Mollusca) from Malta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Revista Completa En
Comercio mayorista de productos pesqueros Consumo de pescado en conserva Logística de grandes volúmenes Mejora de la protección de los consumidores y usuarios Comisiones por el uso de tarjetas de pago ICAN ^^ INSTITUTO DE CALIDAD AGROALIMENTARIA DE NAVARRA DISTINGUIMOS LA CALIDAD SEAN CUALES SEAN TUS GUSTOS, LOS PRODUCTOS NAVARROS TE CONVENCERÁN POR SU SABOR. , ^ f ^ ,, ^,, ^ ^ ^ f tiL Comercialización mayorista de productos pesqueros en España La posición de la Red de Mercas y del resto de canales José Ma Marcos Pujol y Pau Sansa Brinquis Análisis de las principales especies pesqueras comercializadas (111) José Luis Illescas, Olga Bacho y Susana Ferrer 24 Mejora de la protección de los consumidores y usuarios . , Mejillón 34 Análisis de los cambios •. Chirla y almejas 42 introducidos por la nueva ^•..• Pulpo 52 Calamar, calamar europeo Ley 44/2006 ..•. •^.• 1 . .^ • s• . Víctor Manteca Valdelande 122 .^ y chipirón 60 . ° :. _. •-a • . Choco, jibia o sepia 66 . •^ . ; ^• ^ ... Comisiones por el uso de . ^... .. Otros bivalvos 72 . ,^.^ . tarjetas de pago r.r.-e ^^..•••.. •. Análisis del consumo Pedro M. Pascual Femández 132 . .- .• •^ . de pescado en conserva ^ Víctor J. Martín Cerdeño 80 Alimentos de España 1 . Navarra 139 .•1 ^ . ., •• . De vides, vinos, vidueños ., . ,. , y planes estratégicos Distribución y Consumo inicia en este número , , Emilio Barco . 1 . una nueva sección, • _. : ._ ^. _ • bajo el título genérico de Alimentos de . ^^ La guerra de las temperaturas España, que analizará • ^I• , •, ^ Silvia Andrés González-Moralejo 109 la realidad alimentaria de todas las Logística de grandes volúmenes comunidades Sylvia Resa 116 autónomas. ^c.]uGLeLL°l ^ : .. .............................................. : 1 • ^^ . ^^ , ^ . Novedades legislativas 164 Notas de prensa /Noticias 166 . .. :^ :^. ^^•^ Mercados/Literaturas Irina '91SNi:I17P[K.77 :7Ti^?I^^l ^T-^^7 .^.1^.^ Lourdes Borrás Reyes :•^^^;;^ i^.^..i^l^:.^=. -
ED45E Rare and Scarce Species Hierarchy.Pdf
104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233 -
Identification of Terrestrial Gastropods Species in Sohag Governorate, Egypt
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archives of Agriculture and Environmental Science Archives of Agriculture and Environmental Science 3(1): 45-48 (2018) https://doi.org/10.26832/24566632.2018.030105 This content is available online at AESA Archives of Agriculture and Environmental Science Journal homepage: www.aesacademy.org e-ISSN: 2456-6632 ORIGINAL RESEARCH ARTICLE Identification of terrestrial gastropods species in Sohag Governorate, Egypt Abd El-Aleem Saad Soliman Desoky Department of Plant protection (Agriculture Zoology), Faculty of Agriculture, Sohag University, EGYPT E-mail: [email protected] ARTICLE HISTORY ABSTRACT Received: 15 January 2018 The study aims to identify of terrestrial gastropods species in Sohag Governorate during the Revised received: 10 February 2018 year 2016 and 2017. The present study was carried out for survey and identification for ran- Accepted: 21 February 2018 dom land snail in 11 districts, i.e. (Tema, Tahta, Gehyena, El-Maragha, Saqultah, Sohag, Akhmim, El-Monshah, Gerga, El-Balyana, and Dar El-Salam) at Sohag Governorate, Egypt. Samples were collected from 5 different locations in each district during 2016-2017 seasons. The monthly Keywords samples were taken from winter and summer crops (areas were cultivated with the field crops Egypt such as wheat, Egyptian clover, and vegetables crops. The results showed that found two spe- Eobania vermiculata cies of land snails, Monacha obstracta (Montagu) and Eobania vermiculata (Muller). It was -
Draft Carpathian Red List of Forest Habitats
CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) PUBLISHED BY THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC 2014 zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 1 227.8.20147.8.2014 222:36:052:36:05 © Štátna ochrana prírody Slovenskej republiky, 2014 Editor: Ján Kadlečík Available from: Štátna ochrana prírody SR Tajovského 28B 974 01 Banská Bystrica Slovakia ISBN 978-80-89310-81-4 Program švajčiarsko-slovenskej spolupráce Swiss-Slovak Cooperation Programme Slovenská republika This publication was elaborated within BioREGIO Carpathians project supported by South East Europe Programme and was fi nanced by a Swiss-Slovak project supported by the Swiss Contribution to the enlarged European Union and Carpathian Wetlands Initiative. zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 2 115.9.20145.9.2014 223:10:123:10:12 Table of contents Draft Red Lists of Threatened Carpathian Habitats and Species and Carpathian List of Invasive Alien Species . 5 Draft Carpathian Red List of Forest Habitats . 20 Red List of Vascular Plants of the Carpathians . 44 Draft Carpathian Red List of Molluscs (Mollusca) . 106 Red List of Spiders (Araneae) of the Carpathian Mts. 118 Draft Red List of Dragonfl ies (Odonata) of the Carpathians . 172 Red List of Grasshoppers, Bush-crickets and Crickets (Orthoptera) of the Carpathian Mountains . 186 Draft Red List of Butterfl ies (Lepidoptera: Papilionoidea) of the Carpathian Mts. 200 Draft Carpathian Red List of Fish and Lamprey Species . 203 Draft Carpathian Red List of Threatened Amphibians (Lissamphibia) . 209 Draft Carpathian Red List of Threatened Reptiles (Reptilia) . 214 Draft Carpathian Red List of Birds (Aves). 217 Draft Carpathian Red List of Threatened Mammals (Mammalia) . -
Late Quaternary Mollusc-Bearing Deposits from Bechar (Algeria)
Annales Societatis Geologorum Poloniae (1998), vol. 68: 75-83. LATE QUATERNARY MOLLUSC-BEARING DEPOSITS FROM BECHAR (ALGERIA) Stefan Witold ALEXANDROWICZ Chair o f Stratigraphy and Regional Geology>, Academy o f Mining and Metallurgy>, al. Mickiewicza 30, 30-059 Kraków, Poland Alexandrowicz, S. W., 1998. Late quaternary mollusc-bearing deposits from Bechar (Algeria). Ann. Soc. Geol. Polon., 68: 75-83. Abstract: Two subfossil assemblages of molluscs were found in terrigenous sediments forming two terraces of Wadi Bechar (Western Algeria). The older one, connected with the Late Pleistocene terrace of Saourien, is dated at 18500 years BP. It comprises 28 taxa of land and water snails including species, living recently in Africa and around the Mediterranean as well as Holarctic/Palearctic species. The younger fauna derives from the Holocene terrace of Guirien, dated at 5140 years BP, is poorer (11 snail species) and devoid of Holarctic/Palearctic taxa. Late quaternary mollusc-bearing sediments from Bechar and from other localities known in Africa and Near East correspond with three phases of the humid climate (pluvials). correlated with the interpleniglacial and the ascending stage of pleniglacial of the Vistulian, with the Late Vistulian and with the climatic optimum of the Holocene. Abstrakt: W terrygenicznych osadach tworzących terasy uedu Bechar (zachodnia Algeria) zostały znalezione dwa zespoły subfosylnej malakofauny. Starszy z nich, występujący w terasie mlodoplejstoceńskiej, zaliczonej do Saourienu, jest datowany na 18500 lat BP. Obejmuje on 28 gatunków ślimaków lądowych i wodnych, żyjących współcześnie w Afryce i wokół Morza Śródziemnego, a także gatunki holarktyczne i palearktyczne. Młodsza fauna pochodzi z holoceńskiej terasy zaliczonej do Guirienu, datowanej na 5140 lat BP. -
Growth-Related Gene Expression in Haliotis Midae
GROWTH‐RELATED GENE EXPRESSION IN HALIOTIS MIDAE Mathilde van der Merwe Dissertation presented for the degree of Doctor of Philosophy (Genetics) at Stellenbosch University Promoter: Dr Rouvay Roodt‐Wilding Co‐promoters: Dr Stéphanie Auzoux‐Bordenave and Dr Carola Niesler December 2010 Declaration By submitting this dissertation, I declare that the entirety of the work contained therein is my own, original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 09/11/2010 Copyright © 2010 Stellenbosch University All rights reserved I Acknowledgements I would like to express my sincere gratitude and appreciation to the following persons for their contribution towards the successful completion of this study: Dr Rouvay Roodt‐Wilding for her continued encouragement, careful attention to detail and excellent facilitation throughout the past years; Dr Stéphanie Auzoux‐Bordenave for valuable lessons in abalone cell culture and suggestions during completion of the manuscript; Dr Carola Niesler for setting an example and providing guidance that already started preparing me for a PhD several years ago; Dr Paolo Franchini for his patience and greatly valued assistance with bioinformatics; Dr Aletta van der Merwe and my fellow lab‐colleagues for their technical and moral support; My dear husband Willem for his love, support and enthusiasm, for sitting with me during late nights in the lab and for making me hundreds of cups of tea; My parents for their love and encouragement and for instilling the determination in me to complete my studies; All my family and friends for their sincere interest. -
Dextral and Sinistral Amphidromus Inversus (Gastropoda: Pulmonata: Camaenidae) Produce Dextral Sperm
Zoomorphology (2011) 130:283–287 DOI 10.1007/s00435-011-0140-1 ORIGINAL PAPER Dextral and sinistral Amphidromus inversus (Gastropoda: Pulmonata: Camaenidae) produce dextral sperm Menno Schilthuizen • Bertie-Joan van Heuven Received: 4 April 2011 / Revised: 30 September 2011 / Accepted: 3 October 2011 / Published online: 19 October 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Coiling direction in pulmonate gastropods is Introduction determined by a single gene via a maternal effect, which causes cytoskeletal dynamics in the early embryo of dextral Left–right patterning and the direction of chirality are often gastropods to be the mirror image of the same in sinistral considered to be among the few developmental systems that ones. We note that pulmonate gastropod spermatids also go are taxonomically sufficiently widespread to be studied in through a helical twisting during their maturation. More- a meaningfully comparative way in almost all Bilateria. over, we suspect that the coiling direction of the helical Palmer (2004), for example, mapped the evolutionary elements of the spermatozoa may affect their behaviour in transitions among symmetry, directional asymmetry (in the female reproductive tract, giving rise to the possibility which within a species only one of the two possible chiral that sperm chirality plays a role in the maintenance of whole- states occurs) and anti-symmetry (in which within a species body chiral dimorphism in the tropical arboreal gastropod the direction of chirality is random) on phylogenies for a Amphidromus inversus (Mu¨ller, 1774). For these reasons, we large number of animal taxa. He found that directional investigated whether there is a relationship between a gas- asymmetry, in which the direction of chirality is almost tropod’s body chirality and the chirality of the spermatozoa it always genetically determined, evolves directly from produces. -
(Gastropoda, Euthyneura), I. Amphibuliminae
BASTERIA 37: 51-56, 1973 Catalogue of Bulimulidae (Gastropoda, Euthyneura), I. Amphibuliminae A.S.H. Breure Utrecht INTRODUCTION The Bulimulidae constitute a relatively large family, mainly confined South At 144 and to America. present the family includes genera number of subgenera. The specific and subspecific names available is estimated at about 3000. The subdivision of the family into Bulimulinae, Amphibuliminae, Odontostominae and Orthalicinae Placostylinae, is mainly based on shell features. This sensu lato conception of the Bulimulidae, already held by Pilsbry (1895-1902) and Thiele (1929-1931), is also favoured the by present author. More recent authors, e.g., Zilch (1959-1960), have accorded family rank to the subfamilies, the Placostylinae except- ed. However, the differences between the subfamilies are comparatively the differ from Bulimulinae slight, e.g., Amphibuliminae seem to the in the and the free muscle only palleal organs retractor system (Van Mol, 1971). in The Amphibuliminae are my opinion entirely confined to South A in which America. few African genera are included this subfamily, may better be placed elsewhere. The genus Aillya Odhner, 1928, occurring in Cameroon (West Africa), is placed here by Odhner (1928) on account of the anatomy. Baker (1955) placed the Aillyidae in the Heterurethra, near the Succineidae. Another African genus included in the Amphibuliminae is Prestonella Connolly, 1929. It occurs in South and is unknown. Africa its anatomy Some Asiatic species, referred to this subfamily, are also excluded from the present catalogue. 52 BASTERIA, Vol. 37, No. 3-4, 1973 The classification of the following Amphibuliminae is mainly ac- cording to Zilch (1959-1960): Simpulopsis (Simpulopsis) Beck, 1837. -
Land Gastropods (Snail & Slugs) of Los Angeles
Land gastropods (snails & slugs) of Los Angeles County Why snails? • Many local species are endemic to Southern California • In fact, land snails are highly endemic around the world. • They evolve adaptations to relatively small locations. • Habitat destruction has put many land snails at high risk of extinction, including almost all of the endemic species in Southern California. Papustyla pulcherrima Manus Green Tree Snail Found: Manus Island, Papua New Guinea Facts: green color is natural but is only in outer protein layer of shell Lifestyle: tree snail, lives in island rainforests Conservation status: Endangered due to over-collection by humans and habitat (native tree) loss from logging Achatinella fulgens O`ahu tree snail Found: O`ahu, Hawaii Facts: sinestral (left-coiling), 41 species, 30 species extinct Lifestyle: tree snail, eats fungus off tree leaves Conservation status: Critically endangered due to predation by rats, introduced snails, and habitat (native tree) loss Zonitoides arboreus S.L.I.M.E Snails & slugs Living Oxychilus sp. In Metropolitan Environments Goals of SLIME • Inventory of living snail species in Los Angeles County • Compare with Museum historical records • Note introductions and extinctions • Ask where and why do populations live where they do What role do snails play in the environment? Many snails are decomposers. Decomposers consume dead or dying leaves, wood, and fungus. Without snails and other decomposers it would take much longer for nutrients to cycle through the environment: that is, move from living things to the soil, then back into living things again. Which snails and slugs are considered pests? Why? Pest snails are those that cause damage to human-grown plants and/or are so abundant that they cause damage to human-created landscapes. -
Land Snails and Slugs (Gastropoda: Caenogastropoda and Pulmonata) of Two National Parks Along the Potomac River Near Washington, District of Columbia
Banisteria, Number 43, pages 3-20 © 2014 Virginia Natural History Society Land Snails and Slugs (Gastropoda: Caenogastropoda and Pulmonata) of Two National Parks along the Potomac River near Washington, District of Columbia Brent W. Steury U.S. National Park Service 700 George Washington Memorial Parkway Turkey Run Park Headquarters McLean, Virginia 22101 Timothy A. Pearce Carnegie Museum of Natural History 4400 Forbes Avenue Pittsburgh, Pennsylvania 15213-4080 ABSTRACT The land snails and slugs (Gastropoda: Caenogastropoda and Pulmonata) of two national parks along the Potomac River in Washington DC, Maryland, and Virginia were surveyed in 2010 and 2011. A total of 64 species was documented accounting for 60 new county or District records. Paralaoma servilis (Shuttleworth) and Zonitoides nitidus (Müller) are recorded for the first time from Virginia and Euconulus polygyratus (Pilsbry) is confirmed from the state. Previously unreported growth forms of Punctum smithi Morrison and Stenotrema barbatum (Clapp) are described. Key words: District of Columbia, Euconulus polygyratus, Gastropoda, land snails, Maryland, national park, Paralaoma servilis, Punctum smithi, Stenotrema barbatum, Virginia, Zonitoides nitidus. INTRODUCTION Although county-level distributions of native land gastropods have been published for the eastern United Land snails and slugs (Gastropoda: Caeno- States (Hubricht, 1985), and for the District of gastropoda and Pulmonata) represent a large portion of Columbia and Maryland (Grimm, 1971a), and Virginia the terrestrial invertebrate fauna with estimates ranging (Beetle, 1973), no published records exist specific to between 30,000 and 35,000 species worldwide (Solem, the areas inventoried during this study, which covered 1984), including at least 523 native taxa in the eastern select national park sites along the Potomac River in United States (Hubricht, 1985). -
CHITTENANGO OVATE AMBER SNAIL (Novisuccinea Chittenangoensis)
CHITTENANGO OVATE AMBER SNAIL (Novisuccinea chittenangoensis) RECOVERY PLAN First Revision Original Approval: March 24, 1983 Prepared by Alvin Breisch New York State Department of Environmental Conservation Albany, New York and Robyn Niver U.S. Fish and Wildlife Service Cortland, New York in cooperation with the Chittenango Ovate Amber Snail Recovery Team for Region Five U.S. Fish and Wildlife Service Hadley, Massachusetts Approved: ____________________________________________________ Regional Director, Region Five Date: ____________________________________________________ * * * Recovery plans published by the U.S. Fish and Wildlife Service delineate reasonable actions that are needed to recover and protect listed species. Plans are sometimes prepared with the assistance of recovery teams, contractors, State agencies, and others; however, they do not necessarily represent either the views or the official position of any individuals or agencies involved in the plan formulation other than the U.S. Fish and Wildlife Service, and they represent the official position of the U.S. Fish and Wildlife Service only after they have been formally approved by the Regional Director. Achievement of recovery objectives and availability of necessary funds are contingent upon budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the successful completion of recovery actions. Literature citations for this document should read as follows: U.S. Fish and Wildlife Service. 2006. Chittenango Ovate Amber Snail (Novisuccinea chittenangoensis) Recovery Plan, First Revision. Hadley, Massachusetts. xiii + 55 pp. Additional copies of this plan can be obtained from: U.S. Fish and Wildlife Service New York Field Office 3817 Luker Road Cortland, New York 13045 The recovery plan also can be downloaded from the U.S. -
An Analysis of Morphological and Molecular Genetic Characters for Species Identification of Amber Snails Succinea Putris (Succineidae)
Invertebrate Zoology, 2020, 17(1): 1–17 © INVERTEBRATE ZOOLOGY, 2020 An analysis of morphological and molecular genetic characters for species identification of amber snails Succinea putris (Succineidae) E.E. Prokhorova, R.R. Usmanova, G.L. Ataev Herzen State Pedagogical University of Russia, Moyka River emb., 48, St. Petersburg, 191186 Russia. E-mail: [email protected] ABSTRACT: We analysed morphological and genotypic diversity of snails Succinea putris (L., 1758) collected in the north-west of Russia and in the Republic of Belarus. No significant morphological differences between snails from different populations were found. The studied snails were identical by the nucleotide sequence of ITS1-5.8S-ITS2 region of rDNA. This means that the secondary structure of the ITS2 transcript of rDNA can be used for species identification of S. putris. Genetic variability based on mitochondrial markers was insignificant. Genetic distances between samples made up 0.002–0.021 for COI gene loci and 0.003–0.01 for CytB gene loci. We found ten haplotypes of the mitochondrial gene CytB and nine haplotypes of the mitochondrial gene COI. Phylogenetic reconstructions based on the obtained nucleotide sequences elucidated interrelationships between geographically distant populations of S. putris and confirmed the taxonomic position of this species. The genetic homogeneity of snails S. putris found in our study probably explains a low variability of morphological characters in this species. How to cite this article: Prokhorova E.E., Usmanova R.R., Ataev G.L. 2020. An analysis of morphological and molecular genetic characters for species identification of amber snails Succinea putris (Succineidae) // Invert. Zool.