Genus Oenothera)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
National List of Vascular Plant Species That Occur in Wetlands 1996
National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt. -
Oenothera, a Unique Model to Study the Role of Plastids in Speciation
Oenothera, a unique model to study the role of plastids in speciation Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Stephan Greiner am 15. Mai 2008 Erstgutachter: Professor Reinhold G. Herrmann Zweitgutachter: Professor Wolfgang Stephan Tag der mündlichen Prüfung: 19. Juni 2008 Table of Contents Table of Contents 1. Introduction ...................................................................................................................... 1 1.1. Eukaryotic genomes are integrated and compartmentalized ...................................... 1 1.2. Dobzhansky-Muller incompatibilities and asymmetric hybridization barriers .......... 2 1.2.1. The model of Dobzhansky-Muller incompatibility .............................................. 4 1.2.2. “Speciation genes” have not yet been identified for PGI ..................................... 5 1.3. Hybridization barriers formed by plastids .................................................................. 6 1.4. The occurrence of PGI in natural populations is underestimated ............................ 10 1.5. Physiology and cell biology of PGI ......................................................................... 14 1.5.1. Albinotic phenotypes of PGI .............................................................................. 15 1.5.2. PGI phenotypes with affected cell growth and function .................................... 15 1.6. Oenothera as a molecular model to investigate PGI ................................................ 17 -
Mapping of Genomes and Plastomes of Subsection Oenothera with Molecular Marker Technologies
Mapping of genomes and plastomes of subsection Oenothera with molecular marker technologies Dissertation zur Erlangung des Doktorgrades der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Uwe Rauwolf aus Stuttgart, Deutschland München Juni 2008 1. Gutachter: Prof. Dr. Reinhold G. Herrmann 2. Gutachter: Prof. Dr. Günther Heubl Tag der mündlichen Prüfung: 11.08.2008 “Nothing in Biology makes sense, except in the light of evolution.” Theodosius Dobzhansky (1973) This dissertation is dedicated to my father, † 21.01.1991 Franz Willi Rauwolf ABBREVIATIONS ABI Applied Biosystems AFLP amplified fragment length polymorphism am ammophila APS ammonium persulphate ATP adenosine 5´-triphosphate atro atrovirens biM biennis München BLAST basic local alignment search tool bp base pair(s) BSA Bovine Serum Albumin CAPS cleavable amplified polymorphic sequence CIAP calf intestinal alkaline phosphatase CMS cytoplasmatic male sterility Col Colmar (chicaginensis Colmar) DAPI 4’,6-Diamidino 2-phenyindole DM Dobzhansky-Muller DMI Dobzhansky-Muller incompatibility DNA deoxyribonucleic acid DSB Double Strand Break DTT Dithiothreitol dV de Vries EDTA ethylenediamine-tetraacetic acid e.g. exempli gratia EST expressed sequence tag(s) et al. et alia EtOH ethanol F1 filial generation 1 F2 filial generation 2 G Grado (suaveolens Grado) g gravitation force; gram h haplo(type) h hour(s) -IV- Hz Hertz i.e. id est joh johansen kb (= kbp) kilo base pairs kV kilo volt lam lamarckiana LB medium Luria Bertani medium LOD logarithm of odds M molar mRNA messenger RNA ms millisecond µE microeinstein μg microgram μl microlitre N/A not applicable NaAc sodium acetate ng nanogram NPQ non-photochemical quenching Oe Oenothera P700 photosystem I primary electron donor chlorophyll a p.a. -
Chemical and Biological Significance of Oenothein B and Related
molecules Review Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure Takashi Yoshida 1,2, Morio Yoshimura 1 and Yoshiaki Amakura 1,* 1 College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan; [email protected] (T.Y.); [email protected] (M.Y.) 2 Okayama University, Okayama 701-1152, Japan * Correspondence: [email protected]; Tel.: +81-89-925-7111 Received: 5 February 2018; Accepted: 26 February 2018; Published: 2 March 2018 Abstract: In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric–heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1) the structural characteristics of oenothein B and related dimers; (2) the oxidative metabolites of oenothein B up to heptameric oligomers; (3) the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4) the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory. -
Pteridophyta and Spermatophyta)
4.2 LISTA DAS PLANTAS VASCULARES (Pteridophyta e Spermatophyta) LIST OF VASCULAR PLANTS (Pteridophyta and Spermatophyta) Autores (Authors) Luís Silva1, Nuno Pinto,1 Bob Press2, Fred Rumsey2, Mark Carine2, Sally Henderson2 & Erik Sjögren3 1 Departamento de Biologia, Universidade dos Açores, Rua da Mãe de Deus, PT 9501-801 Ponta Delgada, Açores, Portugal. e-mail: [email protected]; [email protected]. 2 Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK. e-mail: [email protected]; [email protected]; [email protected]; [email protected]. 3 University of Uppsala. Evolutionary Biology Centre. Department of Plant Ecology. Villavagen, 14. SE-752 36 Sweden. e-mail: [email protected]. 131 Notas explicativas Explanatory notes A lista das plantas vasculares dos Açores é baseada The list of the Azorean vascular plants is based em toda a literatura conhecida, incluindo as refe- on all known published literature, including older rências mais antigas (i.e. Seubert & Hochstetter references (i.e. Seubert & Hochstetter 1843; 1843; Trelease 1897; Palhinha 1966), a Flora Trelease 1897; Palhinha 1966), the Flora Europaea Europaea (Tutin et al. 1964-1980), as publicações (Tutin et al. 1964-1980), the publications by de Franco (1971, 1984), Franco & Afonso (1994, Franco (1971, 1984) and Franco & Afonso (1994, 1998) e ainda em publicações mais recentes, em 1998), and also more recent publications, namely particular, as de Schäfer (2002, 2003). those from Schäfer (2002, 2003). No que diz respeito aos dados não publicados, Unpublished data were also used, namely from foram usadas várias fontes, nomeadamente os re- records at the Natural History Museum, and from gistos do Museu de História Natural e ainda obser- field observations (Silva 2001). -
Catalogue of the Naturalized Flora of Taiwan
Taiwania, 49(1):16-31, 2004 Catalogue of the Naturalized Flora of Taiwan Shan-Huah Wu(1,3), Chang-Fu Hsieh(2), and Marcel Rejmánek(1) (Manuscript received 14 October, 2003; accepted 18 November, 2003) ABSTRACT: This study was conducted in years 2000 to 2003 to compile a comprehensive list of naturalized species with background information, including origins, life forms, habits, usages, year of the first collection, and status. Major herbaria (TAI, HAST, TAIF, and NCKU) were visited to examine specimen records. Relevant publications and reliable websites and many other resources were also examined extensively for background information. Total 341 species in 222 genera and 60 families were documented as naturalized in Taiwan, representing 7.9% of the local flora. Besides, 25 species were considered as possibly naturalized due to insufficient evidences. A large portion (90.6%) of species reported here, were reported as “weeds” in other countries. Almost a half of the naturalized species (48.3%) were introduced from Americas. KEYWORDS: Naturalized plant, Plant invasions, List,Taiwan. INTRODUCTION Despite the recent recognition of the impacts caused by invasive plants worldwide (Mooney and Hobbs, 2000; Vitousek et al., 1997), there are still many regions in the world where basic information on naturalized plant taxa and plant invasions is only anecdotal or completely lacking, e.g. Asia and neighboring regions (Corlett, 1988; Meyer, 2000; Turner, 1995; Enmoto, 1999; Pandey, 2000). In Taiwan, although occasional attention has been paid to the naturalized plants (Chen and Wu 1997; Peng et al. 1998a, 1998b; Peng and Yang, 1998; Chen et al., 1999; Kuoh and Chen, 2000; Chen and Wu, 2001; Yang, 2001; Yang and Peng, 2001), comprehensive studies on invasive species and plant invasions are still missing. -
New Zealand Naturalised Vascular Plant Checklist
NEW ZEALAND NATURALISED VASCULAR PLANT CHECKLIST Clayson Howell; ISBN 0-473-11306-6 John W.D. Sawyer New Zealand Plant Conservation Network November 2006 9 780473 113063 New Zealand naturalised vascular plant checklist November 2006 Clayson J. Howell, John W.D. Sawyer New Zealand Plant Conservation Network P.O. Box 16-102 Wellington New Zealand 6242 E-mail: [email protected] www.nzpcn.org.nz Cover photos (by Jeremy Rolfe): Selaginella kraussiana (Lycophytes), Cestrum elegans (Dicot. trees & shrubs), Cyperus eragrostis (Monocot. herbs: Sedges), Cerastium glomeratum (Dicot. herbs other than composites), Dipogon lignosus (Dicot lianes), Berberis darwinii (Dicot. trees & shrubs), Lonicera japonica (Dicot. lianes), Bomarea caldasii (Monocot. lianes), Pinus radiata (Gymnosperm trees & shrubs), Lilium formosanum (Monocot. herbs other than grasses, orchids, rushes, sedges), Poa annua (Monocot. herbs: Grasses), Clematis vitalba (Dicot. lianes), Adiantum raddianum (Ferns) Main photo: Senecio diaschides (Dicot herbs: Composites). Title page: Asparagus scandens seedling in kauri forest. © Clayson J. Howell, John W.D. Sawyer 2006 ISBN-10: 0-473-12300-2 ISBN-13: 978-0-473-12300-0 Published by: New Zealand Plant Conservation Network P.O. Box 16-102 Wellington 6242 New Zealand E-mail: [email protected] www.nzpcn.org.nz CONTENTS Introduction 1 New Zealand adventive flora – Summary statistics 2 Naturalised plant records in the Flora of New Zealand 2 Naturalised plant checklists in the New Zealand Journal of Botany 2 Species outside Flora or checklists 2 Acknowledgements 4 Bibliography 4 New Zealand naturalised vascular plant checklist – alphabetical 6 iii Cortaderia selloana, one of two species of pampas that are fully naturalised in New Zealand. -
ONAGRACEAE 1. LUDWIGIA Linnaeus, Sp
ONAGRACEAE 柳叶菜科 liu ye cai ke Chen Jiarui (陈家瑞 Chen Chia-jui)1; Peter C. Hoch2, Peter H. Raven2, David E. Boufford3, Warren L. Wagner4 Annual or perennial herbs, or shrubs, rarely trees to 30 m tall, often with epidermal oil cells, usually with internal phloem. Leaves simple, spirally arranged, opposite, or occasionally whorled, entire or toothed to pinnatifid; stipules present and usually caducous, or absent. Flowers perfect and hermaphroditic or occasionally unisexual, actinomorphic or zygomorphic, (2–)4(–7)- merous, axillary, in leafy spikes or racemes or solitary, or occasionally in panicles, all but Ludwigia with distinct floral tube, nectariferous within. Sepals green or colored, valvate. Petals as many as sepals or rarely absent, variously colored, imbricate or convolute and occasionally clawed. Stamens as many as sepals in one series or 2 × as many as sepals in 2 series [in Lopezia Cavanil- les reduced to 2 or 1 plus 1 sterile staminode]; anthers versatile or basifixed, dithecal, sometimes cross-partitioned, opening by longitudinal slits; pollen grains almost always united by viscin threads, shed as monads, tetrads, or polyads. Ovary inferior, with as many carpels and locules as sepals, septa sometimes thin or absent at maturity; placentation axile or parietal, ovules 1 to many per locule, in 1 or several rows or clustered, anatropous, bitegmic; style 1; stigma with as many lobes as sepals or clavate to globose. Fruit a loculicidal capsule or indehiscent nut or berry. Seeds small, smooth or variously sculptured, sometimes with a coma [or wing], with straight oily embryo, endosperm lacking. Seventeen genera and ca. 650 species: widespread in temperate and subtropical areas, but best represented in W North America; six genera (two introduced), 64 species (11 endemic, 11 introduced), and five natural hybrids (two endemic) in China. -
A New National Unit for Invasive Species Detection, Assessment and Eradication Planning
Review Article Detection, assessment and eradication of invasive species Page 1 of 13 A new national unit for invasive species detection, AUTHORS: assessment and eradication planning John R. U. Wilson1,2 Philip Ivey1 Phetole Manyama1 Even with no new introductions, the number of biological invasions in South Africa will increase as Ingrid Nänni1 introduced species naturalise and become invasive. As of 2010 South Africa had ~8750 introduced plant taxa, 660 recorded as naturalised, 198 included in invasive species legislation, but only 64 subject to regular AFFILIATIONS: control (i.e. only widespread invaders are managed post-border). There is only one documented example 1Invasive Species Programme, of a successful eradication programme in continental South Africa – against the Mediterranean snail (Otala South African National punctata) in Cape Town. Here we describe the establishment in 2008 of a unit funded by the Working for Biodiversity Institute, Kirstenbosch Research Centre, Water Programme as part of the South African National Biodiversity Institute's Invasive Species Programme Cape Town, South Africa (SANBI ISP) designed to (1) detect and document new invasions, (2) provide reliable and transparent 2Centre for Invasion Biology, post-border risk assessments and (3) provide the cross-institutional coordination needed to successfully Department of Botany and implement national eradication plans. As of the end of 2012, the ISP had an annual budget of R36 million, Zoology, Stellenbosch University, employed 33 staff working across all nine provinces, supported 10 postgraduate students, hosted 35 interns Stellenbosch, South Africa (including those as part of a drive to collect DNA barcodes for all invasive taxa) and created over 50 000 CORRESPONDENCE TO: days of work as part of government poverty alleviation programmes. -
Loss of Sexual Recombination and Segregation Is Associated with Increased Diversification in Evening Primroses
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2011.01378.x LOSS OF SEXUAL RECOMBINATION AND SEGREGATION IS ASSOCIATED WITH INCREASED DIVERSIFICATION IN EVENING PRIMROSES Marc T. J. Johnson,1,2,3 Richard G. FitzJohn,4 Stacey D. Smith,5,6 Mark D. Rausher,5 and Sarah P. Otto4 1Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695 2Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada 3E-mail: [email protected] 4Department of Zoology, University of British Columbia, British Colombia, V6T 1Z4, Canada 5Department of Biology, Duke University, Durham, North Carolina 27708 6School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 Received March 4, 2011 Accepted March 27, 2011 Data Archived: Dryad doi:10.5061/dryad.dm690 The loss of sexual recombination and segregation in asexual organisms has been portrayed as an irreversible process that commits asexually reproducing lineages to reduced diversification. We test this hypothesis by estimating rates of speciation, extinction, and transition between sexuality and functional asexuality in the evening primroses. Specifically, we estimate these rates using the recently developed BiSSE (Binary State Speciation and Extinction) phylogenetic comparative method, which employs maximum likelihood and Bayesian techniques. We infer that net diversification rates (speciation minus extinction) in functionally asexual evening primrose lineages are roughly eight times faster than diversification rates in sexual lineages, largely due to higher speciation rates in asexual lineages. We further reject the hypothesis that a loss of recombination and segregation is irreversible because the transition rate from functional asexuality to sexuality is significantly greater than zero and in fact exceeded the reverse rate. -
Preliminary Flora of the Sierra Juriquipa, Sonora, Mexico by Elizabeth Makings1, Thomas R
Figure 1. View from the summit of the Sierra Juriquipa of steep slopes with oak woodland and a few pines. Photo by Ana L. Reina-G. Preliminary Flora of the Sierra Juriquipa, Sonora, Mexico by Elizabeth Makings1, Thomas R. Van Devender2, Ana Lilia Reina-Guerrero2, and Stephen F. Hale3 Abstract with oak woodland or pine-oak forest. The lowland “seas” are Sonoran and Chihuahuan desertscrub, desert grassland, The Sierra Juriquipa mountain range is a small but important foothills thornscrub, or tropical deciduous forest. part of the Madrean Sky Islands in northeastern Sonora, and an area previously unexplored botanically until the Madrean Study Area and Methods Discovery Expedition (MDE) in the summer of 2017. In this This preliminary flora is based on observations from a preliminary flora, we document 282 taxa in 72 families, and scouting trip on July 14–16, and intense collecting during the 198 genera. Eleven species (3.9%) are non-native. Madrean Discovery Expedition (MDE) Sierra Juriquipa on Introduction August 12–16, 2017 (Figure 1). This Sky Island is a little over an hour’s drive from Agua Prieta to the mining town of The Madrean Archipelago is located between the Sierra Madre Nacozari de García, then about 19 kilometers (12 miles) Occidental (SMO) and the Mogollon Rim in central Arizona. southeast on winding dirt roads through the small mining In this area there are 55 Sky Island isolated mountain ranges village of Santo Domingo. The range is directly south of one or complexes of several ranges connected by oak woodland of the largest copper mines in Mexico — La Mina de la corridors (Van Devender et al.