No. 78 May 2008 Hairgrass (Vulpia Spp.). What Do We Know? a Review of the Literature

Total Page:16

File Type:pdf, Size:1020Kb

No. 78 May 2008 Hairgrass (Vulpia Spp.). What Do We Know? a Review of the Literature WEEDS, PESTS & DISEASES No. 78 May 2008 Hairgrass (Vulpia spp.). What do we know? A review of the literature. Key Points • In New Zealand the common name ‘hairgrass’ combines three individual Vulpia species (Vulpia bromoides, V. myuros and V. Megalura). • The individual species are very difficult to identify, with the seed head being the easiest feature to separate the species. • Typically germination follows a 2-3 month dormancy which breaks when monthly rainfall exceeds evaporation. • Germination occurs both in light and dark conditions; however germination is more rapid and uniform in the light. • Seedling emergence from the relatively shallow depth of 5cm is considerably less than 0-1 cm. • An integrated approach including cultivation, chemical and crop rotation is required for sustained control of Vulpia spp. • The relationship between burial through cultivation on seed dormancy and viability is not clear and will be the focus of future FAR funded research. • Chemical control can be difficult and will continue to be a focus of FAR trial work. Introduction Vulpia spp. has been increasingly common on Vulpia spp. are a problem in New Zealand in small arable farms in Canterbury in recent years. seed crops as they contaminate seed and reduce seed yield. As part of understanding annual grass weeds in Climate cropping rotations, a literature review on Vulpia Vulpia species can survive and reproduce over a hairgrass was undertaken. The aim of this review was wide range of climatic conditions; however to identify gaps in the knowledge which could allow Mediterranean type climates appear most FAR to establish research priorities. This update aims favourable. Cool winters followed by warm to summarise the international research on this annual springs and the absence of drought appear ideal grassweed and provide an understanding of biology so but both species have been collected in areas some control measures can be established. ranging from 200–1200mm annual rainfall (Wallace 1997). Plants are shallow rooted and Three Vulpia species are recorded as present in New therefore sensitive to drought however the annual Zealand. These are, Vulpia bromoides and V. myuros, lifecycle reduces the prospects of death during also known as squirrel-tail and rat’s-tail fescue drought. respectively, (Wallace 1997) and V. megalura (uncommon) (Edgar and Connor 2000). In New Soil type Zealand these three species are collectively known as Vulpia plants grow on a wide range of soil types Vulpia hairgrass, other common names include silver and fertility levels where soil pH ranges from 4.5- grass and silky grass. 9. Surveys in Australia have shown Vulpia to grow mainly on light to medium textured soils Vulpia spp. can often be confused with toad rush (slightly acidic), and characterised by low to (Juncus bufonius); however usually only under moist moderate phosphate and potassium status. soil conditions. It can also be confused with fine leaved Vulpia myuros (and most likely V. bromoides) has fescues e.g. chewings fescue (Festuca nigricans) or been shown to tolerate soils with low potassium, red fescue (Festuca rubra) etc. phosphorus and nitrogen status. At the same time Vulpia species have been shown to survive and 1. Habitat reproduce under higher fertility environments with low-inter species competition. Under high fertility, Distribution is usually on dry, open, infertile soils V. myuros and V. bromoides are likely to suffer while being abundant in waste places e.g. fence competition from species such as Italian ryegrass lines and light pastures throughout New Zealand. (Lolium multiflorum) (Wallace 1997); however ryegrass sowing rates on arable farms are unlikely to Phenology (progression to flowering and seed set) produce crop plant populations high enough to induce The conditions required for floral initiation include competition severe enough for Vulpia plant death. exposure to a period of cool conditions (vernalisation response). Vulpia bromoides appears to flower over a wide range of day lengths, between 8–16 hours. Vulpia bromoides can produce numerous ears at temperatures of 25/15°C (day/night temperatures) compared to very few by V. myuros under the same conditions. For any significant production of ears, V. myuros required exposure to short days (8 hours) and cool temperatures (18/10°C). In both species flowering was inhibited by high temperatures (28/20°C) (Dillion and Forcella 1984). New Zealand conditions appear favourable for both species to produce large numbers of seed heads and therefore return high levels of seed to the soil seed bank. Flowering occurs in the spring with both species flowering at similar times. The period from flowering to seed maturity varies from Figure 1. Young Vulpia spp. plants photographed 120 seven to 30 days depending on environmental days after planting, FAR Arable Site 2007 conditions. Seeds are shed shortly after maturity and are dislodged by wind or mechanical/animal 2. Growth and development disturbance. Vulpia spp. are prolific seeders and will typically produce more seed than is required Perennation to maintain the current plant population. Vulpia myuros and Vulpia bromoides are true annuals and survive adverse conditions as seeds e.g. high Seed Dormancy temperatures and drought. Under favourable Seed dormancy occurs in Vulpia spp. and has conditions some plants may survive into the second been reported by various authors. It is common year. Vulpia species seed prolifically in late spring to for a 2-3 month after ripening period (dormancy) mid summer. to be required for germination to proceed under field conditions. This can be extended in dry Germination climates and where temperatures are high. Most shed seed is located near the soil surface (except Dormancy is usually broken when monthly rainfall on cultivated soils). Under field conditions the seeds of exceeds pan evaporation under Australian V. myuros and V. bromoides typically have a seed conditions (Wallace 1997). The majority of seed dormancy of between 2 and 3 months (Wallace 1997). germinates readily and uniformly assuming Typically germination takes place when rainfall dormancy is broken and soil moisture is adequate exceeds evaporation (March – May under New (Dillon and Forcella 1984). Zealand conditions). Dillon and Forcella (1984) showed that exposure to light during the germination 3. Chemical control phase increased the temperature range for optimum germination. However maximum germination Chemical (FAR trials) percentage was achieved over a wide range of FAR has conducted several herbicide trials where temperatures, from 12–23°C for both species in hairgrass has been included. Consistent darkness, and 12-31°C and 9-28°C in light for V. performers against hairgrass have been Nortron myuros and V. bromoides respectively. Light and Gardoprim. Other chemicals which have stimulated both species to germinate more rapidly and proved useful include Sencor, Teedal, Karmex, more evenly over a wide range of temperatures. Kerb Flo and Avadex. Physiology Nortron at 2 l/ha provides an effective control Dillon and Forcella (1984) studied the growth rates of option in ryegrass seed crops when applied pre both hairgrass species over a range of temperatures emergence. Increased rates may provide longer and photoperiods. For the initial growth period (7–10 lasting control in high risk situations. weeks) high temperatures and long photoperiods led to the greatest growth rates. Both species responded in Gardoprim has shown good control in two very a similar manner, however V. myuros usually had a contrasting seasons at 1.5 l/ha. In 2005 (warm greater growth rate compared to V. bromoides. Overall and dry) efficacy was reduced when the rate was low temperatures (18ºC day temperature and 10ºC cut to 0.75 l/ha. In 2006 good control was shown night temperature, 18/10ºC), with 8 hour photoperiods at 0.75 l/ha under cold, wet soil conditions. were optimum for growth of Vulpia spp. Plants grown under these conditions were 50–100% larger when Kerb and Teedal are both registered for the compared to those grown under either 23/15ºC or control of hairgrass but have been inconsistent in 28/20ºC. FAR trials; perhaps this is related to application timing (see Arable Extra No. 76). Winter applications 4. Cultural control were more effective than set growth stage timings. These results are supported by international literature. Cultivation and seed burial Vulpia bromoides and V. myuros germinate over a Atrazine has shown promise in controlling hairgrass wide range of temperatures provided dormancy and could possibly be used in second year ryegrass, requirements of 2–3 months have been met. tall fescue and other tolerant crops. Germination is a biological process and temperature regulates the rate of germination Chemical (literature search) while darkness retards germination of V. Vulpia species are tolerant to many of the ‘grass killer’ bromoides somewhat more than V. myuros. herbicides and therefore may require other chemical Similarly the seedling emergence from a relatively groups. shallow sowing depth of 5 cm is much less than either 0 or 1cm (Dillon and Forcella 1984). The Simazine is effective against both V.myuros and V. inability of both species to tolerate relatively bromoides and has potential usage in grain-legume shallow burial is perhaps the main reason why and other crops. The rates suggested vary between these species are seen as an increasing problem 0.25 and 2.4 kg/ha active ingredient (a.i.) when applied in Canterbury as reduced tillage increases. Under during autumn under pre-emergence conditions in conventional systems burial through ploughing Australia (Wallace 1997). The large variation in results would reduce plant emergence. The necessity of is likely to be related to soil organic matter levels and light for rapid germination and emergence may soil moisture status. The rate required to control explain why minimal tillage and direct drilled crops hairgrass on soils with high organic matter levels will are at greater risk compared to ploughed areas.
Recommended publications
  • Turfgrass Selection Ryegrasses
    Extension W159-F Turfgrass Selection Ryegrasses Tom Samples, Professor and John Sorochan, Associate Professor Plant Sciences Due to rapid seed germination and seedling growth, ryegrasses were once planted as nurse Varieties grasses in seed ‘Florida 80’ (1982, Florida AES), ‘Gulf’ (1958, mixtures with Texas AES and Plant Research Division ARS), slower-growing, ‘Jackson’ (1989, Mississippi AFES), ‘Marshall’ perennial cool- (1980, Mississippi AFES) and ‘TAM 90’ (1991, season species Texas AES) continue to be used to temporarily including the control soil erosion in the South. ‘Axcella,’ fescues and evaluated as ABT-99-3-268 and recently (2001) Kentucky released by the Texas AES, Overton, Texas, is the bluegrass. first turf-type variety marketed for winter over- Unfortunately, seeding of bermudagrass turfs. This variety is an ryegrasses early-maturing, dwarf-type and is darker than can be very other annual ryegrasses. Axcella has finer leaves, aggressive in greater stand density and a slower vertical growth mixed stands, and may dominate a preferred rate than many other annual ryegrasses. Seeds turfgrass species by competing for nutrients, of Axcella annual ryegrass are about 25 percent sunlight, water and space. Intermediate (Lolium larger than perennial ryegrass seeds. When over- hybridum) and perennial (Lolium perenne L.) seeded alone or with varieties of intermediate ryegrasses are sometimes used to over-seed and perennial ryegrasses, Axcella matures quickly dormant bermudagrass. Annual ryegrass (Lolium and transitions from the stand as bermudagrass multiflorum Lam.) is widely used to provide resumes growth in spring. temporary ground cover and soil erosion control until a perennial turf can be planted. Intermediate Ryegrass Annual Ryegrass Intermediate or transitional ryegrass is a hybrid Annual ryegrass, also known as Italian ryegrass, of annual and perennial ryegrass.
    [Show full text]
  • Rattail Fescue Biology and Management in Pacific Northwest Wheat Cropping Systems Vulpia Myuros (L.) C.C
    Archival copy. For current version, see: https://catalog.extension.oregonstate.edu/pnw613 A Pacific Northwest Extension Publication Oregon State University • Washington State University • University of Idaho Rattail Fescue Biology and Management in Pacific Northwest Wheat Cropping Systems Vulpia myuros (L.) C.C. Gmel. var. hirsuta (Hack.) Aschers. & Graebn. Daniel A. Ball and Andrew G. Hulting armers are discovering that weed management practices must be adjusted to control species Fpreviously susceptible to tillage as direct-seed wheat production practices become more widely adopted to conserve soil and water resources. Rattail fescue (Vulpia myuros) is an example, as this grass is becoming an increasingly common weed in wheat- based cropping systems across the Pacific Northwest (PNW). Rattail fescue has been a management problem in southern Australian pastures and wheat- based cropping systems since the mid-1980s (Dillon and Forcella 1984), and more recently it has become particularly widespread in PNW wheat cropping systems as minimum-tillage and direct-seeding Figure 1. Vegetative growth of rattail fescue. practices have become commonplace throughout the region. Description Rattail fescue was historically assigned to the Festuca genus because of the appearance of its stems and leaves, before being reclassified as part of the Vulpia genus. Also referred to as silvergrass, six-weeks fescue, or foxtail fescue, rattail fescue is probably native to Europe and is considered an invasive species in natural and wildland areas, native plant restoration sites, pastures, rangeland, roadsides, and cultivated cropland throughout the PNW and California (DiTomaso and Healy 2007). Rattail fescue is a cool-season, winter annual grass with tightly folded leaf blades less than 1/16- Figure 2.
    [Show full text]
  • Fort Ord Natural Reserve Plant List
    UCSC Fort Ord Natural Reserve Plants Below is the most recently updated plant list for UCSC Fort Ord Natural Reserve. * non-native taxon ? presence in question Listed Species Information: CNPS Listed - as designated by the California Rare Plant Ranks (formerly known as CNPS Lists). More information at http://www.cnps.org/cnps/rareplants/ranking.php Cal IPC Listed - an inventory that categorizes exotic and invasive plants as High, Moderate, or Limited, reflecting the level of each species' negative ecological impact in California. More information at http://www.cal-ipc.org More information about Federal and State threatened and endangered species listings can be found at https://www.fws.gov/endangered/ (US) and http://www.dfg.ca.gov/wildlife/nongame/ t_e_spp/ (CA). FAMILY NAME SCIENTIFIC NAME COMMON NAME LISTED Ferns AZOLLACEAE - Mosquito Fern American water fern, mosquito fern, Family Azolla filiculoides ? Mosquito fern, Pacific mosquitofern DENNSTAEDTIACEAE - Bracken Hairy brackenfern, Western bracken Family Pteridium aquilinum var. pubescens fern DRYOPTERIDACEAE - Shield or California wood fern, Coastal wood wood fern family Dryopteris arguta fern, Shield fern Common horsetail rush, Common horsetail, field horsetail, Field EQUISETACEAE - Horsetail Family Equisetum arvense horsetail Equisetum telmateia ssp. braunii Giant horse tail, Giant horsetail Pentagramma triangularis ssp. PTERIDACEAE - Brake Family triangularis Gold back fern Gymnosperms CUPRESSACEAE - Cypress Family Hesperocyparis macrocarpa Monterey cypress CNPS - 1B.2, Cal IPC
    [Show full text]
  • RYEGRASSES the 17Th in a Series by R.W
    UNDERSTANDING TURF MANAGEMENT RYEGRASSES the 17th in a series by R.W. Sheard, P. Ag. yegrass originally developed as a grass is more difficult to mow than other are formed. The stems will resist mowing Rpasture grass which would withstand turfgrass species. A whitish appearance, by reel mowers giving the sports field a close grazing and had a superior ability to due to shredded, mutilated leaves, may be ragged appearance. produce meat and milk. Even today nitro- observed if the mower becomes dull. A second disadvantage is the lack of cold gen-fertilized ryegrass is the preferred A second advantage of ryegrass is the tolerance. More recent cultivar introduc- animal feed for cattle in the Netherlands. relatively rapid germination and emer- tions of turf type perennial ryegrass, how- The early settlers in New Zealand fell and gence rate. Under favourable temperature ever, have increase cold tolerance. Unless burnt the forests, then threw Ryegrass seed conditions of 12 - 25°C, ryegrass will good snow cover can be assure in areas in the ashes to develop one of great intro- emerge in 5 to 8 days. Thus ryegrass is the with severe winters winter kill can be a duced grazing environments in the world. preferred species for oversee ding in the serious problem. late spring or early fall. In oversee ding Ryegrass is susceptible to leaf rusts. In The Ryegrass Family operations rapid germination of the rye- August and early September rust can re- grass increases its competition potential duce the vigour and quality of pure rye- There are about ten species of ryegrass with weed species, such as annual blue- grass stands growing at low levels of which have been botanically identified, grass, which may also be germinating.
    [Show full text]
  • Forage Grass Notes Perennial Ryegrass (Lolium Perenne)
    Forage Grass Notes Perennial Ryegrass (Lolium perenne) Introduction Perennial ryegrass is a cool season bunch grass High quality perennial, the choice for pasture where adapted – best adjusted to wet mild temperate climates (New Zealand and Great Britain) Perennial ryegrass can withstand considerable grazing management and remain productive Growth and Morphology Root system is very fibrous, leaves are prominently ribbed on the upper side and shiny on the bottom Leaves are folded in the bud as compared to the fescues which are rolled in the bud Leaf sheaths are red to purple at the base Optimum growth occurs at temperatures 20°- 25°C Grows best on fertile, well-drained soils - does best on soil with pH 6 -7 Much less persistent than orchardgrass, meadow fescue, timothy or bromegrass - susceptible to winter kill and crown r ust- major reasons why its not more highly utilized in Eastern Canada Importance and Use Considered a premier quality grazing species Perennial ryegrass has greater dry matter digestibility than other temperate perennial grass species Produces good dairy pasture, though excellent for all classes of livestock Graze between 20-25 cm tall down to 5 cm stubble - Yield and persistence better under rotational grazing Perennial ryegrass can also be harvested as silage or hay Rapid germination and quick establishment make it a preferred species for sod seeding where adapted Culture and Management Recommended seeding rat es are 7 kg/ha in mixture with 8 kg/ha meadow fescue, 3 kg/ha white clover and 5 kg/ha timothy for pasture Seed in early spring for best results Persistence is best under rotational grazing rather than continuous grazing Apply P&K based on soil test - Nitrogen should be applied in split applications at rates relative to legume content.
    [Show full text]
  • Natural Variation of Flowering Time and Vernalization Responsiveness in Brachypodium Distachyon
    Bioenerg. Res. (2010) 3:38–46 DOI 10.1007/s12155-009-9069-3 Natural Variation of Flowering Time and Vernalization Responsiveness in Brachypodium distachyon Christopher J. Schwartz & Mark R. Doyle & Antonio J. Manzaneda & Pedro J. Rey & Thomas Mitchell-Olds & Richard M. Amasino Published online: 7 February 2010 # Springer Science+Business Media, LLC. 2010 Abstract Dedicated bioenergy crops require certain char- Keywords Biomass . Bioenergy. Brachypodium . acteristics to be economically viable and environmentally Flowering time . Vernalization sustainable. Perennial grasses, which can provide large amounts of biomass over multiple years, are one option being investigated to grow on marginal agricultural land. Introduction Recently, a grass species (Brachypodium distachyon) has been developed as a model to better understand grass Biomass yield is an important component to consider in any physiology and ecology. Here, we report on the flowering program designed to derive energy from plant material. time variability of natural Brachypodium accessions in Plant size and architecture are important biomass yield response to temperature and light cues. Changes in both parameters, and these parameters are often quite variable environmental parameters greatly influence when a given within a given species. Intraspecies variation in biomass accession will flower, and natural Brachypodium accessions yield can be a product of many factors. One such factor is broadly group into winter and spring annuals. Similar to the timing of the transition from vegetative to reproductive what has been discovered in wheat and barley, we find that growth. The switch to flowering causes a diversion of a portion of the phenotypic variation is associated with resources from the continual production of photosynthetic changes in expression of orthologs of VRN genes, and thus, material (leaves) to the terminal production of reproductive VRN genes are a possible target for modifying flowering tissue (flowers, seeds, and fruit).
    [Show full text]
  • Edible Seeds and Grains of California Tribes
    National Plant Data Team August 2012 Edible Seeds and Grains of California Tribes and the Klamath Tribe of Oregon in the Phoebe Apperson Hearst Museum of Anthropology Collections, University of California, Berkeley August 2012 Cover photos: Left: Maidu woman harvesting tarweed seeds. Courtesy, The Field Museum, CSA1835 Right: Thick patch of elegant madia (Madia elegans) in a blue oak woodland in the Sierra foothills The U.S. Department of Agriculture (USDA) prohibits discrimination in all its pro- grams and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sex- ual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250–9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Acknowledgments This report was authored by M. Kat Anderson, ethnoecologist, U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) and Jim Effenberger, Don Joley, and Deborah J. Lionakis Meyer, senior seed bota- nists, California Department of Food and Agriculture Plant Pest Diagnostics Center. Special thanks to the Phoebe Apperson Hearst Museum staff, especially Joan Knudsen, Natasha Johnson, Ira Jacknis, and Thusa Chu for approving the project, helping to locate catalogue cards, and lending us seed samples from their collections.
    [Show full text]
  • Inventory of Exotic Plant Species Occurring in Aztec Ruins National Monument
    National Park Service U.S. Department of the Interior Natural Resource Program Center Inventory of Exotic Plant Species Occurring in Aztec Ruins National Monument Natural Resource Technical Report NPS/SCPN/NRTR—2010/300 ON THE COVER Common salsify (Tragopogon dubius) was one of the most widespread exotic plant species found in the monument during this inventory. Photograph by: Safiya Jetha Inventory of Exotic Plant Species Occurring in Aztec Ruins National Monument Natural Resource Technical Report NPS/SCPN/NRTR—2010/300 Julie E. Korb Biology Department Fort Lewis College 1000 Rim Drive Durango, CO 81301 March 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service Natural Resource Program Center publishes a range of reports that address natural re- source topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientif- ically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. Views, statements, findings, conclusions, recommendations, and data in this report are those of the author(s) and do not necessarily reflect views and policies of the National Park Service, U.S.
    [Show full text]
  • Festulolium Hybrid Grass
    - DLF Forage Seeds White Paper - Festulolium Hybrid Grass Festulolium is the name for a hybrid forage grass progeny or back crossing the hybrid progeny to its parental developed by crossing Meadow Fescue (Festuca pratense) or lines, a wide range of varieties with varying characteristics and Tall Fescue (Festuca arundinacea) with perennial ryegrass phenotypes has been created. They are classified according (Lolium perenne) or Italian ryegrass (Lolium multiflorum). to their degree of phenotypical similarity to the original par- This enables combining the best properties of the two types ents, not to their genotype heritage. One can regard them as of grass. The resulting hybrids have been classified as: high yielding fescues with improved forage quality or as high yielding, more persistent ryegrasses. Maternal parent Paternal parent Hybrid progeny Festuca arundinacea Lolium multiflorum Festulolium pabulare This genotype make-up of festuloliums can be made Festuca arundinacea Lolium perenne Festulolium holmbergii visual. The chromosomes of festulolium can be isolated and Festuca pratensis Lolium multiflorum Festulolium braunii then colored to show the parental origin of chromosome Festuca pratensis Lolium perenne Festulolium loliaceum sections. It provides a very visual effect of the hybridization between the two species. The fescues contribute qualities such as high dry matter yield, resistance to cold, drought tolerance and persistence, Photo right: Chromosomes of a festulolium, colored to show the while ryegrass is characterized by rapid establishment, parental DNA in the hybrid. good spring growth, good digestibility, sugar content and Green = Ryegrass DNA palatability. The individual festulolium varieties contain Red = Fescue DNA various combinations of these qualities, but all are substantially higher yielding than their parent lines.
    [Show full text]
  • Vascular Plants of Williamson County Festuca Myuros L. (Syn. Vulpia
    Vascular Plants of Williamson County Festuca myuros − FOXTAIL FESCUE, RATTAIL FESCUE, RATTAIL SIXWEEKS GRASS [Poaceae] Festuca myuros L. (syn. Vulpia myuros), FOXTAIL FESCUE, RATTAIL FESCUE, RATTAIL SIXWEEKS GRASS. Annual, fibrous-rooted, 1−several-stemmed at base, erect, 20–55(–70) cm tall; shoots essentially glabrous. Stems (culms): cylindric, slender, < 1 mm diameter, tough, whitish, glabrous. Leaves: alternate distichous, simple with sheath; sheath open, with several conspicuously raised veins, glabrous, without lobes (auricles) at top; ligule truncate, ± 0.2−0.3 mm long, minutely and jaggedly ciliate, projecting upward on 1 or both surfaces; blade linear, 25−150 × ca. 1 mm, with inrolled margins (flat), parallel-veined, upper surface inconspicuously puberulent. Inflorescence: spikelets, in terminal racemes or panicles, panicle 40−150(−250) mm long, of alternate distichous (strongly 2-ranked), ascending, sessile or short-stalked, overlapping, awned spikelets, spikelet with 3−4(−6) florets having terminal floret commonly sterile, bracteate, awned; axes slender and 3- angled, short-scabrous along edges. Spikelet: ellipsoid and somewhat compressed, 5.5– 11(−23) mm long, breaking above glumes and between florets; rachilla strongly flattened with internodes ca. 1 mm long, minutely scabrous; glumes 2, unequal, narrowly lanceolate to lanceolate, 0.7–2 mm long (lower glume) and 2.5–5.5 mm long (upper glume), < the lowest lemma, membranous on margins, glabrous; lemma awned, narrowly lanceolate, 4.5–7 mm long, outer surface minutely scabrous, glabrous (sometimes long-ciliate on margins approaching tip), obscurely 5-veined, the awn terminal, straight, 5–16 mm long, light-colored; palea flat with infolded margins, 4.5–5.5(−6) mm long, membranous with 2 green veins, veins minutely toothed approaching tip and extended as 2 minute points.
    [Show full text]
  • First Record of Eriochloa Villosa (Thunb.) Kunth in Austria and Notes on Its Distribution and Agricultural Impact in Central Europe
    BioInvasions Records (2020) Volume 9, Issue 1: 8–16 CORRECTED PROOF Research Article First record of Eriochloa villosa (Thunb.) Kunth in Austria and notes on its distribution and agricultural impact in Central Europe Swen Follak1,*, Michael Schwarz2 and Franz Essl3 1Institute for Sustainable Plant Production, Austrian Agency for Health and Food Safety, Vienna, Austria 2Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety, Vienna, Austria 3Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, Vienna, Austria Author e-mails: [email protected] (SF), [email protected] (MS), [email protected] (FE) *Corresponding author Citation: Follak S, Schwarz M, Essl F (2020) First record of Eriochloa villosa Abstract (Thunb.) Kunth in Austria and notes on its distribution and agricultural impact in Eriochloa villosa is native to temperate Eastern Asia and is an emerging weed in Central Europe. BioInvasions Records 9(1): Central Europe. Its current distribution in Central Europe was analyzed using 8–16, https://doi.org/10.3391/bir.2020.9.1.02 distribution data from the literature and data collected during field trips. In 2019, E. Received: 6 September 2019 villosa was recorded for the first time in Austria. It was found in a crop field in Accepted: 28 November 2019 Unterretzbach in Lower Austria (Eastern Austria). So far, the abundance of E. villosa in the weed communities in Austria and the neighboring Czech Republic is low and Published: 21 February 2020 thus, its present agricultural impact can be considered limited. However, in Romania Handling editor: Quentin Groom and Hungary, the number of records of E.
    [Show full text]
  • Poaceae: Pooideae) Based on Phylogenetic Evidence Pilar Catalán Universidad De Zaragoza, Huesca, Spain
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 31 2007 A Systematic Approach to Subtribe Loliinae (Poaceae: Pooideae) Based on Phylogenetic Evidence Pilar Catalán Universidad de Zaragoza, Huesca, Spain Pedro Torrecilla Universidad Central de Venezuela, Maracay, Venezuela José A. López-Rodríguez Universidad de Zaragoza, Huesca, Spain Jochen Müller Friedrich-Schiller-Universität, Jena, Germany Clive A. Stace University of Leicester, Leicester, UK Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Catalán, Pilar; Torrecilla, Pedro; López-Rodríguez, José A.; Müller, Jochen; and Stace, Clive A. (2007) "A Systematic Approach to Subtribe Loliinae (Poaceae: Pooideae) Based on Phylogenetic Evidence," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 31. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/31 Aliso 23, pp. 380–405 ᭧ 2007, Rancho Santa Ana Botanic Garden A SYSTEMATIC APPROACH TO SUBTRIBE LOLIINAE (POACEAE: POOIDEAE) BASED ON PHYLOGENETIC EVIDENCE PILAR CATALA´ N,1,6 PEDRO TORRECILLA,2 JOSE´ A. LO´ PEZ-RODR´ıGUEZ,1,3 JOCHEN MU¨ LLER,4 AND CLIVE A. STACE5 1Departamento de Agricultura, Universidad de Zaragoza, Escuela Polite´cnica Superior de Huesca, Ctra. Cuarte km 1, Huesca 22071, Spain; 2Ca´tedra de Bota´nica Sistema´tica, Universidad Central de Venezuela, Avenida El Limo´n s. n., Apartado Postal 4579, 456323 Maracay, Estado de Aragua,
    [Show full text]