Genus Oenothera)

Total Page:16

File Type:pdf, Size:1020Kb

Genus Oenothera) 1046 Asian Pac J Trop Biomed 2017; 7(11): 1046–1054 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Review article https://doi.org/10.1016/j.apjtb.2017.10.004 An updated review on pharmacological activities and phytochemical constituents of evening primrose (genus Oenothera) Rebecca Munir1, Nabil Semmar2, Muhammad Farman1*, Naseem Saud Ahmad3 1Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan 2Laboratory of Bioinformatics, Biomathematics and Biostatistics, Pasteur Institute of Tunis, University of Tunis El Manar, Tunisia 3Department of Pharmacology, University of Health Sciences, Lahore, Pakistan ARTICLE INFO ABSTRACT Article history: Genus Oenothera includes medicinal plants that are distributed throughout the world and Received 22 Aug 2017 are known since ancient times. Popular indications of different species of this genus Received in revised form 19 Sep 2017 include treatment of inflammations, diabetes, microbial infections, ulcers, tumors, kidney Accepted 13 Oct 2017 and liver problems. The plants of this genus are a botanical source for various pharma- Available online 23 Oct 2017 ceutically active components like sterols, alkaloids, phenolic acids, flavonoids, triterpe- noids, saponins, biflavonols and tocopherols. This review article is a compilation of chemical composition and biological activities of the various species of the genus Keywords: Oenothera. Oenothera Medicinal plants Chemical composition Biological activities 1. Introduction shaped white, pink, yellow and red flowers, and most are fragrant [2]. Herbal plants play a significant role in the life of humans as The plants owned to Oenothera have a wide range of me- they are being used in different fields such as pharmacology, dicinal properties that prompted us to compile a review article on cosmetics, perfumery, nutraceuticals, beverages and dying in- this particular genus. It comprises all the currently available dustries. Years ago, before the development of synthetic drugs, literature related to the pharmacological activities and phyto- these herbs were mainly used as an alternative therapy to treat chemical constituents of the different species of Oenothera various kinds of diseases. Oenothera, belonging to family including some of the findings of our own research work [3]. Onagraceae, is the second largest genus with 145 species of flowering plants [1]. It mainly occurs in temperate America as 2. Pharmacological activities well as in tropics. The genus is commonly recognized as evening primrose family that consists of herbs and under 2.1. Antioxidant activity shrubs. The plants of this genus occur in the form of annual, biennial or perennial herbs with alternate and mostly narrow Antioxidants play an important role in the preclusion of hu- leaves. The species of Oenothera are known for their saucer- man diseases. Medicinal plant is a rich source of natural radical scavengers and it is believed that this radical scavenging prop- erty is the main causative factor to the therapeutic assistance of many medicinal plants. As far as antioxidant capacity of genus *Corresponding author: Muhammad Farman, Department of Chemistry, Oenothera is concerned, it dates back to the mid of 90s. One of Quaid-i-Azam University, Islamabad 45320, Pakistan. Tel: +92 5190642097 its member Oenothera biennis (O. biennis) L. is the most Fax: +92 5190642241 important medicinal plant. In year 1995, its antioxidant property E-mail: [email protected] (M. Farman). was reported for the first time using lard as the substrate. Peer review under responsibility of Hainan Medical University. The journal implements double-blind peer review practiced by specially invited international Antioxidant power was assessed based on measuring peroxide editorial board members. 2221-1691/Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). Rebecca Munir et al./Asian Pac J Trop Biomed 2017; 7(11): 1046–1054 1047 number of the sample. Research showed that ethanolic extract of In 2003, a study was conducted on rats to determine the activity O. biennis L. exhibited pronounced antioxidant activity [4,5]. of ethanolic extract from defatted seeds of evening primrose Years later, it was explored that the triterpenoids found in O. biennis L., to control the rise of blood glucose level. It was methanol/water extract of O. biennis also have the potential of found that the extract played an imperative role in the suppression radical scavenging activity [6]. In year 2006, the lipophilic of postprandial hyperglycemia [19]. An investigation on the triterpenoidal esters present in cold-pressed, non-raffinated antidiabetic activity of Oenothera erythrosepala Borb was also evening primrose oil were found to be effective in reducing carried out in the very next year. It was reported that the dose of oxidation stress [7]. The pressing residues from O. biennis were 15 g/100 mL of the oil of Oenothera erythrosepala Borb can also reported to possess a very high antioxidant property [8].In lower the fasting blood glucose in experimental animals [20]. year 2009, methanolic extract of the seeds of O. biennis were Few years later, the anti-hyperglycemic activity of aerial also investigated using DPPH and were found to possess parts (leaves and stems) of O. speciosa Nutt was also investi- significant radical scavenging activity [9]. A research carried gated by conducting an experiment on rats. It was concluded that out in 2010 showed that O. biennis is one of the most 80% aqueous methanolic extract exhibited momentous anti- common botanicals used in anti-aging creams due to its anti- hyperglycemic activities in dose dependant manner [21]. oxidant properties [10]. In the same year, the aerial parts of In year 2015, a study was conducted on some edible plants Oenothera speciosa (O. speciosa) Nutt were also explored for including O. paradoxa to investigate their antidiabetic activity. the determination of their antioxidant potential. It was found Their polyphenolic extracts were screened in terms of a- that 80% methanolic extract of O. speciosa showed potent amylase, a-glucosidase and protein tyrosine phosphatase 1B in vitro antioxidant activity using DPPH radical assay [11]. inhibitors. The study concludes that among these plants Oenothera paradoxa (O. paradoxa) is also an active member O. paradoxa may be considered as a promising natural source of genus Oenothera. An experiment was conducted on three for active compounds with antidiabetic properties [22]. different extracts of defatted seeds of O. paradoxa Hudziok, 60% ethanolic extract, aqueous extract, and 30% isopropanolic 2.3. Anti-inflammatory activity extract, differing by their total content of phenolic compounds and contents of individual polyphenols. It was found that the Complementary and alternative medicine, particularly herbal 60% ethanolic extract exhibited most promising antioxidant therapy, is generally used by the patients with inflammatory activity due to its greater total content of phenolic compounds diseases. In 2004, the anti-inflammatory activity of methanolic and higher content of pentagalloyloglucose [12]. extract of Oenothera rosea (O. rosea) was determined for the In year 2013, another member of this genus O. paradoxa first time by carrageenan-induced rat paw edema model. It was Hudziok was found to protect the skin from any UVA induced found that 70% of the plant extract of O. rosea produced a high damage [13]. reduction of edema [23]. Later on, the aerial parts (leaves and The radical-scavenging capacity of oil seed cake extracts of stems) of O. speciosa Nutt were also reported to possess O. biennis was evaluated against 2,2-azinobis (3-ethylben O. speciosa Nutt significant anti-inflammatory activities in a zothiazoline-6-sulphonic acid). Research showed that the alco- dose dependant manner [21]. holic extract of oil seed cakes exhibited strong antioxidant ca- In the very same year, an ethnopharmacological field survey pacity [14,15]. The antioxidant capacity of the roots of O. biennis was also conducted in the municipality of Tlanchinol Hidalgo, was also evaluated against DPPH and was found to possess high Mexico in which it was further confirmed that O. rosea has the antioxidant potential [16]. potential to cure inflammations [24]. In addition to the In a study conducted in year 2015, in vivo and ex vivo methanolic extract, aqueous extract of O. rosea also possesses properties of emulsions of O. biennis seedcake extracts were strong anti-inflammatory activity. This activity can be attrib- evaluated using the tewameter, pH meter, corneometer, methyl uted to several secondary metabolites present in O. rosea with nicotinate model of micro-inflammation in human skin, and tape no toxic effects at the administrated doses [25]. stripping of the stratum corneum. The studies exhibited that the O. laciniata was also claimed to possess important pharma- emulsions with O. biennis seedcake extracts have strong anti- cological activities. The dichloromethane fraction of O. laciniata inflammatory and antioxidant activity [17]. extract was used to evaluate the anti-inflammatory activity. The By using melan-A cells, in vitro antioxidant and anti- extract effectively inhibited lipopolysaccharide-induced NO, melanogenic effects of methanolic extract of Oenothera laciniata PGE(2), and proinflammatory cytokine production in (O. laciniata)
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Oenothera, a Unique Model to Study the Role of Plastids in Speciation
    Oenothera, a unique model to study the role of plastids in speciation Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Stephan Greiner am 15. Mai 2008 Erstgutachter: Professor Reinhold G. Herrmann Zweitgutachter: Professor Wolfgang Stephan Tag der mündlichen Prüfung: 19. Juni 2008 Table of Contents Table of Contents 1. Introduction ...................................................................................................................... 1 1.1. Eukaryotic genomes are integrated and compartmentalized ...................................... 1 1.2. Dobzhansky-Muller incompatibilities and asymmetric hybridization barriers .......... 2 1.2.1. The model of Dobzhansky-Muller incompatibility .............................................. 4 1.2.2. “Speciation genes” have not yet been identified for PGI ..................................... 5 1.3. Hybridization barriers formed by plastids .................................................................. 6 1.4. The occurrence of PGI in natural populations is underestimated ............................ 10 1.5. Physiology and cell biology of PGI ......................................................................... 14 1.5.1. Albinotic phenotypes of PGI .............................................................................. 15 1.5.2. PGI phenotypes with affected cell growth and function .................................... 15 1.6. Oenothera as a molecular model to investigate PGI ................................................ 17
    [Show full text]
  • Mapping of Genomes and Plastomes of Subsection Oenothera with Molecular Marker Technologies
    Mapping of genomes and plastomes of subsection Oenothera with molecular marker technologies Dissertation zur Erlangung des Doktorgrades der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Uwe Rauwolf aus Stuttgart, Deutschland München Juni 2008 1. Gutachter: Prof. Dr. Reinhold G. Herrmann 2. Gutachter: Prof. Dr. Günther Heubl Tag der mündlichen Prüfung: 11.08.2008 “Nothing in Biology makes sense, except in the light of evolution.” Theodosius Dobzhansky (1973) This dissertation is dedicated to my father, † 21.01.1991 Franz Willi Rauwolf ABBREVIATIONS ABI Applied Biosystems AFLP amplified fragment length polymorphism am ammophila APS ammonium persulphate ATP adenosine 5´-triphosphate atro atrovirens biM biennis München BLAST basic local alignment search tool bp base pair(s) BSA Bovine Serum Albumin CAPS cleavable amplified polymorphic sequence CIAP calf intestinal alkaline phosphatase CMS cytoplasmatic male sterility Col Colmar (chicaginensis Colmar) DAPI 4’,6-Diamidino 2-phenyindole DM Dobzhansky-Muller DMI Dobzhansky-Muller incompatibility DNA deoxyribonucleic acid DSB Double Strand Break DTT Dithiothreitol dV de Vries EDTA ethylenediamine-tetraacetic acid e.g. exempli gratia EST expressed sequence tag(s) et al. et alia EtOH ethanol F1 filial generation 1 F2 filial generation 2 G Grado (suaveolens Grado) g gravitation force; gram h haplo(type) h hour(s) -IV- Hz Hertz i.e. id est joh johansen kb (= kbp) kilo base pairs kV kilo volt lam lamarckiana LB medium Luria Bertani medium LOD logarithm of odds M molar mRNA messenger RNA ms millisecond µE microeinstein μg microgram μl microlitre N/A not applicable NaAc sodium acetate ng nanogram NPQ non-photochemical quenching Oe Oenothera P700 photosystem I primary electron donor chlorophyll a p.a.
    [Show full text]
  • Chemical and Biological Significance of Oenothein B and Related
    molecules Review Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure Takashi Yoshida 1,2, Morio Yoshimura 1 and Yoshiaki Amakura 1,* 1 College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan; [email protected] (T.Y.); [email protected] (M.Y.) 2 Okayama University, Okayama 701-1152, Japan * Correspondence: [email protected]; Tel.: +81-89-925-7111 Received: 5 February 2018; Accepted: 26 February 2018; Published: 2 March 2018 Abstract: In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric–heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1) the structural characteristics of oenothein B and related dimers; (2) the oxidative metabolites of oenothein B up to heptameric oligomers; (3) the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4) the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory.
    [Show full text]
  • Pteridophyta and Spermatophyta)
    4.2 LISTA DAS PLANTAS VASCULARES (Pteridophyta e Spermatophyta) LIST OF VASCULAR PLANTS (Pteridophyta and Spermatophyta) Autores (Authors) Luís Silva1, Nuno Pinto,1 Bob Press2, Fred Rumsey2, Mark Carine2, Sally Henderson2 & Erik Sjögren3 1 Departamento de Biologia, Universidade dos Açores, Rua da Mãe de Deus, PT 9501-801 Ponta Delgada, Açores, Portugal. e-mail: [email protected]; [email protected]. 2 Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK. e-mail: [email protected]; [email protected]; [email protected]; [email protected]. 3 University of Uppsala. Evolutionary Biology Centre. Department of Plant Ecology. Villavagen, 14. SE-752 36 Sweden. e-mail: [email protected]. 131 Notas explicativas Explanatory notes A lista das plantas vasculares dos Açores é baseada The list of the Azorean vascular plants is based em toda a literatura conhecida, incluindo as refe- on all known published literature, including older rências mais antigas (i.e. Seubert & Hochstetter references (i.e. Seubert & Hochstetter 1843; 1843; Trelease 1897; Palhinha 1966), a Flora Trelease 1897; Palhinha 1966), the Flora Europaea Europaea (Tutin et al. 1964-1980), as publicações (Tutin et al. 1964-1980), the publications by de Franco (1971, 1984), Franco & Afonso (1994, Franco (1971, 1984) and Franco & Afonso (1994, 1998) e ainda em publicações mais recentes, em 1998), and also more recent publications, namely particular, as de Schäfer (2002, 2003). those from Schäfer (2002, 2003). No que diz respeito aos dados não publicados, Unpublished data were also used, namely from foram usadas várias fontes, nomeadamente os re- records at the Natural History Museum, and from gistos do Museu de História Natural e ainda obser- field observations (Silva 2001).
    [Show full text]
  • Catalogue of the Naturalized Flora of Taiwan
    Taiwania, 49(1):16-31, 2004 Catalogue of the Naturalized Flora of Taiwan Shan-Huah Wu(1,3), Chang-Fu Hsieh(2), and Marcel Rejmánek(1) (Manuscript received 14 October, 2003; accepted 18 November, 2003) ABSTRACT: This study was conducted in years 2000 to 2003 to compile a comprehensive list of naturalized species with background information, including origins, life forms, habits, usages, year of the first collection, and status. Major herbaria (TAI, HAST, TAIF, and NCKU) were visited to examine specimen records. Relevant publications and reliable websites and many other resources were also examined extensively for background information. Total 341 species in 222 genera and 60 families were documented as naturalized in Taiwan, representing 7.9% of the local flora. Besides, 25 species were considered as possibly naturalized due to insufficient evidences. A large portion (90.6%) of species reported here, were reported as “weeds” in other countries. Almost a half of the naturalized species (48.3%) were introduced from Americas. KEYWORDS: Naturalized plant, Plant invasions, List,Taiwan. INTRODUCTION Despite the recent recognition of the impacts caused by invasive plants worldwide (Mooney and Hobbs, 2000; Vitousek et al., 1997), there are still many regions in the world where basic information on naturalized plant taxa and plant invasions is only anecdotal or completely lacking, e.g. Asia and neighboring regions (Corlett, 1988; Meyer, 2000; Turner, 1995; Enmoto, 1999; Pandey, 2000). In Taiwan, although occasional attention has been paid to the naturalized plants (Chen and Wu 1997; Peng et al. 1998a, 1998b; Peng and Yang, 1998; Chen et al., 1999; Kuoh and Chen, 2000; Chen and Wu, 2001; Yang, 2001; Yang and Peng, 2001), comprehensive studies on invasive species and plant invasions are still missing.
    [Show full text]
  • New Zealand Naturalised Vascular Plant Checklist
    NEW ZEALAND NATURALISED VASCULAR PLANT CHECKLIST Clayson Howell; ISBN 0-473-11306-6 John W.D. Sawyer New Zealand Plant Conservation Network November 2006 9 780473 113063 New Zealand naturalised vascular plant checklist November 2006 Clayson J. Howell, John W.D. Sawyer New Zealand Plant Conservation Network P.O. Box 16-102 Wellington New Zealand 6242 E-mail: [email protected] www.nzpcn.org.nz Cover photos (by Jeremy Rolfe): Selaginella kraussiana (Lycophytes), Cestrum elegans (Dicot. trees & shrubs), Cyperus eragrostis (Monocot. herbs: Sedges), Cerastium glomeratum (Dicot. herbs other than composites), Dipogon lignosus (Dicot lianes), Berberis darwinii (Dicot. trees & shrubs), Lonicera japonica (Dicot. lianes), Bomarea caldasii (Monocot. lianes), Pinus radiata (Gymnosperm trees & shrubs), Lilium formosanum (Monocot. herbs other than grasses, orchids, rushes, sedges), Poa annua (Monocot. herbs: Grasses), Clematis vitalba (Dicot. lianes), Adiantum raddianum (Ferns) Main photo: Senecio diaschides (Dicot herbs: Composites). Title page: Asparagus scandens seedling in kauri forest. © Clayson J. Howell, John W.D. Sawyer 2006 ISBN-10: 0-473-12300-2 ISBN-13: 978-0-473-12300-0 Published by: New Zealand Plant Conservation Network P.O. Box 16-102 Wellington 6242 New Zealand E-mail: [email protected] www.nzpcn.org.nz CONTENTS Introduction 1 New Zealand adventive flora – Summary statistics 2 Naturalised plant records in the Flora of New Zealand 2 Naturalised plant checklists in the New Zealand Journal of Botany 2 Species outside Flora or checklists 2 Acknowledgements 4 Bibliography 4 New Zealand naturalised vascular plant checklist – alphabetical 6 iii Cortaderia selloana, one of two species of pampas that are fully naturalised in New Zealand.
    [Show full text]
  • ONAGRACEAE 1. LUDWIGIA Linnaeus, Sp
    ONAGRACEAE 柳叶菜科 liu ye cai ke Chen Jiarui (陈家瑞 Chen Chia-jui)1; Peter C. Hoch2, Peter H. Raven2, David E. Boufford3, Warren L. Wagner4 Annual or perennial herbs, or shrubs, rarely trees to 30 m tall, often with epidermal oil cells, usually with internal phloem. Leaves simple, spirally arranged, opposite, or occasionally whorled, entire or toothed to pinnatifid; stipules present and usually caducous, or absent. Flowers perfect and hermaphroditic or occasionally unisexual, actinomorphic or zygomorphic, (2–)4(–7)- merous, axillary, in leafy spikes or racemes or solitary, or occasionally in panicles, all but Ludwigia with distinct floral tube, nectariferous within. Sepals green or colored, valvate. Petals as many as sepals or rarely absent, variously colored, imbricate or convolute and occasionally clawed. Stamens as many as sepals in one series or 2 × as many as sepals in 2 series [in Lopezia Cavanil- les reduced to 2 or 1 plus 1 sterile staminode]; anthers versatile or basifixed, dithecal, sometimes cross-partitioned, opening by longitudinal slits; pollen grains almost always united by viscin threads, shed as monads, tetrads, or polyads. Ovary inferior, with as many carpels and locules as sepals, septa sometimes thin or absent at maturity; placentation axile or parietal, ovules 1 to many per locule, in 1 or several rows or clustered, anatropous, bitegmic; style 1; stigma with as many lobes as sepals or clavate to globose. Fruit a loculicidal capsule or indehiscent nut or berry. Seeds small, smooth or variously sculptured, sometimes with a coma [or wing], with straight oily embryo, endosperm lacking. Seventeen genera and ca. 650 species: widespread in temperate and subtropical areas, but best represented in W North America; six genera (two introduced), 64 species (11 endemic, 11 introduced), and five natural hybrids (two endemic) in China.
    [Show full text]
  • A New National Unit for Invasive Species Detection, Assessment and Eradication Planning
    Review Article Detection, assessment and eradication of invasive species Page 1 of 13 A new national unit for invasive species detection, AUTHORS: assessment and eradication planning John R. U. Wilson1,2 Philip Ivey1 Phetole Manyama1 Even with no new introductions, the number of biological invasions in South Africa will increase as Ingrid Nänni1 introduced species naturalise and become invasive. As of 2010 South Africa had ~8750 introduced plant taxa, 660 recorded as naturalised, 198 included in invasive species legislation, but only 64 subject to regular AFFILIATIONS: control (i.e. only widespread invaders are managed post-border). There is only one documented example 1Invasive Species Programme, of a successful eradication programme in continental South Africa – against the Mediterranean snail (Otala South African National punctata) in Cape Town. Here we describe the establishment in 2008 of a unit funded by the Working for Biodiversity Institute, Kirstenbosch Research Centre, Water Programme as part of the South African National Biodiversity Institute's Invasive Species Programme Cape Town, South Africa (SANBI ISP) designed to (1) detect and document new invasions, (2) provide reliable and transparent 2Centre for Invasion Biology, post-border risk assessments and (3) provide the cross-institutional coordination needed to successfully Department of Botany and implement national eradication plans. As of the end of 2012, the ISP had an annual budget of R36 million, Zoology, Stellenbosch University, employed 33 staff working across all nine provinces, supported 10 postgraduate students, hosted 35 interns Stellenbosch, South Africa (including those as part of a drive to collect DNA barcodes for all invasive taxa) and created over 50 000 CORRESPONDENCE TO: days of work as part of government poverty alleviation programmes.
    [Show full text]
  • Loss of Sexual Recombination and Segregation Is Associated with Increased Diversification in Evening Primroses
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2011.01378.x LOSS OF SEXUAL RECOMBINATION AND SEGREGATION IS ASSOCIATED WITH INCREASED DIVERSIFICATION IN EVENING PRIMROSES Marc T. J. Johnson,1,2,3 Richard G. FitzJohn,4 Stacey D. Smith,5,6 Mark D. Rausher,5 and Sarah P. Otto4 1Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695 2Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada 3E-mail: [email protected] 4Department of Zoology, University of British Columbia, British Colombia, V6T 1Z4, Canada 5Department of Biology, Duke University, Durham, North Carolina 27708 6School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 Received March 4, 2011 Accepted March 27, 2011 Data Archived: Dryad doi:10.5061/dryad.dm690 The loss of sexual recombination and segregation in asexual organisms has been portrayed as an irreversible process that commits asexually reproducing lineages to reduced diversification. We test this hypothesis by estimating rates of speciation, extinction, and transition between sexuality and functional asexuality in the evening primroses. Specifically, we estimate these rates using the recently developed BiSSE (Binary State Speciation and Extinction) phylogenetic comparative method, which employs maximum likelihood and Bayesian techniques. We infer that net diversification rates (speciation minus extinction) in functionally asexual evening primrose lineages are roughly eight times faster than diversification rates in sexual lineages, largely due to higher speciation rates in asexual lineages. We further reject the hypothesis that a loss of recombination and segregation is irreversible because the transition rate from functional asexuality to sexuality is significantly greater than zero and in fact exceeded the reverse rate.
    [Show full text]
  • Preliminary Flora of the Sierra Juriquipa, Sonora, Mexico by Elizabeth Makings1, Thomas R
    Figure 1. View from the summit of the Sierra Juriquipa of steep slopes with oak woodland and a few pines. Photo by Ana L. Reina-G. Preliminary Flora of the Sierra Juriquipa, Sonora, Mexico by Elizabeth Makings1, Thomas R. Van Devender2, Ana Lilia Reina-Guerrero2, and Stephen F. Hale3 Abstract with oak woodland or pine-oak forest. The lowland “seas” are Sonoran and Chihuahuan desertscrub, desert grassland, The Sierra Juriquipa mountain range is a small but important foothills thornscrub, or tropical deciduous forest. part of the Madrean Sky Islands in northeastern Sonora, and an area previously unexplored botanically until the Madrean Study Area and Methods Discovery Expedition (MDE) in the summer of 2017. In this This preliminary flora is based on observations from a preliminary flora, we document 282 taxa in 72 families, and scouting trip on July 14–16, and intense collecting during the 198 genera. Eleven species (3.9%) are non-native. Madrean Discovery Expedition (MDE) Sierra Juriquipa on Introduction August 12–16, 2017 (Figure 1). This Sky Island is a little over an hour’s drive from Agua Prieta to the mining town of The Madrean Archipelago is located between the Sierra Madre Nacozari de García, then about 19 kilometers (12 miles) Occidental (SMO) and the Mogollon Rim in central Arizona. southeast on winding dirt roads through the small mining In this area there are 55 Sky Island isolated mountain ranges village of Santo Domingo. The range is directly south of one or complexes of several ranges connected by oak woodland of the largest copper mines in Mexico — La Mina de la corridors (Van Devender et al.
    [Show full text]