Fail-Safe Control of Translation Initiation by Dissociation of Eif2a
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Translational Resistance of Late Alphavirus Mrna to Eif2␣ Phosphorylation: a Strategy to Overcome the Antiviral Effect of Protein Kinase PKR
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Translational resistance of late alphavirus mRNA to eIF2␣ phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR Iván Ventoso,1,3 Miguel Angel Sanz,2 Susana Molina,2 Juan José Berlanga,2 Luis Carrasco,2 and Mariano Esteban1 1Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología/CSIC, Cantoblanco, E-28049 Madrid, Spain; 2Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Facultad de Ciencias, Cantoblanco, E-28049 Madrid, Spain The double-stranded RNA-dependent protein kinase (PKR) is one of the four mammalian kinases that phosphorylates the translation initiation factor 2␣ in response to virus infection. This kinase is induced by interferon and activated by double-stranded RNA (dsRNA). Phosphorylation of eukaryotic initiation factor 2␣ (eIF2␣) blocks translation initiation of both cellular and viral mRNA, inhibiting virus replication. To counteract this effect, most viruses express inhibitors that prevent PKR activation in infected cells. Here we report that PKR is highly activated following infection with alphaviruses Sindbis (SV) and Semliki Forest virus (SFV), leading to the almost complete phosphorylation of eIF2␣. Notably, subgenomic SV 26S mRNA is translated efficiently in the presence of phosphorylated eIF2␣. This modification of eIF2 does not restrict viral replication; SV 26S mRNA initiates translation with canonical methionine in the presence of high levels of phosphorylated eIF2␣. Genetic and biochemical data showed a highly stable RNA hairpin loop located downstream of the AUG initiator codon that is necessary to provide translational resistance to eIF2␣ phosphorylation. This structure can stall the ribosomes on the correct site to initiate translation of SV 26S mRNA, thus bypassing the requirement for a functional eIF2. -
Effects of Single Amino Acid Deficiency on Mrna Translation Are Markedly
www.nature.com/scientificreports OPEN Efects of single amino acid defciency on mRNA translation are markedly diferent for methionine Received: 12 December 2016 Accepted: 4 May 2018 versus leucine Published: xx xx xxxx Kevin M. Mazor, Leiming Dong, Yuanhui Mao, Robert V. Swanda, Shu-Bing Qian & Martha H. Stipanuk Although amino acids are known regulators of translation, the unique contributions of specifc amino acids are not well understood. We compared efects of culturing HEK293T cells in medium lacking either leucine, methionine, histidine, or arginine on eIF2 and 4EBP1 phosphorylation and measures of mRNA translation. Methionine starvation caused the most drastic decrease in translation as assessed by polysome formation, ribosome profling, and a measure of protein synthesis (puromycin-labeled polypeptides) but had no signifcant efect on eIF2 phosphorylation, 4EBP1 hyperphosphorylation or 4EBP1 binding to eIF4E. Leucine starvation suppressed polysome formation and was the only tested condition that caused a signifcant decrease in 4EBP1 phosphorylation or increase in 4EBP1 binding to eIF4E, but efects of leucine starvation were not replicated by overexpressing nonphosphorylatable 4EBP1. This suggests the binding of 4EBP1 to eIF4E may not by itself explain the suppression of mRNA translation under conditions of leucine starvation. Ribosome profling suggested that leucine deprivation may primarily inhibit ribosome loading, whereas methionine deprivation may primarily impair start site recognition. These data underscore our lack of a full -
Detecting Translational Regulation by Change Point Analysis of Ribosome Profiling Datasets
bioRxiv preprint doi: https://doi.org/10.1101/003210; this version posted March 5, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Detecting translational regulation by change point analysis of ribosome profiling datasets Zupanic A1, Meplan C2, Grellscheid SN3, Mathers JC1, Kirkwood TBL1, Hesketh JE2, Shanley DP1 1Centre for Integrated Systems Biology of Ageing & Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle-upon-Tyne, NE4 5PL, UK 2Institute for Cell and Molecular Biosciences and Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK 3School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK Running title: Translational regulation in ribosome profiles Keywords: ribosome profiling, translation regulation, change point, mathematical model Corresponding author: Daryl Shanley Centre for Integrated Systems Biology of Ageing & Nutrition, Institute for Ageing and Health, Newcastle University, NE4 5PL, UK Email: [email protected] Fax: +441912481101 1 bioRxiv preprint doi: https://doi.org/10.1101/003210; this version posted March 5, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Ribo-Seq maps the location of translating ribosomes on mature mRNA transcripts. While ribosome density is constant along the length of the mRNA coding region, it can be altered by translational regulatory events. -
YEAST CELLS MAY USE AUC OR AAG AS INITIATION CODON for PROTEIN SYNTHESIS by OLE OLSEN
Carlsberg Res. Commun. Vol. 52, p. 83-90, 1987 YEAST CELLS MAY USE AUC OR AAG AS INITIATION CODON FOR PROTEIN SYNTHESIS by OLE OLSEN Department of Physiology, Carlsberg Laboratory, Gamle Cadsbergvej 10, DK-2500 Copenhagen Valby Keywords: Recombinant DNA, translation initiation, secretion A yeast expression plasmid without an ATG codon for initiation of mouse a-amylase protein synthesis directs the synthesis and secretion of active enzyme indistinguishable from both native mouse a-amylase and amylase synthesized from plasmids with normal AT(3 initiation codons. The initiation of amylase synthesis directed by this plasmid is at either an AUC or an AAG codon. In either case the amino acid sequence of the hydrophobic core and peptidase cleaving region of the signal peptide are normal, and the protein translation remains in frame with the structural gene of the mouse a-amylase. 1. INTRODUCTION mal context for initiation was 6NNAUGGA A where Initiation of protein synthesis in eukaryotes is a purine in position -3 (three nucleotides up- catalysed by a relatively large number of specific stream of the AUG initiator codon) is most eukaryotic initation factors (eIFs) bringing highly conserved. about the formation of the 80S initiation com- Until recently it was generally believed that plex composed ofmRNA, an 80S ribosome and eukaryotic ribosomes initiate exclusively at met-tRNAi (l 3). Eukaryotic met-tRNAi differs AUG codons although it had been shown by from its prokaryotic counterpart by being asso- RAJBHANDARYand GHOSH (24) that yeast met- ciated with the 40S pre-initation complex before tRNAi may function with either AUG or GUG binding to mRNA (13). -
Bio 102 Practice Problems Genetic Code and Mutation
Bio 102 Practice Problems Genetic Code and Mutation Multiple choice: Unless otherwise directed, circle the one best answer: 1. Choose the one best answer: Beadle and Tatum mutagenized Neurospora to find strains that required arginine to live. Based on the classification of their mutants, they concluded that: A. one gene corresponds to one protein. B. DNA is the genetic material. C. "inborn errors of metabolism" were responsible for many diseases. D. DNA replication is semi-conservative. E. protein cannot be the genetic material. 2. Choose the one best answer. Which one of the following is NOT part of the definition of a gene? A. A physical unit of heredity B. Encodes a protein C. Segement of a chromosome D. Responsible for an inherited characteristic E. May be linked to other genes 3. A mutation converts an AGA codon to a TGA codon (in DNA). This mutation is a: A. Termination mutation B. Missense mutation C. Frameshift mutation D. Nonsense mutation E. Non-coding mutation 4. Beadle and Tatum performed a series of complex experiments that led to the idea that one gene encodes one enzyme. Which one of the following statements does not describe their experiments? A. They deduced the metabolic pathway for the synthesis of an amino acid. B. Many different auxotrophic mutants of Neurospora were isolated. C. Cells unable to make arginine cannot survive on minimal media. D. Some mutant cells could survive on minimal media if they were provided with citrulline or ornithine. E. Homogentisic acid accumulates and is excreted in the urine of diseased individuals. 5. -
Universal Conservation in Translation Initiation Revealed By
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 4342–4347, April 1999 Biochemistry Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2 (eukaryotic translation initiation factoryFUN12yinitiator tRNA) JOON H. LEE*, SANG KI CHOI*, ANTONINA ROLL-MECAK†,STEPHEN K. BURLEY†‡, AND THOMAS E. DEVER*§ *Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716; and †Laboratories of Molecular Biophysics and ‡Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021 Communicated by Igor B. Dawid, National Institute of Child Health and Human Development, Bethesda, MD, February 11, 1999 (received for review September 22, 1998) ABSTRACT Binding of initiator methionyl-tRNA to ribo- romyces cerevisiae (7) revealed the presence of IF2 homologs somes is catalyzed in prokaryotes by initiation factor (IF) IF2 in addition to all three eIF2 subunits in this archaeon and and in eukaryotes by eIF2. The discovery of both IF2 and eIF2 eukaryote, respectively. The identification of both IF2 and homologs in yeast and archaea suggested that these microbes eIF2 homologs in archaea was surprising and contributed to possess an evolutionarily intermediate protein synthesis ap- speculation that archaea may possess a translation apparatus paratus. We describe the identification of a human IF2 intermediate between prokaryotes and eukaryotes (8). The homolog, and we demonstrate by using in vivo and in vitro presence of the IF2 homolog in yeast suggests instead that IF2 assays that human IF2 functions as a translation factor. In has been conserved throughout the evolution of microbes from addition, we show that archaea IF2 can substitute for its yeast bacteria to the lower eukaryotes. -
Initiation Factor Eif5b Catalyzes Second GTP-Dependent Step in Eukaryotic Translation Initiation
Initiation factor eIF5B catalyzes second GTP-dependent step in eukaryotic translation initiation Joon H. Lee*†, Tatyana V. Pestova†‡§, Byung-Sik Shin*, Chune Cao*, Sang K. Choi*, and Thomas E. Dever*¶ *Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716; ‡Department of Microbiology and Immunology, State University of New York Health Science Center, Brooklyn, NY 11203; and §A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia Edited by Harry F. Noller, University of California, Santa Cruz, CA, and approved October 31, 2002 (received for review September 19, 2002) Initiation factors IF2 in bacteria and eIF2 in eukaryotes are GTPases In addition, when nonhydrolyzable GDPNP was substituted Met that bind Met-tRNAi to the small ribosomal subunit. eIF5B, the for GTP, eIF5B catalyzed subunit joining; however, the factor eukaryotic ortholog of IF2, is a GTPase that promotes ribosomal was unable to dissociate from the 80S ribosome after subunit subunit joining. Here we show that eIF5B GTPase activity is re- joining (7). quired for protein synthesis. Mutation of the conserved Asp-759 in To dissect the function of the eIF5B G domain and test the human eIF5B GTP-binding domain to Asn converts eIF5B to an model that two GTP molecules are required in translation XTPase and introduces an XTP requirement for subunit joining and initiation, we mutated conserved residues in the eIF5B G translation initiation. Thus, in contrast to bacteria where the single domain and tested the function of the mutant proteins in GTPase IF2 is sufficient to catalyze translation initiation, eukaryotic translation initiation. -
Reporterseq Reveals Genome-Wide Dynamic Modulators of the Heat
RESEARCH ARTICLE ReporterSeq reveals genome-wide dynamic modulators of the heat shock response across diverse stressors Brian D Alford1†, Eduardo Tassoni-Tsuchida1,2†, Danish Khan1, Jeremy J Work1, Gregory Valiant3, Onn Brandman1* 1Department of Biochemistry, Stanford University, Stanford, United States; 2Department of Biology, Stanford University, Stanford, United States; 3Department of Computer Science, Stanford University, Stanford, United States Abstract Understanding cellular stress response pathways is challenging because of the complexity of regulatory mechanisms and response dynamics, which can vary with both time and the type of stress. We developed a reverse genetic method called ReporterSeq to comprehensively identify genes regulating a stress-induced transcription factor under multiple conditions in a time- resolved manner. ReporterSeq links RNA-encoded barcode levels to pathway-specific output under genetic perturbations, allowing pooled pathway activity measurements via DNA sequencing alone and without cell enrichment or single-cell isolation. We used ReporterSeq to identify regulators of the heat shock response (HSR), a conserved, poorly understood transcriptional program that protects cells from proteotoxicity and is misregulated in disease. Genome-wide HSR regulation in budding yeast was assessed across 15 stress conditions, uncovering novel stress-specific, time- specific, and constitutive regulators. ReporterSeq can assess the genetic regulators of any transcriptional pathway with the scale of pooled genetic screens and the precision of pathway- specific readouts. *For correspondence: [email protected] †These authors contributed equally to this work Introduction Competing interests: The The heat shock response (HSR) is a conserved stress response that shields cells from cytoplasmic authors declare that no proteotoxicity by increasing the expression of protective proteins (Lindquist, 1986; Mori- competing interests exist. -
Ef-G:Trna Dynamics During the Elongation Cycle of Protein Synthesis
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Ef-G:trna Dynamics During the Elongation Cycle of Protein Synthesis Rong Shen University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons Recommended Citation Shen, Rong, "Ef-G:trna Dynamics During the Elongation Cycle of Protein Synthesis" (2015). Publicly Accessible Penn Dissertations. 1131. https://repository.upenn.edu/edissertations/1131 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1131 For more information, please contact [email protected]. Ef-G:trna Dynamics During the Elongation Cycle of Protein Synthesis Abstract During polypeptide elongation cycle, prokaryotic elongation factor G (EF-G) catalyzes the coupled translocations on the ribosome of mRNA and A- and P-site bound tRNAs. Continued progress has been achieved in understanding this key process, including results of structural, ensemble kinetic and single- molecule studies. However, most of work has been focused on the pre-equilibrium states of this fast process, leaving the real time dynamics, especially how EF-G interacts with the A-site tRNA in the pretranslocation complex, not fully elucidated. In this thesis, the kinetics of EF-G catalyzed translocation is investigated by both ensemble and single molecule fluorescence resonance energy transfer studies to further explore the underlying mechanism. In the ensemble work, EF-G mutants were designed and expressed successfully. The labeled EF-G mutants show good translocation activity in two different assays. In the smFRET work, by attachment of a fluorescent probe at position 693 on EF-G permits monitoring of FRET efficiencies to sites in both ribosomal protein L11 and A-site tRNA. -
Translational Control in Cancer Etiology
Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Translational Control in Cancer Etiology Davide Ruggero Helen Diller Cancer Center, School of Medicine, University of California, San Francisco, California 94158 Correspondence: [email protected] The link between perturbations in translational control and cancer etiology is becoming a primary focus in cancer research. It has now been established that genetic alterations in several components of the translational apparatus underlie spontaneous cancers as well as an entire class of inherited syndromes known as “ribosomopathies” associated with in- creased cancer susceptibility. These discoveries have illuminated the importance of dereg- ulations in translational control to very specific cellular processes that contribute to cancer etiology. In addition, a growing body of evidence supports the view that deregulation of translational control is a common mechanism by which diverse oncogenic pathways promote cellular transformation and tumor development. Indeed, activation of these key oncogenic pathways induces rapid and dramatic translational reprogramming both by in- creasing overall protein synthesis and by modulating specific mRNA networks. These trans- lational changes promote cellular transformation, impacting almost every phase of tumor development. This paradigm represents a new frontier in the multihit model of cancer for- mation and offers significant promise for innovative cancer therapies. Current research, -
EIF2S1 Antibody Cat
EIF2S1 Antibody Cat. No.: 57-063 EIF2S1 Antibody Confocal immunofluorescent analysis of EIF2S1 Antibody EIF2S1 Antibody immunohistochemistry analysis in with Hela cell followed by Alexa Fluor 488-conjugated goat formalin fixed and paraffin embedded human stomach anti-rabbit lgG (green). DAPI was used to stain the cell tissue followed by peroxidase conjugation of the nuclear (blue). secondary antibody and DAB staining. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Mouse Predicted species reactivity based on immunogen sequence: Rat, Chicken, Yeast, Bovine, HOMOLOGY: Drosophila This EIF2S1 antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 60-89 amino acids from the N-terminal region of human EIF2S1. TESTED APPLICATIONS: IF, IHC-P, WB September 30, 2021 1 https://www.prosci-inc.com/eif2s1-antibody-57-063.html For WB starting dilution is: 1:1000 APPLICATIONS: For IF starting dilution is: 1:10~50 For IHC-P starting dilution is: 1:10~50 PREDICTED MOLECULAR 36 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: EIF2S1 Eukaryotic translation initiation factor 2 subunit 1, Eukaryotic translation initiation factor 2 ALTERNATE NAMES: subunit alpha, eIF-2-alpha, eIF-2A, eIF-2alpha, EIF2S1, EIF2A ACCESSION NO.: P05198 PROTEIN GI NO.: 124200 GENE ID: 1965 USER NOTE: Optimal dilutions for each application to be determined by the researcher. -
Translation Initiation Factor Modifications and the Regulation of Protein Synthesis in Apoptotic Cells
Cell Death and Differentiation (2000) 7, 603 ± 615 ã 2000 Macmillan Publishers Ltd All rights reserved 1350-9047/00 $15.00 www.nature.com/cdd Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells ,1 1 1 2 MJ Clemens* , M Bushell , IW Jeffrey , VM Pain and Introduction SJ Morley2 Apoptosis is now recognized to be an important physiological 1 Department of Biochemistry and Immunology, Cellular and Molecular process by which cell and tissue growth, differentiation and Sciences Group, St George's Hospital Medical School, Cranmer Terrace, programmes of development are regulated. The molecular London SW17 ORE, UK mechanisms of apoptosis have been the subject of intense 2 Biochemistry Group, School of Biological Sciences, University of Sussex, research in recent years (for reviews see1±5). Cell death is Brighton BN1 9QG, UK induced following the stimulation of specific cell surface * Corresponding author: MJ Clemens, Department of Biochemistry and Immunology, Cellular and Molecular Sciences Group, St George's Hospital receptors such as the CD95 (Apo-1/Fas) antigen or the 6 Medical School, Cranmer Terrace, London SW17 ORE, UK. Tel: +44 20 8725 tumour necrosis factor-a (TNFa) receptor-1 (TNFR-1). It can 5770; Fax: +44 20 8725 2992; E-mail: [email protected] also result from intracellular events such as DNA damage or from a lack of specific growth factors. The relative importance Received 6.12.99; revised 25.1.00; accepted 20.3.00 of these different influences varies between cell types. The Edited by M Piacentini apoptotic process can be divided into a commitment phase and an execution phase.