A Ks–Band Selected, Multi–Wavelength Survey for Quasars In

Total Page:16

File Type:pdf, Size:1020Kb

A Ks–Band Selected, Multi–Wavelength Survey for Quasars In Universit´ede Li`ege Facult´edes Sciences D´epartement d’Astrophysique, G´eophysique et Oc´eanographie AKs–band selected, multi–wavelength survey for quasars in the XMM–LSS field Theodoros Nakos Doctoral Dissertation January 2007 Pr. Jean–Pierre Swings President of the jury Pr. Jean Surdej Thesis co–Adviser Dr.JonWillis Thesisco–Adviser Dr. Jean–Fran¸cois Claeskens Examiner Dr. Damien Hutsem´ekers Examiner Dr. Gr´egor Raw Examiner Dr. Stefano Andreon External Examiner Pr. Herwig Dejonghe External Examiner ii iii Caminante, son tus huellas el camino, y nada mas; caminante, no hay camino, se hace camino al andar. Antonio Machado Canto XXIX, Proverbios y cantares, Campos de Castilla, 1917 Marcheur, ce sont tes traces ce chemin, et rien de plus; marcheur, il n’y a pas de chemin, le chemin se construit en marchant. iv Acknowledgments I would like to express my heartfelt thanks to all who contributed in any way to this work. First of all my thesis co–adviser, Jean Surdej, for his enthusiasm, support and stimulating interaction. A great thanks also goes to Jon Willis, who offered me the main bulk of data on which this work is based and provided valuable advice on many “technical” and scientific issues. Stefano Andreon should also be acknowledged, for providing me part of the material that played a major role in this work and for his suggestions during the course of our collaboration. Starting from my home Institute, there are numerous persons from the University of Li`ege I am grateful to. First of all to Jean–Pierre Swings, for his advices concerning both administrative and scientific matters. An enormous thanks goes to Pierre Riaud, for all the things he taught me, the hours he spent discussing with me and for creating such an amazing atmosphere at the Institute. Olivier Garcet should also be acknowledged, for the productive discussions concerning the properties of the X–ray data and the work on the photometric redshifts. I am also indebted to Jean-Fran¸cois Claeskens, whom I have been “bombarding” with questions since so many years. I have learned a lot from him and I would like to express my gratitude once more. Finally, many thanks also go to Denise, Damien, Eric and Frederic for their advices and solutions regarding practical, administrative or scientific issues. Going back in time, I would like to acknowledge the European Southern Observatory for the ESO studentship and especially Danielle Alloin, who supervised my work during my two–year stay at Santiago, as well as Alain Smette and Poshak Gandhi for the fruitful discussions. Since I spent the early years of my thesis at the Royal Observatory of Belgium, I ought special thanks to a bunch of people there. First of all to Edwin van Dessel, who had been (and still is) supporting me for so many years. Many other colleagues, namely Marijke Burger, Patricia Lampens, David Duval, Jan Cuypers and Henri Boffin, should also be mentioned. Finally, the ex–director of the Observatory, P. Pˆaquet, has to be acknowl- edged, for his strong commitment in supporting me regarding financial and administrative issues. There is a couple of persons I would also like to acknowledge from the National Ob- servatory of Athens. First of all Dimitri Sinachopoulos, for being an excellent teacher and v vi a very good friend. I learned a lot thanks to him and I will always feel grateful. Secondly Panos Boumis, who contributed so much during the preliminary stages of my adventure in astronomy and, by now, ended up being a very good friend. Finally, I would also like to thank Evanthia Hatziminaoglou for sharing with me her expertise during my two–week visit to Tenerife, for collaborating on the last chapter of the thesis and for running the code for modeling the infrared properties of the AGN in my sample. Leaving the scientific environment, there are tens of persons who have not really contributed much that can be cited in this work, but they have surely made my life much more beautiful and helped me overcome the difficult moments. First of all my Greek friends in the homeland and abroad. They are numerous and I can not name them all. Nevertheless, special thanks should go to one of them, Foris, without whom things would surely be very, very different...Of course, Maria, Christina, Dimitris and Yiorgos also played a great role in this. Credits should also go to all the friends with whom I shared so many wonderful moments in Chile: “Daniel–son”, Nuri, Claudito & Lu, Gael, Jon–Jon, Ivo and all the other “chiquillos”. Last, but surely not least, all my love and gratitude go to the persons who have been closest to me during all these years. My parents and my sister, for their everlasting love, support and understanding. Time has not only made us older, but wiser, and we have benefited so much from this... My daughter, Carolina, who never lets me forget that the happiness in life is found in the most simple things. Finally, Alejandra, for her unconditional love, who made me see the world with different eyes. This thesis is dedicated to them, they all deserve it... Thodori Nakos Preface The phenomenon of Active Galactic Nuclei (AGN) is still puzzling astronomers, despite the fact that the very first discovery of an active galaxy took place a century ago (in 1908, to be more precise). The term AGN refers to a special type of galaxies, whose radiation is mainly produced by non–thermal processes in a small, compact region in the nucleus of the galaxy. Astronomers are now confident that this region, of the size of our solar system, consists of a super–massive black hole, constantly fed with matter from an accretion disk surrounding it. The AGN “zoo” is populated by BL Lac objects, Type–1 and Type–2 quasars and Seyfert galaxies, etc. Although the AGN classification is mainly based on the amount of radiation emitted by the compact central source, the distinction between them is to some degree a matter of definition. The numerous sub–categories into which AGN have been classified is a self–proof on how incomplete is our knowledge regarding the processes taking place in the active nucleus. The “holy grail” for AGN astronomers, a unified model that will explain, using simple geometrical and physical solutions, the different features we observe in AGN, is far away from complete. The quasars (quasi–stellar objects, or QSOs), one of the two main sub–categories of AGN, are among the most luminous and distant objects. The light of the most distant quasars registered on our detectors was emitted when the Universe was only a fraction of its current age. Thanks to their high luminosities, quasars serve as cosmological light- houses: even at the far edges of the Universe there are still some shinning, and capturing their light traces back to the very early cosmic history. Once the importance of quasars was recognized, numerous QSO surveys were initiated for their discovery. However, their identification had to be based on some selection criteria. Objects not respecting these criteria were excluded, thus introducing a bias in the selected sample. The most striking example is the coincidental discovery of the first QSOs, as radio sources, in the late 1950s. We now know that the percentage of “radio–loud” quasars is only 5 10% of the total QSO known population. Working on sub–samples of the parent population∼ − prevents us from building up a single model that can successfully describe the features we observe in the various sub–classes. For this reason it is essential to understand the selection effects related to each survey and how the observed populations fit in a more general AGN context. vii viii One of the most commonly used optical techniques for the discovery of quasars is the so–called Ultra–Violet excess (UVX), implemented for the first time in the mid 1960s (Sandage 1965), and more systematically in the early 1980 (Schmidt & Green 1983). This technique is based on the fact that, in the (U B) versus (B V ) color–color plane, quasars occupy a locus different from that of stars,− because of their− bluer colors. These colors are attributed (a) to the quasar blue continuum, and (b) to the Lya emission line (1216A),˚ which, for QSOs found until a given redshift limit, enters the U–band. The UVX method works quite well up to redshifts z 2. At higher redshifts, however, the ≈ U B color starts becoming less effective in isolating quasars, and for redshifts higher than− 2.2, when the Lya line is shifted to wavebands redder than the U–filter, the method fails in detecting high redshift quasars. As mentioned before, each survey suffers from selection effects. Understanding the properties of a sample, selected using specific criteria, is fundamental for properly de- scribing the parent population. Because of the filter combination, the UVX favors the selection of blue quasars. Hence, intrinsically red, and reddened, due to dust, QSOs are not selected by UVX. As a result, the question whether we are missing a “hidden” quasar population has been troubling astronomers since about a decade (Webster et al. 1995). A new approach to tackle the weak points of the UV excess was introduced by Warren − et al. (2000). The K–excess (KX), similar in its concept to the UVX, suggested to use infrared filters (among which the K–band, at 2.2 µm) for detecting high z, red and dusty QSOs. The quasar spectral energy distribution∼ (SED) is described by a− power–law, while stellar SEDs have a convex shape.
Recommended publications
  • NUSTAR REVEALS an INTRINSICALLY X-RAY WEAK BROAD ABSORPTION LINE QUASAR in the ULTRALUMINOUS INFRARED GALAXY MARKARIAN 231 Stacy H
    Accepted, 18 February, 2014 Preprint typeset using LATEX style emulateapj v. 11/10/09 NUSTAR REVEALS AN INTRINSICALLY X-RAY WEAK BROAD ABSORPTION LINE QUASAR IN THE ULTRALUMINOUS INFRARED GALAXY MARKARIAN 231 Stacy H. Teng1, 22, W.N. Brandt2, F.A. Harrison3,B.Luo2, D.M. Alexander4,F.E.Bauer5, 6, S.E. Boggs7,F.E. Christensen8,A.,Comastri9, W.W. Craig10, 7,A.C.Fabian11, D. Farrah12,F.Fiore13, P. Gandhi4,B.W. Grefenstette3,C.J.Hailey14,R.C.Hickox15, K.K. Madsen3,A.F.Ptak16, J.R. Rigby1, G. Risaliti17, 18, C. Saez5, D. Stern19, S. Veilleux20, 21, D.J. Walton3,D.R.Wik16, 22, & W.W. Zhang16 (Received; Accepted) Accepted, 18 February, 2014 ABSTRACT We present high-energy (3–30 keV) NuSTAR observations of the nearest quasar, the ultralumi- nous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5–8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5–30 keV) X-ray spectrum suggests the active galactic nu- ∼ . +0.3 × 23 −2 cleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin (NH 1 2−0.3 10 cm ) 43 −1 column. The intrinsic X-ray luminosity (L0.5−30 keV ∼ 1.0 × 10 erg s ) is extremely weak relative to the bolometric luminosity where the 2–10 keV to bolometric luminosity ratio is ∼0.03% compared to the typical values of 2–15%.
    [Show full text]
  • Explosion Shutting Down a Galactic Party: Physicists
    "Long before it's in the papers" R E T URN T O T H E W O R L D SC I E N C E H O M E PA G E Explosion shutting down a galactic party: physicists Feb. 23, 2011 Courtesy of the Gemini Observatory and World Science staff An immense black hole in a galaxy far, far away seems to be causing an explosion that will change that galaxy forever, scientists say. Blasts of its type, never reported in detail before, will snuff out a galactic party, they predict: like a suddenly enraged father who at a holiday feast yanks the tablecloth high into the air, the black hole is in a sense tossing its own meals out of the galaxy. And everyone else’s, too, because some of this same material is expected to have been nourishing a flurry of new star formation elsewhere in the galaxy, which will now stop. Artist’s conceptual of the environment around the supermas- sive black hole at the center of Mrk 231. The broad outflow seen in the Gemini data is shown as the fan-shaped wedge at the top of the accretion disk around the black hole. This side- view is not what is seen from the Earth where we see it ‘look- ing down the throat’ of the outflow. A similar outflow is proba- bly present under the disk as well and is hinted at in this illus- tration. The total amount of material entrained in the broad flow is at least 400 times the mass of the Sun per year.
    [Show full text]
  • Herschel-PACS Spectroscopic Diagnostics of Local Ulirgs
    A&A 518, L41 (2010) Astronomy DOI: 10.1051/0004-6361/201014676 & c ESO 2010 Astrophysics Herschel: the first science highlights Special feature Letter to the Editor Herschel-PACS spectroscopic diagnostics of local ULIRGs: Conditions and kinematics in Markarian 231 J. Fischer1,,E.Sturm2, E. González-Alfonso3 , J. Graciá-Carpio2, S. Hailey-Dunsheath2 ,A.Poglitsch2, A. Contursi2,D.Lutz2, R. Genzel2,A.Sternberg4,A.Verma5, and L. Tacconi2 1 Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Ave SW, Washington, DC 20375, USA e-mail: [email protected] 2 Max-Planck-Institut für extraterrestrische Physik (MPE), Postfach 1312, 85741 Garching, Germany 3 Universidad de Alcala de Henares, Departamento de Fisica, Campus Universitario, Spain 4 Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel 5 University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK Received 31 March 2010 / Accepted 5 May 2010 ABSTRACT In this first paper on the results of our Herschel PACS survey of local ultra luminous infrared galaxies (ULIRGs), as part of our SHINING survey of local galaxies, we present far-infrared spectroscopy of Mrk 231, the most luminous of the local ULIRGs, and a type 1 broad absorption line AGN. For the first time in a ULIRG, all observed far-infrared fine-structure lines in the PACS range were detected and all were found to be deficient relative to the far infrared luminosity by 1–2 orders of magnitude compared with lower luminosity galaxies. The deficits are similar to those for the mid-infrared lines, with the most deficient lines showing high ionization potentials.
    [Show full text]
  • A Multimessenger View of Galaxies and Quasars from Now to Mid-Century M
    A multimessenger view of galaxies and quasars from now to mid-century M. D’Onofrio 1;∗, P. Marziani 2;∗ 1 Department of Physics & Astronomy, University of Padova, Padova, Italia 2 National Institute for Astrophysics (INAF), Padua Astronomical Observatory, Italy Correspondence*: Mauro D’Onofrio [email protected] ABSTRACT In the next 30 years, a new generation of space and ground-based telescopes will permit to obtain multi-frequency observations of faint sources and, for the first time in human history, to achieve a deep, almost synoptical monitoring of the whole sky. Gravitational wave observatories will detect a Universe of unseen black holes in the merging process over a broad spectrum of mass. Computing facilities will permit new high-resolution simulations with a deeper physical analysis of the main phenomena occurring at different scales. Given these development lines, we first sketch a panorama of the main instrumental developments expected in the next thirty years, dealing not only with electromagnetic radiation, but also from a multi-messenger perspective that includes gravitational waves, neutrinos, and cosmic rays. We then present how the new instrumentation will make it possible to foster advances in our present understanding of galaxies and quasars. We focus on selected scientific themes that are hotly debated today, in some cases advancing conjectures on the solution of major problems that may become solved in the next 30 years. Keywords: galaxy evolution – quasars – cosmology – supermassive black holes – black hole physics 1 INTRODUCTION: TOWARD MULTIMESSENGER ASTRONOMY The development of astronomy in the second half of the XXth century followed two major lines of improvement: the increase in light gathering power (i.e., the ability to detect fainter objects), and the extension of the frequency domain in the electromagnetic spectrum beyond the traditional optical domain.
    [Show full text]
  • Quasar's Belch Solves Longstanding Mystery (W/ Video) 24 February 2011, by Peter Michaud
    Quasar's belch solves longstanding mystery (w/ Video) 24 February 2011, by Peter Michaud it needs to sustain its frenetic growth. It also limits the material available for the galaxy to make new generations of stars. The groundbreaking work is a collaboration between the University of Maryland's Sylvain Veilleux and David Rupke of Rhodes College in Tennessee. The results are to be published in the March 10 issue of The Astrophysical Journal Letters and were completed with support from the U.S. National Science Foundation. According to Veilleux, Markarian 231 (Mrk 231), the galaxy observed with Gemini, is an ideal laboratory for studying outflows caused by feedback from supermassive black holes. "This object is arguably the closest and best example that we know of a big Artist’s conceptualization of the environment around the galaxy in the final stages of a violent merger and in supermassive black hole at the center of Mrk 231. The the process of shedding its cocoon and revealing a broad outflow seen in the Gemini data is shown as the very energetic central quasar. This is really a last fan-shaped wedge at the top of the accretion disk gasp of this galaxy; the black hole is belching its around the black hole. This side-view is not what is seen next meals into oblivion!" As extreme as Mrk 231's from the Earth where we see it ‘looking down the throat’ of the outflow. A similar outflow is probably eating habits appear, Veilleux adds that they are present under the disk as well and is hinted at in this probably not unique, "When we look deep into illustration.
    [Show full text]
  • OPTICAL IMAGING of VERY LUMINOUS INFRARED GALAXY SYSTEMS: PHOTOMETRIC PROPERTIES and LATE EVOLUTION Santiago Arribas,1,2 Howard Bushouse, and Ray A
    The Astronomical Journal, 127:2522–2543, 2004 May # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. OPTICAL IMAGING OF VERY LUMINOUS INFRARED GALAXY SYSTEMS: PHOTOMETRIC PROPERTIES AND LATE EVOLUTION Santiago Arribas,1,2 Howard Bushouse, and Ray A. Lucas Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; [email protected], [email protected], [email protected] Luis Colina Instituto de Estructura de la Materia, CSIC, Serrano 119, E-28006 Madrid, Spain; [email protected] and Kirk D. Borne George Mason University, School of Computational Sciences; and NASA Goddard Space Flight Center, Greenbelt, MD 20771; [email protected] Received 2003 November 7; accepted 2004 February 17 ABSTRACT 11 A sample of 19 low-redshift (0:03 < z < 0:07), very luminous infrared galaxy [VLIRG: 10 L < L(8– 12 1000 m) < 10 L ] systems (30 galaxies) has been imaged in B, V,andI using ALFOSC with the Nordic Optical Telescope. These objects cover a luminosity range that is key to linking the most luminous infrared galaxies with the population of galaxies at large. As previous morphological studies have reported, most of these objects exhibit features similar to those found in ultraluminous infrared galaxies (ULIRGs), which suggests that they are also undergoing strong interactions or mergers. We have obtained photometry for all of these VLIRG systems, the individual galaxies (when detached), and their nuclei, and the relative behavior of these classes has been studied in optical color-magnitude diagrams. The observed colors and magnitudes for both the systems and the nuclei lie parallel to the reddening vector, with most of the nuclei having redder colors than the galaxy disks.
    [Show full text]
  • D C B Whittet.Pdf
    Dust in the Galactic Environment Second Edition Series in Astronomy and Astrophysics Series Editors: M Birkinshaw, University of Bristol, UK M Elvis, Harvard–Smithsonian Center for Astrophysics, USA J Silk, University of Oxford, UK The Series in Astronomy and Astrophysics includes books on all aspects of theoretical and experimental astronomy and astrophysics. Books in the series range in level from textbooks and handbooks to more advanced expositions of current research. Other books in the series An Introduction to the Science of Cosmology D J Raine and E G Thomas The Origin and Evolution of the Solar System M M Woolfson The Physics of the Interstellar Medium J E Dyson and D A Williams Dust and Chemistry in Astronomy T J Millar and D A Williams (eds) Observational Astrophysics R E White (ed) Stellar Astrophysics R J Tayler (ed) Forthcoming titles The Physics of Interstellar Dust EKr¨ugel Very High Energy Gamma Ray Astronomy T Weekes Dark Sky, Dark Matter P Wesson and J Overduin Series in Astronomy and Astrophysics Dust in the Galactic Environment Second Edition D C B Whittet Professor of Physics, Rensselaer Polytechnic Institute, Troy, New York, USA Institute of Physics Publishing Bristol and Philadelphia c IOP Publishing Ltd 2003 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with Universities UK (UUK).
    [Show full text]
  • The Iso Handbook
    THE ISO HANDBOOK Volume I: ISO – Mission & Satellite Overview Martin F. Kessler1,2, Thomas G. M¨uller1,4, Kieron Leech 1, Christophe Arviset1, Pedro Garc´ıa-Lario1, Leo Metcalfe1, Andy M. T. Pollock1,3, Timo Prusti1,2 and Alberto Salama1 SAI-2000-035/Dc, Version 2.0 November, 2003 1 ISO Data Centre, Science Operations and Data Systems Division Research and Scientific Support Department of ESA, Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid, Spain 2 ESTEC, Science Operations and Data Systems Division Research and Scientific Support Department of ESA, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands 3 Computer & Scientific Co. Ltd., 230 Graham Road, Sheffield S10 3GS, England 4 Max-Planck-Institut f¨ur extraterrestrische Physik, Giessenbachstraße, D-85748 Garching, Germany ii Document Information Document: The ISO Handbook Volume: I Title: ISO - Mission & Satellite Overview Reference Number: SAI/2000-035/Dc Issue: Version 2.0 Issue Date: November 2003 Authors: M.F. Kessler, T. M¨uller, K. Leech et al. Editors: T. M¨uller, J. Blommaert & P. Garc´ıa-Lario Web-Editor: J. Matagne Document History The ISO Handbook, Volume I: ISO – Mission & Satellite Overview is mainly based on the following documents: • The ISO Handbook, Volume I: ISO – Mission Overview, Kessler M.F., M¨uller T.G., Arviset C. et al., earlier versions, SAI-2000-035/Dc. • The ISO Handbook, Volume II: ISO – The Satellite and its Data, K. Leech & A.M.T. Pollock, earlier versions, SAI-99-082/Dc. • The following ESA Bulletin articles: The ISO Mission – A Scientific Overview, M.F. Kessler, A.
    [Show full text]
  • The Competing Depleters of Gas in the Quasar Markarian
    The Astrophysical Journal Letters, 801:L17 (6pp), 2015 March 1 doi:10.1088/2041-8205/801/1/L17 © 2015. The American Astronomical Society. All rights reserved. ESCAPE, ACCRETION, OR STAR FORMATION? THE COMPETING DEPLETERS OF GAS IN THE QUASAR MARKARIAN 231 Katherine Alatalo Infrared Processing & Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA Received 2014 December 27; accepted 2015 February 16; published 2015 March 3 ABSTRACT We report on high resolution CO(1–0),CS(2–1), and 3 mm continuum Combined Array for Research in Millimeter Astronomy (CARMA) observations of the molecular outflow host and nearest quasar Markarian 231. 10 We use the CS(2–1) measurements to derive a dense gas mass within Mrk 231 of1.8´ 0.3 10 M, consistent with previous measurements. The CS(2–1) data also seem to indicate that the molecular disk of Mrk 231 is forming stars at about normal efficiency. The high resolution CARMA observations were able to resolve the CO (1–0) outflow into two distinct lobes, allowing for a size estimate to be made and further constraining the molecular outflow dynamical time, further constraining the molecular gas escape rate. We find that 15% of the molecular gas within the Mrk 231 outflow actually exceeds the escape velocity in the central kiloparsec. Assuming that molecular gas is not constantly being accelerated, we find the depletion timescale of molecular gas in Mrk 231 to be 49 Myr, rather than 32 Myr, more consistent with the poststarburst stellar population observed in the system. Key words: galaxies: active – galaxies: evolution – galaxies: ISM – galaxies: nuclei – quasars: individual (Markarian 231) 1.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • A NEAR-INFRARED PERSPECTIVE Henry Jacob Borish
    STAR FORMATION AND NUCLEAR ACTIVITY IN LOCAL STARBURST GALAXIES: A NEAR-INFRARED PERSPECTIVE Henry Jacob Borish Strabane, Pennsylvania B.S. Physics and Astronomy, University of Pittsburgh, 2010 M.S. Astronomy, University of Virginia, 2012 A Dissertation Presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Astronomy University of Virginia May 2017 Committee Members: Aaron S. Evans Robert W. O'Connell R´emy Indebetouw Robert E. Johnson c Copyright by Henry Jacob Borish All rights reserved May 20, 2017 ii Abstract Near-Infrared spectroscopy provides a useful probe for viewing embedded nuclear activity in intrinsically dusty sources such as Luminous Infrared Galaxies (LIRGs). In addition, near-infrared spectroscopy is an essential tool for examining the late time evolution of type IIn supernovae as their ejected material cools through temperatures of a few thousand Kelvins. In this dissertation, I present observations and analysis of two distinct star-formation driven extragalactic phenomena: a luminous type IIn supernova and the nuclear activity of luminous galaxy mergers. Near-infrared (1 2:4 µm) spectroscopy of a sample of 42 LIRGs from the Great − Observatories All-Sky LIRG Survey (GOALS) were obtained in order to probe the excitation mechanisms as traced by near-infrared lines in the embedded nuclear re- gions of these energetic systems. The spectra are characterized by strong hydrogen recombination and forbidden line emission, as well as emission from ro-vibrational lines of H2 and strong stellar CO absorption. No evidence of broad recombination lines or [Si VI] emission indicative of AGN are detected in LIRGs without previ- ously identified optical AGN, likely indicating that luminous AGN are not present or that they are obscured by more than 10 magnitudes of visual extinction.
    [Show full text]
  • From the Hot, Nuclear, Ultra-Fast Wind to the Galaxy-Scale, Molecular Outflow
    Astronomy & Astrophysics manuscript no. mrk231-2014-v20 c ESO 2015 August 25, 2015 ! The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow ! C. Feruglio1,2,3,F.Fiore3,S.Carniani4,5,6,E.Piconcelli3,L.Zappacosta3,A.Bongiorno3,C.Cicone5,6,R.Maiolino5,6, A. Marconi4,N.Menci3,S.Puccetti7,3,andS.Veilleux8,9 1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy, e-mail: [email protected] 2 IRAM – Institut de RadioAstronomie Millim´etrique, 300 rue de la Piscine, 38406 Saint Martin d’H´eres, France 3 INAF – Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio Catone, Italy 4 Dipartimento di Fisica e Astronomia, Universit´adi Firenze, Via G. Sansone 1, I-50019, Sesto Fiorentino (Firenze), Italy 5 Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Ave., Cambridge CB3 0HE, UK 6 Kavli Insitute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 7 ASDC-ASI, Via del Politecnico, I-00133 Roma, Italy 8 Department of Astronomy and CRESST, University of Maryland,CollegePark,MD,20742,USA 9 Joint Space Science Institute, University of Maryland, College Park, MD20742, USA Preprint online version: August 25, 2015 ABSTRACT Mrk 231 is a nearby ultra-luminous IR galaxy exhibiting a kpc-scale, multi-phase AGN-driven outflow. This galaxy represents the best target to investigate in detail the morphology and energetics of powerful outflows, as well as their still poorly-understood expansion mechanism and impact on the host galaxy. In this work, we present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO(2-1) and (3-2) observations obtained with the IRAM/PdBI.
    [Show full text]