 5.3 3.2 149 3/4/17 80 W 4 1.7 45 2.8 2.2 136.3333333 3/4/17 80 W 5 5.7 50 1.1 0.7 144.3333333 3/4/17 80 W 6 7.5 44 1.2 0.7 122 3/4/17 80 W 7 4.8 46 1.8 1 159 3/4/17 EDSP G 2 3.2 42 4.1 2.5 197.3333333 3/4/17 EDSP G 3 3 49 4.8 2.4 210.3333333 3/4/17 EDSP G 4 2.6 50 6.4 2.4 201.3333333 3/4/17 EDSP G 5 2.3 57 3.6 2 215.6666667 3/4/17 EDSP G 6 2.2 54 3.4 1.2 206.6666667 3/4/17 EDSP G 7 3 49 6.6 2.7 220 3/4/17 EDSP W 2 5.2 50 2.3 0.7 137 3/4/17 EDSP W 3 5.1 48 1.6 0.9 169.3333333 3/4/17 EDSP W 4 5.7 45 1.3 0.4 159.3333333 3/4/17 EDSP W 5 5.1 50 1.4 0.8 150.3333333 3/4/17 EDSP W 6 5.6 52 1.7 0.8 161.6666667 3/4/17 EDSP W 7 4.6 48 2.1 0.7 143.6666667

59

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 3/4/17 SARF G 2 8.2 31 11.1 6.7 1075.666667 3/4/17 SARF G 3 11 33 8.7 6 1091.333333 3/4/17 SARF G 4 11.8 35 9.9 6 1144 3/4/17 SARF G 5 10.9 31 12.5 7.3 1186.666667 3/4/17 SARF G 6 10.1 31 14.5 7.5 1235.333333 3/4/17 SARF G 7 13.2 34 12.7 7.7 1284.333333 3/4/17 SARF W 2 9.8 35 6.1 3.2 369 3/4/17 SARF W 3 12.8 36 4.6 2.3 358 3/4/17 SARF W 4 11.5 37 3.1 1.3 409.6666667 3/4/17 SARF W 5 13.8 35 4.6 2.7 191 3/4/17 SARF W 6 16.8 33 2.8 1.7 195.6666667 3/4/17 SARF W 7 11.6 39 2.8 1.8 404.6666667 4/1/17 80 G 2 15.9 29 3.8 1.7 766 4/1/17 80 G 3 15.9 26 5 2.5 913.3333333 4/1/17 80 G 4 15.1 27 4.2 1.7 748 4/1/17 80 G 5 15.5 24 4.6 2.1 729 4/1/17 80 G 6 14.7 24 3.1 1.2 945.3333333 4/1/17 80 G 7 16.7 25 5.4 2.8 1131.333333 4/1/17 80 W 2 14.4 30 3.6 2.4 355.6666667 4/1/17 80 W 3 3.4 31 4.5 2.9 522.3333333 4/1/17 80 W 4 3.6 40 2.5 1.4 341 4/1/17 80 W 5 15.5 42 1.2 0.6 362 4/1/17 80 W 6 15 36 2.2 1 614 4/1/17 80 W 7 14.7 35 1 0.9 633.6666667 4/1/17 EDSP G 2 11.5 24 5.2 3 765 4/1/17 EDSP G 3 13 24 4.1 2.5 1033

60

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 4/1/17 EDSP G 4 13.8 24 4.1 2.5 1041.666667 4/1/17 EDSP G 5 11.5 24 4.7 2.9 893.6666667 4/1/17 EDSP G 6 12.7 24 4.5 1.7 673 4/1/17 EDSP G 7 16.1 23 6 3.1 946 4/1/17 EDSP W 2 20.1 21 1.7 0.7 443 4/1/17 EDSP W 3 23.9 21 1.3 0.7 771 4/1/17 EDSP W 4 20 21 1.7 0.8 384.6666667 4/1/17 EDSP W 5 18.4 25 1.5 0.6 157 4/1/17 EDSP W 6 22.9 22 1.5 0.7 413 4/1/17 EDSP W 7 20.7 23 1.4 0.7 420.6666667 4/1/17 SARF G 2 21.4 22 10.4 7.3 1473.666667 4/1/17 SARF G 3 23.6 26 8.2 5.4 1587 4/1/17 SARF G 4 26.7 23 9.1 6.3 1695.666667 4/1/17 SARF G 5 24.8 23 8.2 5.3 1535.666667 4/1/17 SARF G 6 23.3 21 7.7 5 1724.666667 4/1/17 SARF G 7 24.9 21 9.7 6.3 1599.666667 4/1/17 SARF W 2 23.3 24 3.8 2.3 740.3333333 4/1/17 SARF W 3 20.5 24 3.9 2.5 587.6666667 4/1/17 SARF W 4 19.7 21 3.5 2.2 509.6666667 4/1/17 SARF W 5 23.3 23 5.1 2.8 1020.333333 4/1/17 SARF W 6 26.5 22 3.9 1.9 765 4/1/17 SARF W 7 25.9 23 3 1.8 1454.666667 5/2/17 80 G 2 9.7 72 6.3 3.7 330 5/2/17 80 G 3 10.4 76 5.9 4.1 356 5/2/17 80 G 4 10.5 74 6.4 4.3 342.6666667 5/2/17 80 G 5 11.1 70 8 4.1 363.3333333

61

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 5/2/17 80 G 6 9.6 71 6.7 4.6 367.3333333 5/2/17 80 G 7 10.7 70 5.7 2.8 384.3333333 5/2/17 80 W 2 9.8 78 4.1 2.6 253.3333333 5/2/17 80 W 3 10.3 75 3.7 2.1 244.3333333 5/2/17 80 W 4 10.7 78 4.3 2.2 273.6666667 5/2/17 80 W 5 10.8 82 1.3 0.4 197.6666667 5/2/17 80 W 6 10.7 76 2.8 1.8 189.6666667 5/2/17 80 W 7 10.4 80 3.7 1.4 236.3333333 5/2/17 EDSP G 2 10.5 78 4.4 2 114.6666667 5/2/17 EDSP G 3 10.6 86 2.9 1.6 104.6666667 5/2/17 EDSP G 4 10.9 85 1.9 1 179.3333333 5/2/17 EDSP G 5 10.8 82 1.6 1.1 230.6666667 5/2/17 EDSP G 6 11.1 80 2.3 1.1 199.6666667 5/2/17 EDSP G 7 10.8 80 1.5 1 194.6666667 5/2/17 EDSP W 2 8.9 80 3.8 2.7 123 5/2/17 EDSP W 3 9 82 5.9 3.4 159 5/2/17 EDSP W 4 8.8 83 3.3 2.2 147.6666667 5/2/17 EDSP W 5 8.9 85 3.9 2.7 131 5/2/17 EDSP W 6 9.1 88 2.8 2 89.66666667 5/2/17 EDSP W 7 9 84 6.1 4.1 105.6666667 5/2/17 SARF G 2 13 67 7.6 4.2 507 5/2/17 SARF G 3 13.3 72 4.9 2.7 502.6666667 5/2/17 SARF G 4 12.6 74 4.2 3 550.6666667 5/2/17 SARF G 5 12.4 72 6 3.2 619.3333333 5/2/17 SARF G 6 12.8 65 5.4 2.6 618.3333333 5/2/17 SARF G 7 13.3 72 4.6 2.1 578.3333333

62

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 5/2/17 SARF W 2 11.4 74 3.2 1.2 264.6666667 5/2/17 SARF W 3 10.5 72 2.4 1.3 230 5/2/17 SARF W 4 11.3 80 3.9 1.1 209.3333333 5/2/17 SARF W 5 10.5 77 1.8 0.6 220.6666667 5/2/17 SARF W 6 11.4 79 2.5 0.9 222.3333333 5/2/17 SARF W 7 11.7 79 1.1 0.5 229 5/29/17 80 G 2 24.3 68 1.6 0.8 1184 5/29/17 80 G 3 22.7 61 1 0.7 734.3333333 5/29/17 80 G 4 21.7 68 2.9 1.3 1068.666667 5/29/17 80 G 5 22.1 66 0.8 0.3 802 5/29/17 80 G 6 21.3 66 1.1 0.6 956 5/29/17 80 G 7 22 74 1.3 0.7 679.6666667 5/29/17 80 W 2 20.4 57 2.5 1.5 194.3333333 5/29/17 80 W 3 19.9 63 1.5 0.8 181.3333333 5/29/17 80 W 4 19.4 68 1.1 0.3 194.6666667 5/29/17 80 W 5 19.9 67 0.9 0.4 343.6666667 5/29/17 80 W 6 20.1 58 1 0.7 234.6666667 5/29/17 80 W 7 18.9 71 2.2 1.3 244.6666667 5/29/17 EDSP G 2 14 67 1.1 0.6 223 5/29/17 EDSP G 3 13.7 69 1.2 0.7 327 5/29/17 EDSP G 4 14.1 68 2 0.7 329.3333333 5/29/17 EDSP G 5 13.7 64 2.3 1 363.3333333 5/29/17 EDSP G 6 14.9 65 0.7 0.3 264 5/29/17 EDSP G 7 16 69 1.5 1 394 5/29/17 EDSP W 2 14.8 64 0.9 0.6 46 5/29/17 EDSP W 3 15.6 70 1.1 0.7 109

63

TABLE B (continued) Date Site HabitatTransect Point SoilTempC SoilHumidity WindMax WindAvg LightAvg 5/29/17 EDSP W 4 15.9 67 0.7 0.5 102.6666667 5/29/17 EDSP W 5 15.2 69 0 0 87.66666667 5/29/17 EDSP W 6 15.1 75 0 0 57.66666667 5/29/17 EDSP W 7 15.3 75 0.6 0.5 70.33333333 5/29/17 SARF G 2 20.7 53 1.7 0.7 921.3333333 5/29/17 SARF G 3 21.6 38 1.6 1 1138.666667 5/29/17 SARF G 4 22.8 37 2.7 2 1221.666667 5/29/17 SARF G 5 22.7 42 3.8 2.5 1188 5/29/17 SARF G 6 21.3 39 1.6 1 1102 5/29/17 SARF G 7 24.1 41 3.2 2.2 1021 5/29/17 SARF W 2 21.7 40 1.5 0.8 221.3333333 5/29/17 SARF W 3 17.6 56 0.5 0.3 225.6666667 5/29/17 SARF W 4 20.6 55 0.9 0.5 174 5/29/17 SARF W 5 19.4 58 0.7 0.3 181.3333333 5/29/17 SARF W 6 19.2 55 1 0.4 405 5/29/17 SARF W 7 17.6 50 0.5 0.3 286.6666667

64

APPENDIX C

TABLE C: Mean values of abiotic variables and total silphid abundance at each site to compare between habitat types. This data was used to perform the paired Wilcoxon signed rank test in R.

Observation = The sites observed, 80: “The 80”, EDSP: El Dorado State Park, SARF: Skeleton Acres Research Facility TempG = Soil surface temperature in Celsius (°C) in the grasslands TempW = Soil surface temperature in Celsius (°C) in the woodlands HumidG = Soil surface humidity in percentages (%) in the grasslands HumidW = Soil surface humidity in percentages (%) in the woodlands WindAvgG = Average wind speed in meters per second (m/s) in the grasslands WindAvgW = Average wind speed in meters per second (m/s) in the woodlands WindMaxG = Maximum wind speed in meters per second (m/s) in the grasslands WindMaxW = Maximum wind speed in meters per second (m/s) in the woodlands LightG = Average light availability in photosynthetic photon flux density (µmol m-2 s-1) LightW = Average light availability in photosynthetic photon flux density (µmol m-2 s-1) TotalAbundanceG = Total silphid beetle abundance in the grasslands TotalAbundanceW = Total silphid beetle abundance in the woodlands

Observation TempG TempW HumidG HumidW WindAvgG WindAvgW EDSP 15.79744 15.96875 60.24359 63.475 0.5175 1.164103 SARF 23.98025 19.65 44.17284 53.75641 0.9679487 2.55679 80 19.76962 16.40641 51.89873 59.69231 1.65443 1.102564

Total Total Observation WindMaxG WindMaxW LightG LightW AbundanceG AbundanceW EDSP 2.335897 0.93875 575.9017 122.275 367 706 SARF 4.351852 1.70641 1208.062 313.0043 397 539 80 3.310127 1.825641 830.8945 182.7222 660 664

65