Domain Shuffling and the Evolution of Vertebrates

Total Page:16

File Type:pdf, Size:1020Kb

Domain Shuffling and the Evolution of Vertebrates Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Domain shuffling and the evolution of vertebrates Takeshi Kawashima,1,2,3,9 Shuichi Kawashima,4 Chisaki Tanaka,5 Miho Murai,6 Masahiko Yoneda,6 Nicholas H. Putnam,2,7 Daniel S. Rokhsar,2,7 Minoru Kanehisa,4,8 Nori Satoh,1 and Hiroshi Wada5,9 1Okinawa Institute of Science and Technology, Uruma, Okinawa 904-2234, Japan; 2Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA; 3Japanese Society for Promotion of Sciences, Tokyo 102-8471, Japan; 4Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; 5Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; 6Department of Nursing & Health, School of Nursing & Health, Aichi Prefectural University, Nagoya 463-8502, Japan; 7Center for Integrative Genomics, University of California, Berkeley, Berkeley, California 94720, USA; 8Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan The evolution of vertebrates has included a number of important events: the development of cartilage, the immune system, and complicated craniofacial structures. Here, we examine domain shuffling as one of the mechanisms that contributes novel genetic material required for vertebrate evolution. We mapped domain-shuffling events during the evolution of deuterostomes with a focus on how domain shuffling contributed to the evolution of vertebrate- and chordate-specific characteristics. We identified ;1000 new domain pairs in the vertebrate lineage, including ;100 that were shared by all seven of the vertebrate species examined. Some of these pairs occur in the protein components of vertebrate-specific structures, such as cartilage and the inner ear, suggesting that domain shuffling made a marked contribution to the evolution of vertebrate-specific characteristics. The evolutionary history of the domain pairs is traceable; for example, the Xlink domain of aggrecan, one of the major components of cartilage, was originally utilized as a functional domain of a surface molecule of blood cells in protochordate ancestors, and it was recruited by the protein of the matrix component of cartilage in the vertebrate ancestor. We also identified genes that were created as a result of domain shuffling in ancestral chordates. Some of these are involved in the functions of chordate structures, such as the endostyle, Reissner’s fiber of the neural tube, and the notochord. Our analyses shed new light on the role of domain shuffling, especially in the evolution of vertebrates and chordates. [Supplemental material is available online at www.genome.org.] The question of how novel structures are created by changing mechanisms might have been involved in domain shuffling, such genetic information is one of the most challenging issues in evo- as the simple fusion of genes and recruitment of mobile elements lutionary biology. It is generally accepted that the morphological (Babushok et al. 2007; Ekman et al. 2007). features of various multicellular animals are built on a common set In contrast to thorough investigation of the mechanistic of genes. Carroll et al. (2001) and Davidson (2006) proposed that aspects of domain shuffling, the contribution of the new genes the novel features emerged as a result of altered gene expression created by domain shuffling to the evolution of phenotype has patterns. Novel genetic material has also contributed to the evo- not been sufficiently explored. Because domain shuffling occurs lution of novel structures. Much attention has been focused on more frequently in metazoan lineages than in unicellular organ- gene duplications as a mechanism for the evolution of novel ge- isms, suggesting that domain shuffling played an important role netic material. Particularly in the case of vertebrate evolution, in the evolution of multicellularity (Patthy 2003; Ekman et al. whole genome duplications that occurred twice in ancestral ver- 2007), we reasoned that domain shuffling also contributed to the tebrates have been regarded as the main force driving the evolu- elaboration of metazoan body plans. In this study, we compre- tion of novel structures (Holland et al. 1994). As an additional hensively investigated the domain shuffling events during deu- mechanism, we focus here on domain shuffling (Chothia et al. terostome evolution. The complete amphioxus genome sequence 2003; Babushok et al. 2007). Several different molecular mecha- provides sufficient deuterostome genomic sequences (Dehal et al. nisms for domain shuffling have been proposed. Since the 2002; Sea Urchin Genome Sequencing Consortium 2006; Putnam domains are often correlated with exon boundaries, exon shuf- et al. 2008) to map the domain shuffling events accurately. We fling is believed to be one of the major forces driving domain listed gene models that were created by domain shuffling in the shuffling (Liu and Grigoriev 2004). In addition, the introns at the ancestors of vertebrates, and examined how domain shuffling boundaries of domains show a marked excess of symmetrical contributed to the evolution of new genes for vertebrate-specific phase combinations, and, consequently, these domains may be characteristics. The contribution of domain shuffling was also inserted without changing the reading frame of ancestral genes examined in the evolution of chordates. (Kaessmann et al. 2002; Vibranovski et al. 2005). Some other Results and Discussion 9Corresponding authors. E-mail [email protected]; fax 81-29-853-4671. Detection of domain shuffling in deuterostome evolution E-mail [email protected]; fax 81-98-934-5622. Article published online before print. Article and publication date are at We identified pairs of protein domains found in single-gene mod- http://www.genome.org/cgi/doi/10.1101/gr.087072.108. els, including the human, mouse, rat, chicken, frog, pufferfish, 19:000–000 Ó 2009 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/09; www.genome.org Genome Research 1 www.genome.org Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Kawashima et al. zebrafish, ascidian, and amphioxus genomes. We took the order of Based on the table of shared domain pairs (Table 1), we the domains into account, so that the domain pair A and B (in mapped the gained and lost domain pairs on a phylogenetic tree order from the N terminus) was treated as a distinct pair from that had been previously deduced by using concatenated amino domains in the order B and A. This is because these domain pairs acid sequences (Fig. 1A; Putnam et al. 2008). If more than two taxa with different orders are more likely to have been gained by dis- shared domain pairs, we regarded the pairs as having been ac- tinct domain shuffling events than by divergence from a common quired in the last common ancestor. If pairs were shared in only ancestral pair. We surveyed domain pairs found in all splicing some of the descendent taxa, we assumed that those pairs were variants in order to detect all domain pairs transcribed in the lost in the rest of the descendent taxa. This method to reconstruct genomes. As outgroups, domain pairs from the proteomes of a sea the gain/loss of domain pairs does not follow the maximum par- urchin, fly, mosquito, gastropod snail, two species of nematode, simony principle. Rather, to filter domain pairs that are more sea anemone, choanoflagellate, slime mold, yeast, and plant likely to have been achieved by independent domain shuffling (Arabidopsis) were obtained (Supplemental Table 1). In the 20 events, we examined the overall domain structures of the gene proteomes, profile-HMM (HMMER) searches of the Pfam database models and defined a convergent index (CI) (see Methods). Al- (E-value cutoff of 10À3; see Methods) recognized 4649 protein though these independent acquisitions were thought to be rare domains. Of these, 2727 were found paired with other domains. (Gough 2005), we detected several domain pairs that are likely to Approximately 2000–5500 domain pairs were found in the gene have been achieved independently. By filtering domain pairs of models of each species. For example, 4057 domain pairs were CI $ 0.5, we found that 15 pairs that were shared by the sea urchin found in the human gene models, with 2251 found in ascidian and some chordates had rather different domain architectures and 5387 in amphioxus. From these datasets, we surveyed domain (Supplemental Fig. 1). Therefore, these domain pairs were more pairs shared by the major deuterostome taxa (Table 1). By this likely to have been acquired by convergence. Among 269 domain method, triplets of domains were detected as two or three domain pairs that were assumed to have been gained in the ancestors of pairs in one gene model (e.g., SNF2 histone linker PHD RING chordates, 13 pairs showed a CI $ 0.5, and thus were suggested to helicase or attractin in Table 2). have evolved convergently. No domain pairs shared by ascidians and vertebrates, and new pairs acquired in the vertebrate lineage, showed a CI $ 0.5. After filtering domain pairs of CI < 0.5, 209 pairs were as- Table 1. Shared domain combinations and unique domains sumed to have been acquired in the common ancestors of deu- terostomes, 256 pairs in the common ancestors of chordates, and Class I Class II Unique combinationsa combinationsb domainsc 35 in the common ancestors of ascidian and vertebrates. Re- garding the gained and lost pairs in each deuterostome taxon, it is VCBSO 0 1326 1532 notable that many of the new pairs (1965 pairs) were acquired in VCBS_ 0 20 2 the amphioxus lineage, which exceeded the number observed in VCB_O 0 355 116 the vertebrate lineage. Because some ambiguity remains in the VC_SO 0 129 25 V_BSO 0 458 161 gene models predicted from the genome sequences and EST se- _CBSO 0 15 0 quences, some of the predicted gene models may combine two VCB__ 0 43 5 distinct transcripts.
Recommended publications
  • Colonial Tunicates: Species Guide
    SPECIES IN DEPTH Colonial Tunicates Colonial Tunicates Tunicates are small marine filter feeder animals that have an inhalant siphon, which takes in water, and an exhalant siphon that expels water once it has trapped food particles. Tunicates get their name from the tough, nonliving tunic formed from a cellulose-like material of carbohydrates and proteins that surrounds their bodies. Their other name, sea squirts, comes from the fact that many species will shoot LambertGretchen water out of their bodies when disturbed. Massively lobate colony of Didemnum sp. A growing on a rope in Sausalito, in San Francisco Bay. A colony of tunicates is comprised of many tiny sea squirts called zooids. These INVASIVE SEA SQUIRTS individuals are arranged in groups called systems, which form interconnected Star sea squirts (Botryllus schlosseri) are so named because colonies. Systems of these filter feeders the systems arrange themselves in a star. Zooids are shaped share a common area for expelling water like ovals or teardrops and then group together in small instead of having individual excurrent circles of about 20 individuals. This species occurs in a wide siphons. Individuals and systems are all variety of colors: orange, yellow, red, white, purple, grayish encased in a matrix that is often clear and green, or black. The larvae each have eight papillae, or fleshy full of blood vessels. All ascidian tunicates projections that help them attach to a substrate. have a tadpole-like larva that swims for Chain sea squirts (Botryloides violaceus) have elongated, less than a day before attaching itself to circular systems. Each system can have dozens of zooids.
    [Show full text]
  • Cionin, a Vertebrate Cholecystokinin/Gastrin
    www.nature.com/scientificreports OPEN Cionin, a vertebrate cholecystokinin/gastrin homolog, induces ovulation in the ascidian Ciona intestinalis type A Tomohiro Osugi, Natsuko Miyasaka, Akira Shiraishi, Shin Matsubara & Honoo Satake* Cionin is a homolog of vertebrate cholecystokinin/gastrin that has been identifed in the ascidian Ciona intestinalis type A. The phylogenetic position of ascidians as the closest living relatives of vertebrates suggests that cionin can provide clues to the evolution of endocrine/neuroendocrine systems throughout chordates. Here, we show the biological role of cionin in the regulation of ovulation. In situ hybridization demonstrated that the mRNA of the cionin receptor, Cior2, was expressed specifcally in the inner follicular cells of pre-ovulatory follicles in the Ciona ovary. Cionin was found to signifcantly stimulate ovulation after 24-h incubation. Transcriptome and subsequent Real-time PCR analyses confrmed that the expression levels of receptor tyrosine kinase (RTK) signaling genes and a matrix metalloproteinase (MMP) gene were signifcantly elevated in the cionin-treated follicles. Of particular interest is that an RTK inhibitor and MMP inhibitor markedly suppressed the stimulatory efect of cionin on ovulation. Furthermore, inhibition of RTK signaling reduced the MMP gene expression in the cionin-treated follicles. These results provide evidence that cionin induces ovulation by stimulating MMP gene expression via the RTK signaling pathway. This is the frst report on the endogenous roles of cionin and the induction of ovulation by cholecystokinin/gastrin family peptides in an organism. Ascidians are the closest living relatives of vertebrates in the Chordata superphylum, and thus they provide important insights into the evolution of peptidergic systems in chordates.
    [Show full text]
  • From the National Park La Restinga, Isla Margarita, Venezuela
    Biota Neotrop., vol. 10, no. 1 Inventory of ascidians (Tunicata, Ascidiacea) from the National Park La Restinga, Isla Margarita, Venezuela Rosana Moreira Rocha1,11, Edlin Guerra-Castro2, Carlos Lira3, Sheila Marquez Pauls4, Ivan Hernández5, Adriana Pérez3, Adriana Sardi6, Jeannette Pérez6, César Herrera6, Ana Karinna Carbonini7, Virginia Caraballo3, Dioceline Salazar8, Maria Cristina Diaz9 & Juan José Cruz-Motta6,10 1 Departamento de Zoologia, Universidade Federal do Paraná – UFPR, CP 19020, CEP 82531-980 Curitiba, PR, Brasil 2Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, CP 21827, Caracas 1020-A, Venezuela, e-mail: [email protected] 3Laboratorio de Zoología, Universidad de Oriente, Núcleo de Nueva Esparta, Escuela de Ciencias Aplicadas del Mar, CP 658, Porlamar 6301, Isla Margarita, Venezuela, e-mail: [email protected], [email protected], [email protected] 4Instituto de Zoologia Tropical, Escuela de Biologia, Universidad Central de Venezuela, CP 47058, Caracas 1041, Venezuela, e-mail: [email protected] 5Departamento de Ciencias, Universidad de Oriente, Núcleo de Nueva Esparta, Guatamara, Isla de Margarita, Venezuela, e-mail: [email protected] 6Laboratorio de Ecología Experimental, Universidad Simón Bolívar, CP 89000, Sartenejas, Caracas 1080, Venezuela, e-mail: [email protected], [email protected], [email protected] 7Laboratorio de Biología Marina, Universidad Simón Bolívar, CP 89000, Sartenejas, Caracas 1080, Venezuela, e-mail: [email protected] 8Departamento de Biología, Escuela de Ciencias, Universidad de Oriente, Núcleo de Sucre, CP 245, CEP 6101,Cumaná, Venezuela, e-mail: [email protected] 9Museo Marino de Margarita, Bulevar El Paseo, Boca del Río, Margarita, Edo. Nueva Esparta, Venezuela, e-mail: [email protected] 10Departamento de Estudios Ambientales, Universidad Simón Bolívar, CP 89000, Sartenejas, Caracas 1080, Venezuela, e-mail: [email protected] 11Corresponding author: Rosana Moreira Rocha, e-mail: [email protected] ROCHA, R.M., GUERRA-CASTRO, E., LIRA, C., PAUL, S.M., HERNÁNDEZ.
    [Show full text]
  • And Description of a New Species, Ciona Interme
    An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia Francesco Mastrototaro, Federica Montesanto, Marika Salonna, Frédérique Viard, Giovanni Chimienti, Egidio Trainito, Carmela Gissi To cite this version: Francesco Mastrototaro, Federica Montesanto, Marika Salonna, Frédérique Viard, Giovanni Chimi- enti, et al.. An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia. Zoological Journal of the Linnean Society, Linnean Society of London, 2020, 10.1093/zoolinnean/zlaa042. hal-02861027 HAL Id: hal-02861027 https://hal.archives-ouvertes.fr/hal-02861027 Submitted on 8 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Doi: 10.1093/zoolinnean/zlaa042 An integrative taxonomy framework for the study of the genus Ciona (Ascidiacea) and the description of the new species Ciona intermedia Francesco Mastrototaro1, Federica Montesanto1*, Marika Salonna2, Frédérique Viard3, Giovanni Chimienti1, Egidio Trainito4, Carmela Gissi2,5,* 1 Department of Biology and CoNISMa LRU, University of Bari “Aldo Moro” Via Orabona, 4 - 70125 Bari, Italy 2 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via Orabona, 4 - 70125 Bari, Italy 3 Sorbonne Université, CNRS, Lab.
    [Show full text]
  • Redalyc.Keys for the Identification of Families and Genera of Atlantic
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Moreira da Rocha, Rosana; Bastos Zanata, Thais; Moreno, Tatiane Regina Keys for the identification of families and genera of Atlantic shallow water ascidians Biota Neotropica, vol. 12, núm. 1, enero-marzo, 2012, pp. 1-35 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199123750022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Keys for the identification of families and genera of Atlantic shallow water ascidians Rocha, R.M. et al. Biota Neotrop. 2012, 12(1): 000-000. On line version of this paper is available from: http://www.biotaneotropica.org.br/v12n1/en/abstract?identification-key+bn01712012012 A versão on-line completa deste artigo está disponível em: http://www.biotaneotropica.org.br/v12n1/pt/abstract?identification-key+bn01712012012 Received/ Recebido em 16/07/2011 - Revised/ Versão reformulada recebida em 13/03/2012 - Accepted/ Publicado em 14/03/2012 ISSN 1676-0603 (on-line) Biota Neotropica is an electronic, peer-reviewed journal edited by the Program BIOTA/FAPESP: The Virtual Institute of Biodiversity. This journal’s aim is to disseminate the results of original research work, associated or not to the program, concerned with characterization, conservation and sustainable use of biodiversity within the Neotropical region. Biota Neotropica é uma revista do Programa BIOTA/FAPESP - O Instituto Virtual da Biodiversidade, que publica resultados de pesquisa original, vinculada ou não ao programa, que abordem a temática caracterização, conservação e uso sustentável da biodiversidade na região Neotropical.
    [Show full text]
  • Repertoires of G Protein-Coupled Receptors for Ciona-Specific Neuropeptides
    Repertoires of G protein-coupled receptors for Ciona-specific neuropeptides Akira Shiraishia, Toshimi Okudaa, Natsuko Miyasakaa, Tomohiro Osugia, Yasushi Okunob, Jun Inouec, and Honoo Satakea,1 aBioorganic Research Institute, Suntory Foundation for Life Sciences, 619-0284 Kyoto, Japan; bDepartment of Biomedical Intelligence, Graduate School of Medicine, Kyoto University, 606-8507 Kyoto, Japan; and cMarine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan Edited by Thomas P. Sakmar, The Rockefeller University, New York, NY, and accepted by Editorial Board Member Jeremy Nathans March 11, 2019 (received for review September 26, 2018) Neuropeptides play pivotal roles in various biological events in the conservesagreaternumberofneuropeptide homologs than proto- nervous, neuroendocrine, and endocrine systems, and are corre- stomes (e.g., Caenorhabditis elegans and Drosophila melanogaster) lated with both physiological functions and unique behavioral and other invertebrate deuterostomes (7–13), confirming the evo- traits of animals. Elucidation of functional interaction between lutionary and phylogenetic relatedness of ascidians to vertebrates. neuropeptides and receptors is a crucial step for the verification of The second group includes Ciona-specific novel neuropeptides, their biological roles and evolutionary processes. However, most namely Ci-NTLPs, Ci-LFs, and Ci-YFV/Ls (SI Appendix,Fig. receptors for novel peptides remain to be identified. Here, we S1 and Table S1), which share neither consensus motifs nor se- show the identification of multiple G protein-coupled receptors quence similarity with any other peptides (8, 9). The presence of (GPCRs) for species-specific neuropeptides of the vertebrate sister both homologous and species-specific neuropeptides highlights this group, Ciona intestinalis Type A, by combining machine learning phylogenetic relative of vertebrates as a prominent model organism and experimental validation.
    [Show full text]
  • 1 Hmx Gene Conservation Identifies the Evolutionary Origin of Vertebrate
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.281501; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Hmx gene conservation identifies the evolutionary origin of vertebrate cranial ganglia Vasileios Papdogiannis1, Hugo J. Parker2, Alessandro Pennati1, Cedric Patthey1,3, Marianne E. Bronner4 and Sebastian M. Shimeld1* 1 Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ. 2 Stowers Institute for Medical Research, Kansas City, MO 64110, USA 3 Present address: Department of Radiosciences, Umeå University, 901 85 Umeå, Sweden. 4 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. * Correspondence to [email protected] The evolutionary origin of vertebrates included innovations in sensory processing associated with the acquisition of a predatory lifestyle1. Vertebrates perceive external stimuli through sensory systems serviced by cranial sensory ganglia (CSG) which develop from cranial placodes; however understanding the evolutionary origin of placodes and CSGs is hampered by the gulf between living lineages and difficulty in assigning homology between cell types and structures. Here we use the Hmx gene family to address this question. We show Hmx is a constitutive component of vertebrate CSG development and that Hmx in the tunicate Ciona is able to drive the differentiation program of Bipolar Tail Neurons (BTNs), cells previously thought neural crest homologs2,3. Using Ciona and lamprey transgenesis we demonstrate that a unique, tandemly duplicated enhancer pair regulated Hmx in the stem-vertebrate lineage.
    [Show full text]
  • Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science
    Bering Sea Marine Invasive Species Assessment Alaska Center for Conservation Science Scientific Name: Ciona savignyi Phylum Chordata Common Name Pacific transparent sea squirt Class Ascidiacea Order Enterogona Family Cionidae Z:\GAP\NPRB Marine Invasives\NPRB_DB\SppMaps\CIOSAV.png 73 Final Rank 52.25 Data Deficiency: 0.00 Category Scores and Data Deficiencies Total Data Deficient Category Score Possible Points Distribution and Habitat: 20.5 30 0 Anthropogenic Influence: 6 10 0 Biological Characteristics: 21.25 30 0 Impacts: 4.5 30 0 Figure 1. Occurrence records for non-native species, and their geographic proximity to the Bering Sea. Ecoregions are based on the classification system by Spalding et al. (2007). Totals: 52.25 100.00 0.00 Occurrence record data source(s): NEMESIS and NAS databases. General Biological Information Tolerances and Thresholds Minimum Temperature (°C) -1.7 Minimum Salinity (ppt) 24 Maximum Temperature (°C) 27 Maximum Salinity (ppt) 37 Minimum Reproductive Temperature (°C) 12 Minimum Reproductive Salinity (ppt) 31* Maximum Reproductive Temperature (°C) 25 Maximum Reproductive Salinity (ppt) 35* Additional Notes Ciona savignyi is a solitary, tube-shaped tunicate that is white to almost clear in colour. It has two siphons of unequal length, with small yellow or orange flecks on the siphons’ rim. Although C. savignyi is considered solitary, individuals are most often found in groups, and can form dense aggregations (Jiang and Smith 2005). Report updated on Wednesday, December 06, 2017 Page 1 of 14 1. Distribution and Habitat 1.1 Survival requirements - Water temperature Choice: Moderate overlap – A moderate area (≥25%) of the Bering Sea has temperatures suitable for year-round survival Score: B 2.5 of 3.75 Ranking Rationale: Background Information: Temperatures required for year-round survival occur in a moderate Based on this species' geographic distribution, it is estimated to tolerate area (≥25%) of the Bering Sea.
    [Show full text]
  • Saccharomyces.Cerevisiae Caenorhabditis.Elegans Drosophila
    Saccharomyces.cerevisiae Ecdysozoa|580 Caenorhabditis.elegans Drosophila.melanogaster Ciona|100 Ciona.intestinalis Opisthokonta|1500 Ciona.savignyi Cyclostomata|470 Petromyzon.marinus Eptatretus.burgeri Callorhinchus.milii Anura|203 Leptobrachium.leishanense Bilateria|580 Xenopus.tropicalis Pelodiscus.sinensis Cryptodira|161 Emydidae|40 Chrysemys.picta.bellii Testudinoidea|80 Terrapene.carolina.triunguis Testudinidae|53 Gopherus.evgoodei Archelosauria|250 Chelonoidis.abingdonii Crocodylus.porosus Archosauria|236 Struthio.camelus.australis Phasianidae b|42 Chordata|550 Gallus.gallus Phasianidae|42 Aves|111 Meleagris.gallopavo Galloanserae|80 Coturnix.japonica Anatidae|30 Anas.platyrhynchos.platyrhynchos Tetrapoda|359 Neognathae|105 Anser.brachyrhynchus Neognathae c|105 Aquila.chrysaetos.chrysaetos Neognathae b|105 Strigops.habroptila Sauria|267 Parus.major Passeriformes|65 Passeriformes d|65 Ficedula.albicollis Passeriformes g|42 Geospiza.fortis Passeroidea|35 Serinus.canaria Taeniopygia.guttata Elapidae|32 Naja.naja Elapidae a|32 Laticauda.laticaudata Toxicofera|168 Acanthophiinae|27 Notechis.scutatus Vertebrata|550 Pseudonaja.textilis Episquamata|178 Anolis.carolinensis Amniota|326 Lepidosauria|251 Laterata|148 Podarcis.muralis Salvator.merianae Sphenodon.punctatus Ornithorhynchus.anatinus Diprotodontia|35 Notamacropus.eugenii Diprotodontia a|35 Marsupialia b|85 Vombatus.ursinus Phascolarctos.cinereus Marsupialia|85 Sarcophilus.harrisii Monodelphis.domestica Afrotheria a|94 Loxodonta.africana Mammalia|184 Afrotheria|94 Procavia.capensis
    [Show full text]
  • Rapid Assessment Survey (RAS) En Marinas De La Provincia De Alicante: Tunicados Bentónicos (Ascidiacea)
    FACULTAD DE CIENCIAS GRADO EN CIENCIAS DEL MAR TRABAJO FIN DE GRADO CURSO ACADÉMICO [2017-2018] Rapid Assessment Survey (RAS) en marinas de la provincia de Alicante: Tunicados bentónicos (Ascidiacea). Alumno: Julio Úbeda Quesada Tutor: Prof. Alfonso A. Ramos Esplá Departamento de Ciencias del Mar y Biología Aplicada, UA. 1 Abstract The ascidians are a group of tunicates (Chordata) very characteristic in the fouling of ports and aquaculture infrastructures, appearing abundantly in most submerged structures (buoys, ropes, pontoons...). In this way, marinas are access “roads” for the secondary introduction of species, through the recreational boats, with their protected waters and large infrastructures available for the colonization of exotic species. However, few studies have been carried out on the characterization of the ascidiofauna of ports, and their dynamics among nearby areas. In this study, samples were taken in 7 ports along the 150 km of coastline in the western Mediterranean Sea (Alicante area), and collected from buoys, ropes and pontoons in marina habitats. All individuals of ascidians found, have been identified up to a maximum depth of 3 meters at species level. A total of 324 specimens belonging to 11 colonial and solitary species have been determined; some of them have been found in almost all ports (eg Ciona intestinalis, Clavelina lepadiformis, Aplidium aff. densum and Diplosoma listerinum), while others have only rarely appeared (eg Ascidiella scabra and Ascidia mentula). Moreover, it should be noted the appearance of invasive species, such as Microcosmus squamiger and the strong influence of salinity on the appearance of specimens. Univariate and multivariate analyses have been made in order to see possible differences between marinas.
    [Show full text]
  • Ascidian News #76 December 2015
    ASCIDIAN NEWS* Gretchen Lambert 12001 11th Ave. NW, Seattle, WA 98177 206-365-3734 [email protected] home page: http://depts.washington.edu/ascidian/ Number 76 December 2015 I greatly enjoyed participating in teaching a two week ascidian course at Nagoya University’s Sugashima Marine Lab from the end of June to July 10, and then attended the Intl. Tunicata meeting in Aomori, Japan from July 13-17. This issue is the second for my 40th year of compiling Ascidian News. I would greatly appreciate hearing from you whether you still find it useful and interesting. There are 93 New Publications listed at the end of this issue. *Ascidian News is not part of the scientific literature and should not be cited as such. NEWS AND VIEWS 1. Ciona intestinalis now shown to be 2 separate species. Because so many researchers work on Ciona intestinalis, and so many papers are published on this species, I draw your attention to 2 new publications showing at last that Ciona intestinalis A and B are different species and designating the correct names to be used in all future publications: Brunetti, R., Gissi, C., Pennati, R., Caicci, F., Gasparini, F. and Manni, L. 2015. Morphological evidence indicates that Ciona intestinalis (Tunicata, Ascidiacea) type A and type B are different species. Journal of Zool. Systematics & Evolutionary Research 53 (3): 186–193. [Type A is now designated C. robusta; type B retains the name C. intestinalis.] The second new publication describes larval differences between the two species: Pennati, R., Ficetola, G. F., Brunetti, R., Caicci, F., Gasparini, F., Griggio, F., Sato, A., Stach, T., Kaul-Strehlow, S., Gissi, C.
    [Show full text]
  • Assessing Lethal Dissolved Oxygen Tolerance for Invasive Tunicate Ciona Savignyi in Puget Sound
    Thomas K. Pool, School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195 Sean Luis, School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195 and Julian D. Olden1, School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195 Assessing Lethal Dissolved Oxygen Tolerance for Invasive Tunicate Ciona savignyi in Puget Sound Abstract Ciona savignyi is a solitary tunicate (Phylum Chordata, Class Ascidiacea) native to Japan that has invaded coastal habitats in the north-east Pacific and New Zealand. In the Puget Sound of Washington, USA, we examined the ability of C. savignyi to survive in artificially created hypoxic environments to determine if reduced dissolved oxygen (DO) treatments could be a viable control method. In laboratory bioassays, treatment groups that were immersed in DO concentrations ranging from completely hypoxic (1 mg/L) to low DO (5 mg/L) had zero survivorship of individually isolated tunicates after 14 to 22 days of exposure, respectively. Additionally, hypoxic conditions (approximately 1.5 mg/L) were created in the field using polyethylene tarp wraps applied around dock surfaces fouled with C. savignyi in a Puget Sound marina. To estimate mortality rates underneath the tarp wraps, dock units with clusters of C. savignyi remained wrapped for 10, 14 and 18 days and displayed decreasing survivorship with increased wrap time (76%, 51% and 33%, respectively). Our laboratory and field experiments indicate that wrapping docks fouled by C. savignyi with polyethylene tarps may be an effective management option to locally-control and reduce the spread of this tunicate species from marina habitats, which serve as hubs for non-native species transport via hull fouling.
    [Show full text]