Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI)

Total Page:16

File Type:pdf, Size:1020Kb

Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI) Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI) EPA 454/B-18-007 September 2018 Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI) U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC CONTENTS I. REPORTING THE AQI II. CALCULATING THE AQI III. FREQUENTLY ASKED QUESTIONS IV. RESOURCES LIST OF TABLES Table 1. Names and colors for the six AQI categories Table 2. AQI color formulas Table 3. Pollutant-Specific Sensitive Groups Table 4. Cautionary Statements Table 5. Breakpoints for the AQI LIST OF FIGURES Figure 1. The AQI is reported in many formats Figure 2. Display of AQI forecast Figure 3. The NowCast Figure 4. Airnow.gov page showing the AQI at U.S. Embassies and Consulates Figure 5. The AQI on AirNow’s Fires: Current Conditions page Figure 6. The AirNow widget This guidance is designed to aid local agencies in reporting air quality using the Air Quality Index (AQI) as required in 40 CFR Part 58.50 and according to 40 CFR Appendix G to Part 58. I. REPORTING THE AQI Do I have to report the AQI? Metropolitan Statistical Areas (MSAs) with a population of more than 350,000 are required to report the AQI daily to the general public. The population of an MSA for purposes of index reporting is based on the latest available U.S. census population. How often do I report the AQI? MSAs must report the AQI daily, which is defined as at least five days each week. This definition allows for days when personnel are not available to provide the AQI report or for equipment failures. What goes in my AQI report? Required reporting: It takes a full 24 hours to obtain an AQI value (that’s 24 hourly values for PM or the max 1-hour or 8- hour value in a 24-hour period for other pollutants), so you are in effect required to report yesterday’s AQI, including: • the reporting area • the reporting period • the critical pollutant (the pollutant with the highest AQI value) • the AQI value • the category descriptor and color (if your report uses color) shown in Table 1 • the sensitive groups for all pollutants with an AQI over 100, as shown in Table 3 Voluntary reporting: To make AQI reporting more useful to the public, most agencies also choose to report some or all of the following: • Forecast and current AQI values • Health effects and cautionary statements • Causes for unusual AQI values • The AQI for sub-areas of the reporting area • Pollutant concentrations • The name and AQI for other pollutants, particularly those with an AQI greater than 100 • Statements that “blend” health effects and cautionary information for more than one pollutant, if there is more than one pollutant with an AQI greater than 100 1 Table 1. Names and colors for the six AQI categories For this AQI… use this descriptor… and this color 0 to 50 Good Green 51 to 100 Moderate Yellow 101 to 150 Unhealthy for Sensitive Groups Orange 151 to 200 Unhealthy Red 201 to 300 Very Unhealthy Purple 301 to 500 Hazardous Maroon Note: Values above 500 are considered “Beyond the AQI.” Follow recommendations for the Hazardous category. How are the AQI colors defined? The colors are defined by the formulas RGB (red, green, blue) and CMYK (cyan, magenta, yellow, black) as shown in Table 2. Table 2. AQI color formulas Color R G B C M Y K Green 0 228 0 40 0 100 0 Yellow 255 255 0 0 0 100 0 Orange 255 126 0 0 52 100 0 Red 255 0 0 0 100 100 0 Purple 143 63 151 51 89 0 0 Maroon 126 0 35 30 100 100 30 Notes: RGB is traditionally used for screen colors, while CMYK is traditionally used for printing. The color models are based on a 0 - 255 scale (e.g. 50% is 126). 2 Table 3. Pollutant-Specific Sensitive Groups When this pollutant Report these Sensitive Groups has an AQI above 100… Ozone People with lung disease, children, older adults, people who are active outdoors (including outdoor workers), people with certain genetic variants, and people with diets limited in certain nutrients are the groups most at risk PM2.5 People with heart or lung disease, older adults, children, and people of lower socioeconomic status are the groups most at risk PM10 People with heart or lung disease, older adults, children, and people of lower socioeconomic status are the groups most at risk CO People with heart disease is the group most at risk NO2 People with asthma, children, and older adults are the groups most at risk SO2 People with asthma, children, and older adults are the groups most at risk Notes: Statements may be combined so that each group is mentioned only once. What cautionary statements should I use in my AQI report? Table 4 lists cautionary statements for each pollutant. 3 Table 4. Pollutant-Specific Sub-indices and Cautionary Statements for Guidance on the Air Quality Index (AQI) AQI Ozone (ppm) Particulate Matter (μg/m3) Carbon Monoxide Sulfur Dioxide Nitrogen Dioxide Categories (ppm) (ppb) (ppb) [8-hour] [1-hour] PM [24-hour] [24-hour] (Index 2.5 PM10 [8-hour] [1-hour] [1-hour] Values) Good 0 - 0.054 0 – 12.0 0 - 54 0 – 4.4 0 - 35 0 - 53 (Up to 50) None None None None None None Moderate 0.055 - 0.070 12.1 – 35.4 55 – 154 4.5 – 9.4 36 - 75 54 - 100 (51 - 100) None None Unusually sensitive Unusually sensitive Unusually sensitive people should consider individuals should people should reducing prolonged or heavy exertion. consider limiting consider reducing prolonged exertion prolonged or heavy especially near busy outdoor exertion. roads. Unhealthy for 0.071 - 0.085 0.125 - 0.164 35.5 – 55.4 155 – 254 9.5 – 12.4 76 - 185 101 - 360 Sensitive Groups People with heart People with asthma People with asthma, (101 - 150) People with lung disease (such as asthma), People with heart or lung disease, older adults, disease, such as should consider limiting children and older children, older adults, people who are active children, and people of lower socioeconomic status angina, should limit outdoor exertion. adults should limit outdoors (including outdoor workers), people should reduce prolonged or heavy exertion. heavy exertion and prolonged exertion with certain genetic variants, and people with avoid sources of CO, especially near busy diets limited in certain nutrients should reduce such as heavy traffic. roads. prolonged or heavy outdoor exertion. 4 Unhealthy 0.086 - 0.105 0.165 - 0.204 55.5 – 150.4 255 – 354 12.5 – 15.4 186 – 304 361 - 649 (151 - 200) People with lung disease (such as asthma), People with heart or lung disease, older adults, People with heart Children, people with People with asthma, children, older adults, people who are active children, and people of lower socioeconomic status disease, such as asthma, or other lung children and older outdoors (including outdoor workers), people should avoid prolonged or heavy exertion; everyone angina, should limit diseases, should limit adults should avoid with certain genetic variants, and people with else should reduce prolonged or heavy exertion. moderate exertion and outdoor exertion. prolonged exertion near diets limited in certain nutrients should avoid avoid sources of CO, roadways; everyone prolonged or heavy outdoor exertion; such as heavy traffic. else should limit everyone else should reduce prolonged or prolonged exertion heavy outdoor exertion. especially near busy roads. Very Unhealthy 0.106 - 0.200 0.205 - 0.404 150.5 – 250.4 355 – 424 15.5 – 30.4 305 – 604 [24-hour] 650 - 1249 (201 - 300) People with heart Children, people with People with asthma, disease, such as asthma, or other lung children and older People with lung disease (such as asthma), People with heart or lung disease, older adults, angina, should avoid diseases should avoid adults should avoid all children, older adults, people who are active children, and people of lower socioeconomic status exertion and sources of outdoor exertion; outdoor exertion; outdoors (including outdoor workers), people should avoid all physical activity outdoors. Everyone CO, such as heavy everyone else should everyone else should with certain genetic variants, and people with else should avoid prolonged or heavy exertion. traffic. reduce outdoor exertion. avoid prolonged diets limited in certain nutrients should avoid exertion especially near all outdoor exertion; everyone else should busy roads. reduce outdoor exertion. Hazardous - 0.405 - 0.604 250.5 – 500.4 425 – 604 30.5 – 50.4 605 – 1004 [24-hour] 1250 - 2049 (301 - 500) People with heart Children, people with People with asthma, disease, such as asthma, or other lung children and older Everyone should avoid all outdoor exertion. Everyone should avoid all physical activity outdoors; angina, should avoid diseases, should remain adults should remain people with heart or lung disease, older adults, exertion and sources of indoors; everyone else indoors; everyone else children, and people of lower socioeconomic status CO, such as heavy should avoid outdoor should avoid all outdoor should remain indoors and keep activity levels low. traffic; everyone else exertion. exertion. should limit heavy exertion. 5 What health effects and cautionary statements should I use if the AQI goes above 500? If the AQI is higher than 500, it is called “Beyond the AQI.” Use the same information that is for the Hazardous category. Do I have to report the AQI if my values are low? If the AQI values for all of the pollutants remain below 50 for a year, then you may report the AQI at your discretion.
Recommended publications
  • Trans-Boundary Haze Pollution in Southeast Asia: Sustainability Through Plural Environmental Governance
    sustainability Article Trans-Boundary Haze Pollution in Southeast Asia: Sustainability through Plural Environmental Governance Md Saidul Islam 1,*, Yap Hui Pei 2 and Shrutika Mangharam 1 1 Division of Sociology, Nanyang Technological University, 14 Nanyang Drive, Singapore 637332; [email protected] 2 Division of Psychology, Nanyang Technological University, 14 Nanyang Drive, Singapore 637332; [email protected] * Correspondence: [email protected]; Tel.: +65-6592-1519 Academic Editor: Marc A. Rosen Received: 29 February 2016; Accepted: 13 May 2016; Published: 21 May 2016 Abstract: Recurrent haze in Southeast Asian countries including Singapore is largely attributable to rampant forest fires in Indonesia due to, for example, extensive slash-and-burn (S & B) culture. Drawing on the “treadmill of production” and environmental governance approach, we examine causes and consequences of this culture. We found that, despite some perceived benefits, its environmental consequences include deforestation, soil erosion and degradation, global warming, threats to biodiversity, and trans-boundary haze pollution, while the societal consequences comprise regional tension, health risks, economic and productivity losses, as well as food insecurity. We propose sustainability through a plural coexistence framework of governance for targeting S & B that incorporates strategies of incentives, education and community resource management. Keywords: slash-and-burn; environmental governance; haze; Indonesia; plural coexistence; global warming; Singapore 1. Introduction The world’s rapidly growing population has been a long-standing cause of concern amongst both economists and environmentalists alike. There is an increasing demand for agricultural and urban spaces to sustain the ever-multiplying demographics. However, due to limited availability of space, the trend of clearing forests to make way for cultivable land has been gaining popularity [1].
    [Show full text]
  • Sewage Sludge Program Description
    TEXAS POLLUTANT DISCHARGE ELIMINATION SYSTEM CHAPTER 5 SEWAGE SLUDGE MANAGEMENT PROGRAM DESCRIPTION A. INTRODUCTION Sewage sludge (including domestic septage) use and disposal is regulated in Texas in accordance with the requirements of Title 30 Texas Administrative Code (TAC) Chapter 312. The rules were promulgated under the Texas Water Code, Chapter 5.103 and the Texas Solid Waste Disposal Act (the Act), Texas Health and Safety Code, §§361.011 and 361.024. Title 30 TAC Chapter 312 contain requirements for the use and disposal of sewage sludge which are equivalent to 40 Code Federal Regulations (CFR) Part 503 standards. The 30 TAC Chapter 312 regulations contain requirements equivalent to 40 CFR Parts 122, 123, 501 and 503. Sewage sludge use and disposal requirements will be incorporated into TPDES municipal and industrial facilities as described in Chapter 3. Sludge only permits (facilities that do not discharge to waters of the U.S.) are required to obtain permits from the TNRCC. Sludge only permits include, but are not limited to, any person who changes the quality of a sewage sludge which is ultimately regulated under 30 TAC Chapter 312 and Part 503 (e.g., sewage sludge blenders, stabilization, heat treatment, and digestion), surface disposal site owners/operators, and sewage sludge incinerator owners/operators and domestic septage processing. B. SLUDGE AND TRANSPORTER REVIEW TEAM The Sludge and Transporter Review Team located in the Wastewater Permits Section of the Water Quality Division is responsible for the administrative and technical processing of sewage sludge/domestic septage beneficial use registrations and sewage sludge only permits for facilities treating domestic sewage (primarily facilities as defined in 40 CFR §122.44).
    [Show full text]
  • Quality Assurance Project Plan (Qapp)
    FCEAP Criteria Air Pollutants QAPP September 2017 Page 1 of 109 Revision 0 QUALITY ASSURANCE PROJECT PLAN (QAPP) FOR AMBIENT AIR QUALITY MONITORING OF CRITERIA AIR POLLUTANTS 9/5/17 SUBMITTED BY THE FORSYTH COUNTY OFFICE OF ENVIRONMENTAL ASSISTANCE AND PROTECTION (FCEAP) FCEAP Criteria Air Pollutants QAPP September 2017 Page 2 of 109 Revision 0 Quality Assurance Project Plan Acronym Glossary A&MD- Analysis and Monitoring Division A&MPM- Analysis and Monitoring Program Manager AQI – Air Quality Index AQS - Air Quality System (EPA's Air database) CFR – Code of Federal Regulations DAS - Data Acquisition System DQA - Data Quality Assessment DQI - Data Quality Indicator DQO - Data Quality Objective EPA - Environmental Protection Agency FCEAP-Forsyth County Office of Environmental Assistance and Protection FTS - Flow Transfer Standard FEM – Federal Equivalent Method FRM – Federal Reference Method LAN – Local Area Network MQO – Measurement Quality Objective NAAQS - National Ambient Air Quality Standards NCDAQ - North Carolina Division of Air Quality NIST - National Institute of Science and Technology NPAP - National Performance Audit Program PEP – Performance Evaluation Program PQAO – Primary Quality Assurance Organization QA – Quality Assurance QA/QC - Quality Assurance/Quality Control QAPP - Quality Assurance Project Plan QC – Quality Control SD – Standard Deviation SLAMS - State and Local Air Monitoring Station SOP - Standard Operating Procedure SPM - Special Purpose Monitor TEOM - Tapered Elemental Oscillating Microbalance TSA - Technical
    [Show full text]
  • Volatile Organic Compounds (Vocs)
    VOLATILE ORGANIC COMPOUNDS Volatile organic compounds (VOCs) What are VOCs? Sources of VOCs These volatile carbon-containing compounds quickly Man-made VOCs are typically petroleum-based and evaporate into the atmosphere once emitted. While are a major component of gasoline. In this situation, coming from certain solids or liquids, VOCs are VOCs are emitted through gasoline vaporization released as gases. and vehicle exhaust. Burning fuel, such as gasoline, wood, coal, or natural gas, also releases VOCs. VOCs Why are VOCs of concern? are used in solvents and can be found in paints, VOCs are a source of indoor and outdoor pollution. paint thinners, lacquer thinners, moth repellents, air fresheners, wood preservatives, degreasers, dry As an indoor pollution, VOCs may be referred to as cleaning fluids, cleaning solutions, adhesives, inks, volatile organic chemicals. Indoors, VOCs evaporate and some, but not all, pesticides. Major sources under normal indoor atmospheric conditions with of VOCs and NOx involve emissions from industrial respect to temperature and pressure. facilities and electric utilities, motor vehicle exhaust, As an outdoor pollutant, VOCs are of concern due gasoline vapors, and chemical solvents. Pesticides to their reaction with nitrogen oxide (NOx) in the containing solvents typically release high rates of presence of sunlight. The reaction forms ground-level VOCs. The active ingredient in certain pesticides may ozone (O3) – the main component of smog. If levels are contain VOCs, as well. Solid formulations release the high enough, this ground-level ozone can be harmful to lowest amount. human health and vegetation, including crops. In nature, VOCs can originate from fossil fuel deposits, such as oil sands, and can be emitted from volcanoes, vegetation and bacteria.
    [Show full text]
  • Acute Health Impacts of the Southeast Asian Transboundary Haze Problem—A Review
    International Journal of Environmental Research and Public Health Review Acute Health Impacts of the Southeast Asian Transboundary Haze Problem—A Review Kang Hao Cheong 1,* , Nicholas Jinghao Ngiam 2 , Geoffrey G. Morgan 3, Pin Pin Pek 4,5, Benjamin Yong-Qiang Tan 2, Joel Weijia Lai 1, Jin Ming Koh 1, Marcus Eng Hock Ong 4,5 and Andrew Fu Wah Ho 6,7,8 1 Science and Math Cluster, Singapore University of Technology and Design, Singapore 487372, Singapore 2 Division of Neurology, Department of Medicine, National University Health System, Singapore 119074, Singapore 3 School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia 4 Department of Emergency Medicine, Singapore General Hospital, Singapore 169608, Singapore 5 Health Services & Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore 6 SingHealth Duke-NUS Emergency Medicine Academic Clinical Programme, Singapore 169857, Singapore 7 National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore 8 Cardiovascular & Metabolic Disorders Programme, Duke-NUS Medical School, Singapore 169857, Singapore * Correspondence: [email protected] Received: 20 August 2019; Accepted: 29 August 2019; Published: 6 September 2019 Abstract: Air pollution has emerged as one of the world’s largest environmental health threats, with various studies demonstrating associations between exposure to air pollution and respiratory and cardiovascular diseases. Regional air quality in Southeast Asia has been seasonally affected by the transboundary haze problem, which has often been the result of forest fires from “slash-and-burn” farming methods. In light of growing public health concerns, recent studies have begun to examine the health effects of this seasonal haze problem in Southeast Asia.
    [Show full text]
  • Technical Guidance on Assessing Impacts to Air Quality in NEPA and Planning Documents January 2011 Natural Resource Report NPS/NRPC/ARD/NRR—2011/ 289
    National Park Service U.S. Department of the Interior Natural Resource Program Center Technical Guidance on Assessing Impacts to Air Quality in NEPA and Planning Documents January 2011 Natural Resource Report NPS/NRPC/ARD/NRR—2011/ 289 ON THE COVER Hiker photographing distant vistas in the Needles District at Canyonlands National Park, Utah. Credit: National Park Service. ON THIS PAGE Good (top) and poor (bottom) visibility at Yosemite National Park, California. Credit: National Park Service. Technical Guidance on Assessing Impacts to Air Quality in NEPA and Planning Documents January 2011 Natural Resource Report NPS/NRPC/ARD/NRR—2011/289 Natural Resource Program Center Air Resources Division PO Box 25287 Denver, Colorado 80225 January 2011 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The National Park Service (NPS), Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the NPS and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This technical guidance has undergone review by the NPS Air Resources Division, the Environmental Quality Division, and the Natural Resource Program Center’s Planning Technical Advisory Group, along with the Department of the Interior Solicitor’s Office.
    [Show full text]
  • Diffuse Pollution, Degraded Waters Emerging Policy Solutions
    Diffuse Pollution, Degraded Waters Emerging Policy Solutions Policy HIGHLIGHTS Diffuse Pollution, Degraded Waters Emerging Policy Solutions “OECD countries have struggled to adequately address diffuse water pollution. It is much easier to regulate large, point source industrial and municipal polluters than engage with a large number of farmers and other land-users where variable factors like climate, soil and politics come into play. But the cumulative effects of diffuse water pollution can be devastating for human well-being and ecosystem health. Ultimately, they can undermine sustainable economic growth. Many countries are trying innovative policy responses with some measure of success. However, these approaches need to be replicated, adapted and massively scaled-up if they are to have an effect.” Simon Upton – OECD Environment Director POLICY H I GH LI GHT S After decades of regulation and investment to reduce point source water pollution, OECD countries still face water quality challenges (e.g. eutrophication) from diffuse agricultural and urban sources of pollution, i.e. pollution from surface runoff, soil filtration and atmospheric deposition. The relative lack of progress reflects the complexities of controlling multiple pollutants from multiple sources, their high spatial and temporal variability, the associated transactions costs, and limited political acceptability of regulatory measures. The OECD report Diffuse Pollution, Degraded Waters: Emerging Policy Solutions (OECD, 2017) outlines the water quality challenges facing OECD countries today. It presents a range of policy instruments and innovative case studies of diffuse pollution control, and concludes with an integrated policy framework to tackle this challenge. An optimal approach will likely entail a mix of policy interventions reflecting the basic OECD principles of water quality management – pollution prevention, treatment at source, the polluter pays and the beneficiary pays principles, equity, and policy coherence.
    [Show full text]
  • The Criteria Pollutants & a Closer Look at Ozone
    Module 1: Activity 4 The Criteria Pollutants & a Closer Look at Ozone SUMMARY Students will be introduced to the criteria pollutants and will work in groups to make cartoon booklets demonstrating the formation of ground-level ozone and the destruction of stratospheric ozone. ESSENTIAL QUESTIONS • What are criteria pollutants and why are they of concern? • What’s the difference between stratospheric ozone and ground-level ozone? • Why do we sometimes have too much ozone in the troposphere and not enough in the stratosphere? • How do these problems affect human health? TIME NEEDED Highly variable. It’s possible to complete this activity in one block period if you just use the background information provided and have students create a comic strip individually. However if you want to give students more time to produce creative products, allow two full days to work on the project in groups, and 30 minutes to present projects in class. 2012 North Carolina ESSENTIAL STANDARDS FOR EARTH/ENVIRONMENTAL SCIENCE • EEn.2.5.1 Summarize the structure and composition of our atmosphere. • EEn.2.5.5 Explain how human activities affect air quality. • EEn.2.7.3 Explain how human activities impact the biosphere. A product of the NC Air Awareness Program 2014. Available for re-distribution with permission. [email protected] www.itsourair.org The Criteria Pollutants & Module 1: a Closer Look at Ozone Activity 4 (usually over 75° F). NOX comes from burning fuels. VOCs are MAKING chemicals containing carbon that evaporate easily – which usually means they are smelly. Sources of VOCs include CONNECTIONS cleaning chemicals, solvents, paints, unburned gasoline, hog In this activity, students will be learning about ozone waste lagoons, and natural sources such as trees.
    [Show full text]
  • Marine Pollution in the Caribbean: Not a Minute to Waste
    Public Disclosure Authorized Public Disclosure Authorized Marine Public Disclosure Authorized Pollution in the Caribbean: Not a Minute to Waste Public Disclosure Authorized Standard Disclaimer: This volume is a product of the staff of the International Bank for Reconstruction and Development/the World Bank. The findings, interpreta- tions, and conclusions expressed in this paper do not necessarily reflect the views of the Executive Directors of the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Copyright Statement: The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/ The World Bank encourages dissemination of its work and will normally grant per- mission to reproduce portions of the work promptly. For permission to photocopy or reprint any part of this work, please send a request with complete information to the Copyright Clearance Center, Inc., 222 Rose- wood Drive, Danvers, MA 01923, USA, telephone 978-750-8400, fax 978-750-4470, http://www.copyright.com/. All other queries on rights and licenses, including subsidiary rights, should be addressed to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433, USA, fax 202-522-2422, e-mail [email protected].
    [Show full text]
  • Climate Change, Indoor Air Quality and Health
    CLIMATE CHANGE, INDOOR AIR QUALITY AND HEALTH Prepared for U.S. Environmental Protection Agency Office of Radiation and Indoor Air August 24, 2010 By Paula Schenck, MPH A. Karim Ahmed, PhD Anne Bracker, MPH, CIH Robert DeBernardo, MD, MBA, MPH Section of Occupational and Environmental Medicine Center for Indoor Environments and Health Climate Change, Indoor Air Quality and Health By Paula Schenck, MPH A. Karim Ahmed, PhD Anne Bracker, MPH CIH Robert DeBernardo MD MBA MPH University of Connecticut Health Center Section of Occupational and Environmental Medicine Center for Indoor Environments and Health 1. Introduction and problem statement ......................................................................................1 Background .........................................................................................................................1 2. Climate change and health as relates to indoor environment ...............................................3 National Institute of Environmental Health Science 2010 report........................................3 3. Environment and agents of concern in the indoor environment ..........................................4 Temperature ........................................................................................................................4 Outdoor air contaminants and indoor air quality .................................................................4 Components of indoor air, links with adaptation measures and climate change.................4 4. “Green buildings”, indoor
    [Show full text]
  • Smoke Episodes and Assessment of Health Impacts Related to Haze from Forest Fires: Indonesian Experience
    Health Guidelines for Vegetation Fire Events, Lima, Peru, 6-9 October 1998. Background papers © WHO, 1999 SMOKE EPISODES AND ASSESSMENT OF HEALTH IMPACTS RELATED TO HAZE FROM FOREST FIRES: INDONESIAN EXPERIENCE Yudanarso Dawud The Indonesian Association of Pulmonologists Persahabatan Hospital Jalan Raya Persahabatan Jakarta Timur 13230 Indonesia INTRODUCTION Uncontrolled forest fire in Indonesia has caused smoke pollution in the country as well as other countries in this particular part of the world. The haze episodes in the Southeast Asian region constituted a substantial health risk to the public in 1997 and early 1998 This was evidenced by widespread increases of health-related ambient air quality standards and guidelines for particulate matter. In 1997, in relation to clinical indicators of health, this risk was reflected in increased respiratory-related hospital visits in the most heavily impacted areas during the peak period of the haze. Forest fires have been occuring almost yearly, especially during the dry season, at certain locations in Indonesia including Kalimantan, Sumatera, Java, Sulawesi, Maluku and Irian Jaya. From July to the beginning of October 1997, smoke haze from uncontrolled forest fires had spread throughout some neighbouring countries such as Brunei Darussalam, Malaysia, Southern Philippines, Singapore and Southern Thailand. The Coordinator Minister of Social Welfare of Indonesia declared these uncontrolled forest fires, especially in Sumatera and Kalimantan, as national disaster. 313 Health Guidelines for Vegetation Fire Events, Lima, Peru, 6-9 October 1998. Background papers © WHO, 1999 In a WHO meeting on the health impacts of haze in June 1998, it was mentioned that the severity and extent of the smoke haze pollution were unprecedented, affecting an area with a population of 300 million people across the region.
    [Show full text]
  • Persistent Organic Pollutants
    PERSISTENT ORGANIC POLLUTANTS An Assessment Report on: DDT-Aldrin-Dieldrin-Endrin-Chlordane Heptachlor-Hexachlorobenzene Mirex-Toxaphene Polychlorinated Biphenyls Dioxins and Furans Prepared by: L. Ritter, K.R. Solomon, J. Forget Canadian Network of Toxicology Centres 620 Gordon Street Guelph ON Canada and M. Stemeroff and C.O'Leary Deloitte and Touche Consulting Group 98 Macdonell St., Guelph ON Canada For: The International Programme on Chemical Safety (IPCS) within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC) This report is produced for the International Programme on Chemical Safety (IPCS). The work is carried out within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC). The report does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of human resources in the field of chemical safety. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, strengthening capabilities for prevention of an response to chemical accidents and their follow-up, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals.
    [Show full text]