geosciences Article Terraced Iron Formations: Biogeochemical Processes Contributing to Microbial Biomineralization and Microfossil Preservation Jeremiah Shuster 1,2,* , Maria Angelica Rea 1,2 , Barbara Etschmann 3, Joël Brugger 3 and Frank Reith 1,2 1 School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia;
[email protected] (M.A.R.);
[email protected] (F.R.) 2 CSIRO Land and Water, Contaminant Chemistry and Ecotoxicology, PMB2 Glen Osmond, South Australia 5064, Australia 3 School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria 3800, Australia;
[email protected] (B.E.);
[email protected] (J.B.) * Correspondence:
[email protected]; Tel.: +61-8-8313-5352 Received: 30 October 2018; Accepted: 10 December 2018; Published: 13 December 2018 Abstract: Terraced iron formations (TIFs) are laminated structures that cover square meter-size areas on the surface of weathered bench faces and tailings piles at the Mount Morgan mine, which is a non-operational open pit mine located in Queensland, Australia. Sampled TIFs were analyzed using molecular and microanalytical techniques to assess the bacterial communities that likely contributed to the development of these structures. The bacterial community from the TIFs was more diverse compared to the tailings on which the TIFs had formed. The detection of both chemolithotrophic iron-oxidizing bacteria, i.e., Acidithiobacillus ferrooxidans and Mariprofundus ferrooxydans, and iron-reducing bacteria,