1 Origin of myrmekite as it relates to K-, Na-, and Ca-metasomatism and the metasomatic origin of some granite masses where myrmekite occurs. Lorence Gene Collins1 1Department of Geological Sciences, California State University Northridge, Northridge, CA 91330 Barbara Jane Collins2 2Department of Biology, California Lutheran University, Thousand Oaks, CA 91360 1email:
[email protected] December 2013 Key words: metasomatism, K-feldspar, granite, myrmekite ABSTRACT Petrologists generally agree that granitic rocks form by crystallization from magma. Some granitic bodies, however, have been modified by alkali metasomatism at subsolvus temperatures (350-550°C). Myrmekite offers a petrographic means to detect the occurrence and conditions of alkali metasomatism in granitic rocks. Because metasomatic minerals inherit the hypidiomorphic textures of the former magmatic rocks, K-, Na-, and Ca-metasomatism may go unrecognized were it not for the additional presence of myrmekite in combination with other textural and mineralogical features, including microfractures, parallel alignments of silicate lattices and feldspar twin planes, quartz sieve-textures in ferromagnesian silicates, and sizes of quartz vermicules. Deformation is a precursor for myrmekite formation, but recrystallization may obliterate the deformation textures, so that myrmekite is the only remnant of prior deformation history. Crystals under stress develop a porosity that opens rocks to hydrous fluid that moves through the crystals and create a large-scale, coupled, dissolution-reprecipitation that totally modifies the rocks’ compositions. The loss of displaced Ca, Mg, Fe, and Al on a plutonic scale causes shrinkages as the residue becomes more granitic. The maximum width of the quartz vermicules in myrmekite correlates with the An content of the primary plagioclase being replaced that was once in the surrounding non-myrmekite-bearing relatively more-mafic rock.