Intriguing Minerals: Lorandite, Tlass2, a Geochemical Detector of Solar

Total Page:16

File Type:pdf, Size:1020Kb

Intriguing Minerals: Lorandite, Tlass2, a Geochemical Detector of Solar ChemTexts (2019) 5:12 https://doi.org/10.1007/s40828-019-0086-3 LECTURE TEXT Intriguing minerals: lorandite, TlAsS2, a geochemical detector of solar neutrinos Gligor Jovanovski1,2 · Blažo Boev3 · Petre Makreski2 · Trajče Staflov2 · Ivan Boev3 Received: 1 April 2019 / Accepted: 15 April 2019 © Springer Nature Switzerland AG 2019 Abstract This lecture text demonstrates how the mineral lorandite is used as a detector of solar neutrinos. Because the age of the lorandite deposit in Allchar, North Macedonia, is known, this opened the possibility to determine the solar neutrino fux over the last 4.3 million years. Keywords Lorandite · Thallium · Lead · Mineral · Neutrino Lorandite darker red color, semimetallic luster and perfect cleavage along the (001), (201) and (110) planes. Some crystals are Lorandite (or lorándite), TlAsS2, is well known as the most coated with a brownish yellow crust. Lorandite crystals common thallium-containing mineral [1, 2]. It was frst of 1 cm are typical for this site, although exceptional sin- discovered in the Allchar mine, Macedonia, in 1894 [3–5], gle crystals up to 5 cm have also been found. Lorandite is and the frst chemical analysis was performed by Loczka named in honor of the Hungarian physicist Loránd Eötvös [6]. Smaller quantities were later found in other localities (1848–1919) (Fig. 1). worldwide: the Dzhizhikrut Sb–Hg mine in Tajikistan, the The Allchar locality has been known since the twelfth Beshtau uranium deposit in Russia, the Lanmuchang Hg–Tl or thirteenth century, and according to other estimations, deposit in China, the Zarshuran gold mine in Iran, the Len- even longer. The chemical composition of lorandite from genbach Quarry in Switzerland, and three locations in the Allchar was confrmed by Jannasch [9] soon after the frst USA (New Rambler Cu–Ni mine in Wyoming, Jerritt Can- analysis conducted by Loczka [6]. Allchar’s lorandite is a yon mines in Nevada, and Mercur gold mine in Utah) [2]. pure mineral, containing only traces of K, Cr, Fe, Cu, Pb Nevertheless, Allchar remains the richest lorandite-bearing and Zn [10–16]. The ore-grade in the richest zone contains locality in the world. about 18,000 m 3 of the ore, with an average thallium content The monoclinic tabular aggregates of lorandite are typi- of 0.35%. Lorandite is the most heavily exploited sulfosalt cally dispersed throughout the realgar (As 4S4) and orpiment mineral from Allchar [17–19] because of its ability to act as (As2S3) mineral hosts. Well-developed crystals are very rare; a geochemical detector of the solar proton–proton (pp) neu- however, 32 unique crystal forms have been observed [4, trino fux [20, 21]. Neutrinos are produced in vast numbers 7, 8]. Lorandite is easily distinguished from realgar by its by the Sun as a result of ongoing fusion processes taking place in the Sun’s interior. It is known that the Sun generates most of its energy via the pp chain, which is responsible for * Gligor Jovanovski 98.4% of the solar output [22]. In the frst reaction of the pp [email protected] chain, a proton decays into a neutron in the immediate vicin- 1 Research Center for Environment and Materials, Academy ity of another proton. The two particles form the hydrogen of Sciences and Arts of North Macedonia, MASA, Bul. isotope deuterium, along with a positron and an electron Krste Misirkov 2, 1000 Skopje, North Macedonia neutrino (Eq. 1): 2 Institute of Chemistry, Faculty of Natural Sciences → 2 + and Mathematics, Ss. Cyril and Methodius University, p + p H + e + e. (1) 1000 Skopje, North Macedonia 3 Faculty of Natural and Technical Sciences, Goce Delčev University, 2000 Štip, North Macedonia Vol.:(0123456789)1 3 12 Page 2 of 5 ChemTexts (2019) 5:12 ̄� of the neutrino (more correctly electron antineutrino e ) had been seen earlier in recoil experiments [30]. In 1956, the American physicists Clyde Lorrain Cowan Jr. (1919–1974) and Frederick Reines (1918–1998), in collaboration with other scientists [31, 32], discovered the neutrino according to the reaction ̄� → + p + e n + e . (4) In recognition of this discovery, Frederick Reines was awarded the 1995 Nobel Prize in Physics, which he shared with the American chemical engineer and physicist Martin Lewis Perl (1927–2014), awarded for his discovery of the tau lepton. The Sun is a powerful source of neutrinos, which are the Fig. 1 Lorandite from Allchar product of nuclear fusion reactions taking place in its core 10 −2 −1 (Eq. 1), the total fux of which is Φν = 6.5 × 10 ν cm s Solar neutrino detection [33]. The basis of solar neutrino detection is the fact that the dominant component in the solar neutrino spectrum consists Interest in the Allchar ore locality has increased consider- of so-called pp-neutrinos, whose fux can be determined by ably since 1976, when the American physicist Melvin Freed- means of radiochemical and geochemical detectors [34]. man (1930–1997) realized that the mineral lorandite could Neutrinos are neutral (uncharged) particles with a mass be used as a geochemical dosimeter for the solar neutrino very close to zero. They possess incredible penetration abil- fux. The idea is simple: the Allchar ore locality is the larg- ity, and travel at nearly the speed of light, from the Sun’s to est lorandite deposit in the world, and its age is known to be the Earth’s surface in around 8 min. Therefore, practically 4.31(2) Ma [23]. Since 205Tl interacts with neutrinos accord- all neutrinos that strike the Earth penetrate to its opposite ing to side. However, an exceptionally small number interact with condensed matter on Earth. In order to count the neutrinos 205 ≥ →205 − Tl + e(E 52 keV) Pb + e , (2) and then to confrm the standard solar model (SSM) pro- the average neutrino fux Φν from the Sun can be calculated posed by Bahcall [22], which predicts that most of the fux using the equation: comes from the pp-neutrinos with energies below 0.4 MeV, the American chemist and physicist Raymond (“Ray”) Davis N205Pb, exp − N205Pb, B Jr. (1914–2006) in 1960 [35, 36] placed 100,000 gallons = C . t (3) m1 − e (= 379 cubic meters) of tetrachloroethylene, C2Cl4, at a depth of about 1500 m in a gold mine in the US state of −19 −1 C = 3.79 × 10 mol a , σν: cross section of solar pp- South Dakota. The depth is crucial because it is necessary 205 neutrino capture by Tl, N205Pb, exp : number of experimen- to eliminate the cosmic radiation efect, which could be 205 tally determined Pb atoms per mass m, N205Pb, B : number of registered by the detector, causing inaccurate experimen- 37 205Pb atoms per mass m formed by background reaction, λ: tal results. The precise measurements ( Ar produced in the 37 decay constant of 205Pb (λ = 4.01(16) × 10−8 a−1), t = 4.31(2) reaction between neutrino particles and Cl) lasted about Ma [2, 24, 25]. In age determinations [26, 27] using the 20 years. Davis confrmed the functionality of the detector, formation and decay of radioisotopes, the activation fux is but the number of neutrinos registered amounted to only known and the activation time is calculated, whereas in this one-third of the theoretical prediction. This result, which case the age is known and the fux is calculated. became known as “the solar neutrino problem”, confounded Neutrinos were frst introduced to physics as hypothetical physicists for years. Two alternatives were considered: modi- particles by the Austrian-born theoretical physicist Wolf- fying the model or checking the experiments. As a conse- gang Ernst Pauli (1900–1958) [28]. At that time, Pauli had quence of the unexpected and possibly inaccurate results, to cope with the fact that electrons, emitted in ordinary beta various alternative solar neutrino detectors using gallium, decays, exhibited a continuous spectrum, suggesting a three- lithium, manganese and other elements were considered for body rather than a two-body decay. The third particle, which future research. had been postulated and initially named “neutron” by Pauli, To that end, in 1975, the Argonne National Labora- was given its current name by the Italian-born American tory in Chicago, Illinois sent a letter to the Yugoslavian physicist Enrico Fermi (1901–1954) [29], who called it government, requesting information regarding the condi- “neutrino”, meaning “little neutron” in Italian. The existence tion of the Allchar deposit, which was known to have the 1 3 ChemTexts (2019) 5:12 Page 3 of 5 12 richest concentration of thallium minerals in the world. After [40]. The main purpose was to evaluate the erosion around receiving an answer from the Yugoslavian government, Pro- the mine during the period of over four million years of fessor Melvin Freedman from Argonne National Laboratory existence of lorandite, and to calculate the input of both cos- visited the Fe–Ni mining company at Kavadarci and All- mic radiation and natural radioactivity during that period. In char. Freedman et al. [24] proposed thallium as a detector of the meantime, all projects based on the use of geochemical neutrino activity by measuring the reaction with neutrinos, detectors for counting neutrinos were interrupted. In order to which transform thallium into lead. promote the project, two international conferences and fve According to Freedman et al. [24], solar neutrino detec- international workshops were organized. tion was possible based on these rare interactions. The The problem of solar neutrinos has since been solved by a authors proposed that one of the thallium isotopes (205Tl) series of experiments performed at several places around the in the mineral lorandite, which during the interaction with world. The most important of these lasted around 20 years neutrinos transforms into the lead isotope 205Pb (cf.
Recommended publications
  • Environmental Exposure of Thallium and Potential Health Risk in an Area of High Natural Concentrations of Thallium: Southwest Guizhou, China
    Environmental Exposure and Health 367 Environmental exposure of thallium and potential health risk in an area of high natural concentrations of thallium: southwest Guizhou, China T. Xiao1, L. He1,3, J. Guha2, J. Lin1 & J. Chen1 1State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, People’s Republic of China 2Sciences de la Terre, Université du Québec à Chicoutimi, Canada 3Graduate School of Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract Little is known in the literature about thallium (Tl) exposure from naturally occurring Tl contamination. This paper draws attention to the potential health risk posed by high concentrations of naturally occurring Tl in the environment. The inhabitants of a rural area of southwest Guizhou Province, China, reside within a natural Tl accumulated environment resulting from the Tl-rich sulfide mineralization, and they face a severe Tl exposure in their daily lives. The daily intake 1.9 mg Tl from the consumed food crops was estimated for a local adult inhabitant of Lanmuchang. High Tl concentrations were detected in urines of the local residents. Measured urinary Tl levels are as high as 2.51-2,668 µg/L, surpassing the accepted world urine Tl level <1 mg/L for “non-exposed” humans. However, there is a positive relationship between the extent of Tl exposure from Tl in soil and crops in the immediate environment and the levels of Tl detected in urine. This study has been able to identify that the elevated urinary Tl levels are mainly attributable to Tl accumulation in locally grown vegetables acquiring Tl from natural sources in the local soils.
    [Show full text]
  • ~Ui&£R5itt! of J\Rij!Oua
    Minerals and metals of increasing interest, rare and radioactive minerals Authors Moore, R.T. Rights Arizona Geological Survey. All rights reserved. Download date 06/10/2021 17:57:35 Link to Item http://hdl.handle.net/10150/629904 Vol. XXIV, No.4 October, 1953 ~ui&£r5itt! of J\rij!oua ~ul1etiu ARIZONA BUREAU OF MINES MINERALS AND METALS OF INCREASING INTEREST RARE AND RADIOACTIVE MINERALS By RICHARD T. MOORE ARIZONA BUREAU OF MINES MINERAL TECHNOLOGY SERIES No. 47 BULLETIN No. 163 THIRTY CENTS (Free to Residents of Arizona) PUBLISHED BY ~tti£ll~r5itt! of ~rh!Omt TUCSON, ARIZONA TABLE OF CONTENTS INTRODUCTION 5 Acknowledgments 5 General Features 5 BERYLLIUM 7 General Features 7 Beryllium Minerals 7 Beryl 7 Phenacite 8 Gadolinite 8 Helvite 8 Occurrence 8 Prices and Possible Buyers ,........................................ 8 LITHIUM 9 General Features 9 Lithium Minerals 9 Amblygonite 9 Spodumene 10 Lepidolite 10 Triphylite 10 Zinnwaldite 10 Occurrence 10 Prices and Possible Buyers 10 CESIUM AND RUBIDIUM 11 General Features 11 Cesium and Rubidium Minerals 11 Pollucite ..................•.........................................................................., 11 Occurrence 12 Prices and Producers 12 TITANIUM 12 General Features 12 Titanium Minerals 13 Rutile 13 Ilmenite 13 Sphene 13 Occurrence 13 Prices and Buyers 14 GALLIUM, GERMANIUM, INDIUM, AND THALLIUM 14 General Features 14 Gallium, Germanium, Indium and Thallium Minerals 15 Germanite 15 Lorandite 15 Hutchinsonite : 15 Vrbaite 15 Occurrence 15 Prices and Producers ~ 16 RHENIUM 16
    [Show full text]
  • Thallium Mobility in Mining Wastes at the Crven Dol Locality, Allchar Deposit, North Macedonia
    EGU2020-4959, updated on 25 Sep 2021 https://doi.org/10.5194/egusphere-egu2020-4959 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Thallium mobility in mining wastes at the Crven Dol locality, Allchar deposit, North Macedonia Tamara Đorđević1, Uwe Kolitsch1,2, Petr Drahota3, Magdaléna Knappová3, Juraj Majzlan4, Stefan Kiefer4, Tomáš Mikuš5, Goran Tasev6, Todor Serafimovski6, Ivan Boev6, and Blažo Boev6 1Institut für Mineralogie und Kristallographie, Universität Wien, Althanstr. 14, A-1090 Wien, Austria 2Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria 3Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic 4Institute of Geosciences, Department of Mineralogy, Friedrich-Schiller-Universität, Carl-Zeiss-Promenade 10, 07745 Jena, Germany 5Earth Science Institute, Slovak Academy of Sciences, Geological Division, Ďumbierska 1, 974 01 Banská Bystrica, Slovakia 6Department of Mineral Deposits, Faculty of Natural Sciences, University “Goce Delčev”-Štip, Goce Delčev 89, 2000 Štip, North Macedonia In order to better understand the environmental behaviour of thallium, we have chosen the abandoned As–Sb–Tl–Au Allchar deposit (North Macedonia) with unique mineral composition and high thallium grades of the ore. We used pore water analyses, selective extractions, single-crystal and powder X-ray diffraction (PXRD), SEM-EDS, electron microprobe analysis (EMPA), and Raman spectroscopy to determine the distribution and speciation of thallium in waste dump material at the Tl-rich Crven Dol locality in the northern part of the Allchar deposit. PXRD studies showed that the various solid waste samples are comprised mostly of carbonates (dolomite and calcite), gypsum, quartz, muscovite, kaolinite-group minerals followed by orpiment, realgar, pyrite, marcasite, lorandite, and various iron and calcium arsenates and iron (hydro)oxides, both amorphous and crystalline.
    [Show full text]
  • XIII 0609.Pdf
    XIII_0609 N. Jb. Miner. Abh. Stuttgart, Oktober 1994 Possibilities of concentrating the thallium minerallorandite from the Allchar deposit, Crven Dol region By Blagoja Petrov, Donka Andonova, Trajce Stafilov and Tome Novakovski, Skopje With 3 figures and 3 tables in the text PETROV, B., ANDONOVA, D. STAHLOV, T. & NOVAKOVSKJ, T.: Possibilities of concentrating the thallium mineral from the Allchar deposit , Crven Dol region . ­ N. jb. Miner. Abh. 167: 413-420; Stuttgart 1994. Abstract: The paper presents results obta ined by laboratory testings on th e possibilities of concentrating the thallium minerallorandite from ore in the Allchar deposit, Crven Dol region. For concentrating the lorandite from ore, stand ard methods were used: gravity concentrating in heavy liquids, gravity concentrating on a concentrating table, high intensity magnetic separation by an isodynamic separator "Fr ant z" as well as their combinations. From the -preconcentrates obtained, pure grains of lorandire were sepa­ rated by picking of individual grains. Ke y w 0 r d s: Thallium minerals; lorandite minera l; concentrating lor andite; gravity concentrating; high intensity magnetic separation. Introduction Thallium belongs to the rare metals. According to Arence, the average thallium content in the Earth's crust amounts to about 0.003 %. It mostly appears in a form of solid solution in the lattices of sulfide minerals. Thal­ lium, very seldom, forms its own minerals. Most frequently, it is in para­ genesis with the sulfide minerals particularly galenite, sphalerite, mar casite and pyrite. Usually, it can be obtained as a by-product when roasting pyrite for the production of sulphuric acid and smelting of lead and zinc.
    [Show full text]
  • Allchar Mineral Assemblage 3
    Geologica Macedonica, Vol. 15-16, p. 1-23 (2001-2002) Suppl. GEOME2 SSN 0352 - 1206 Manuscript received: December 15, 200 1 UDC: 553.08 (497 .7) Accepted: March 3, 2002 Original scientific paper ~• ALLCHAR l\1INERAL ASSEMBLAGE l 3 l 4 Blazo Boev , Vladimir Bermanec , Todor Serafimovski\ Sonja Lepitkova , Snezana Mikulcic , 5 5 5 Marin ~oufek\ Gligor Jovanovski , Trajce Stafilov , Metodija Najdoski IDepartment ofPetrology, Mineralogy and Geochemistry, Faculty ofMining and Geology, "Sv. Kiril i Metodij" University, Goce Delcev 89, MK-2000 Stip, Republic ofMacedonia 2Department ofMineral Deposits, Faculty ofMining and Geology, "Sv. Kiril i Metodij" University, Goce Delcev 89, MK-2000 Stip, Republic of Macedonia 3Institute ofMineralogy and Petrology, Department ofGeology, Faculty ofScience, University ofZagreb, Horvatovac bb, HR-JOOOO Zagreb, Croatia 4Department ofMineralogy and Petrology, Croatian Natural History Museum, Demetrova I, HR-JOOOO Zagreb, Croatia 5Institute of Chemistry, Faculty ofScience, "Sv. Kiril i Metodij" University, P.o. Box 162, MK-JOOI Skopje, Republic ofMacedonia Abstract. The paper is a summary of investigatioris carried out on minerals of the Allchar deposit. It discusses the TI-As-Sb-Au mineral ill emblage after detailed and intense research work. Four types of mineralization have been distinguished based on the mineral assemblage present: I. The first ly pe is characterised by high c ment of iron and sulphur, but lower arsenic and thalli um contenl. The pyrite-marcasite mineral assemblage is characterized by the presence of some quantities of arsenic-pyrite. 2. The second type is characterized by the high antimony and low iron and thallium content. Stibnite is the most common mineral in the group.
    [Show full text]
  • Christite, a New Thallium Mineral from the Carlin Gold Deposit, Nevada
    American Mineralogist, Volume62, pages421425, 1977 Christite,a newthallium mineral from the Carlin golddeposit, Nevada ARruuRS. Rlorxn U.S. GeologicalSuruey, Menlo Park, California 94025 FnnNr W. Dlcrsor Departmentof Geology,Stanford Uniuersity St anfo rd, Cal ift rnia 9430 5 JoHNF. Slecr U.S. GeologicalSuruey, Reston, Virginia 22092 lNn KevtNL. Bnowx ChemistryDiuision, Diuision of Scientffic and IndustrialResearch, Petone, New Zealand Abstract Christite,TlHgAsSr, occurs with realgar,orpiment, and loranditein bariteveins and with realgar,lorandite, and getchellitein mineralizedcarbonaceous silty dolomite in the Carlin gold deposit,north-central Nevada. The mineralis namedfor Dr. CharlesL. Christof the U.S. GeologicalSurvey. The color is crimsonor deep red, but variesto bright orangein thinnerplates and crystals;the streakis bright orange,and the lusteris adamantine.The mineralis monoclinic,space group P2,/n,a -- 6.113(l),b = 16.188(4),c = 6.1Il(l) A, with0 : 96.71(2)',Z = 4, and cell volume: 600.6A8. Strongest X-ray powderdiffraction lines, in A, andtheir relative intensities are2.98 (10),3.62 (8),3.49 (6),2.692(6),2.216 (5),4.03 (6), and 3.36(5). Electronmicroprobe analyses gave Tl 35.2,Hg 35.1,As 13.1,S 16.6,sum 100.0 weight percent.The mineraloccurs in smallsubhedral to anhedralgrains which usuallylack well-developedforms but may showa bladedor flattenedhabit. Synthetic crystals are tabular, show{010) and {T0l}pinacoids, and {1l0} and {01l} prisms,and haveperfect {010}, excellent {ll0} and {001},and good {T0l} cleavages.Vickers hardness varied from 28.3-34.6and averaged31.5 kg mm-' (10 determinations).Density of syntheticTlHgAsSs is 6.2(2)(meas) and6.37g cm-e (calc).In reflectedlight christiteis grayish-whitewith a faint blue tint, lacks visiblebireflectance, is anisotropic,and has a brilliant red-orangeinternal reflection.
    [Show full text]
  • Chapter 10 Comparison of the Allchar Au-As-Sb-Tl Deposit, Republic of Macedonia, with Carlin-Type Gold Deposits Sabina Strmi´C Palinkaš,1,† Albert H
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UGD Academic Repository ©2018 Society of Economic Geologists, Inc. Reviews in Economic Geology, v. 20, pp. 335–363 Chapter 10 Comparison of the Allchar Au-As-Sb-Tl Deposit, Republic of Macedonia, with Carlin-Type Gold Deposits Sabina Strmi´c Palinkaš,1,† Albert H. Hofstra,2 Timothy J. Percival,3 Sibila Borojevi´c Šoštari´c,4 Ladislav Palinkaš,5 Vladimir Bermanec,5 Zoltan Pecskay,6 and Blazo Boev7 1 UiT The Arctic University of Norway, Faculty of Science and Technology, Department of Geosciences, Dramsvegen 201, N-9037 Tromsø, Norway 2 U.S. Geological Survey, Denver Inclusion Analysis Laboratory (DIAL), P.O. Box 25046, MS 963, Denver, Colorado 80225, USA 3 Consulting Economic Geologist, 3240 Quartzite Drive, Reno, Nevada 89523, USA 4 University of Zagreb, Faculty of Mining, Geology, and Petroleum Engineering, Pierottijeva 6, HR-10000 Zagreb, Croatia 5 University of Zagreb, Faculty of Science, Geological Department, Horvatovac 95, HR-10000 Zagreb, Croatia 6 Institute of Nuclear Research, Hungarian Academy of Sciences, Bem tér 18/C, H-4001 Debrecen, Hungary 7 Goce Delcˇev University, Faculty of Natural and Technical Sciences, Goce Delcˇev 89, MK-2000 Štip, Republic of Macedonia Abstract The Allchar Au-As-Sb-Tl deposit is situated in the western part of the Vardar zone, the main suture zone along the contact between the Adriatic and the Eurasian tectonic plates. It is spatially and temporally associated with a Pliocene (~5 Ma) postcollisional high-K calc-alkaline to shoshonitic volcano-plutonic center. The Allchar deposit shares many distinctive features with Carlin-type gold deposits in Nevada, including its location near a terrain-bounding fault in an area of low-magnitude extension and intense magmatism.
    [Show full text]
  • Ellisite Tl3ass3 C 2001-2005 Mineral Data Publishing, Version 1
    Ellisite Tl3AsS3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 3m (synthetic). As anhedral to irregular grains, to 1.3 mm, some having rhombohedral form; also massive. Physical Properties: Cleavage: Excellent to good, rhombohedral. Fracture: Hackly. Hardness = n.d. VHN = 36.4–44.0, 39.3 average (50 g load). D(meas.) = 7.10(5) (synthetic). D(calc.) = 7.18 Optical Properties: Opaque. Color: Dark gray; pale gray with purplish tint in polished section, with deep red to deep red-orange internal reflections. Streak: Pale brown with a tinge of orange. Luster: Metallic. Pleochroism: Very weak, in colors from pale purplish gray to pale pinkish gray. Anisotropism: From blue-purple to red-purple to brownish orange. R1–R2: (470) 31.7, (546) 29.2, (589) 28.9, (650) 28.3 Cell Data: Space Group: R3m (synthetic). a = 12.324 c = 9.647 Z = 7 X-ray Powder Pattern: Carlin mine, Nevada, USA. 2.669 (100), 3.214 (53), 5.333 (37), 2.327 (28), 3.559 (20), 1.780 (15), 2.757 (10) Chemistry: (1) (2) Tl 78.2 78.18 As 9.6 9.55 S 12.3 12.27 Total 100.1 100.00 (1) Carlin mine, Nevada, USA; by electron microprobe, average of five grains. (2) Tl3AsS3. Occurrence: In a hydrothermal gold deposit, in mineralized, argillaceous, carbonaceous dolostone beds. Association: Gold, pyrite, christite, lorandite, getchellite, realgar, arsenic, carlinite, hydrocarbons. Distribution: In the Carlin mine, 50 km northwest of Elko, Lynn district, Eureka Co., Nevada, USA. Name: Honors Dr. Albert J. Ellis (1929– ), New Zealand geochemist, Chemistry Division, Department of Scientific and Industrial Research, New Zealand.
    [Show full text]
  • Determination of Silver in Sulfide Minerals by ETMS
    XIII_0690 Determination of Silver in Sulfide Minerals by ETMS Trajce Stafilov", Anna Lazaru a, and Ernst PerniclGib "Institute ofCbemistry, Faculty 0/ Science St. Kiril and Metodij University P.o.s. 162, 91001 Skopje, Macedonia bMax-Planck InstitutfUr Kernphysik Postfacb 103980, D-6900 Heidelberg, Germany INTRODUCTION The interference of various ele­ ABSTRACT ments in the determination of silver It is known that the mineral by ETAAS in geological samples was A method for the determina­ lorandite (flAsS) from the Alshar investigated by a small number of deposit (Republic of Macedonia) tion of silver in sulfide minerals authors (34-35). Fishkova and could be used as a solar neutrino (real gar, orpiment, lorandite, mar­ casite, and stibnite) as well as Vilenkin (34) established that only detector 0). The aim of this study iron interferes at concentrations was to determine the Pb concentra­ dolomite by electrothermal atomic absorption spectrometry is dis­ higher than 100 mg.dnr" . tion in the thallium minerals from cussed. After dissolution of the Alshar, particularly in lorandite, samples, silver was extracted by Because of the differences in which is produced in the nuclear diphenyl thiocarbamate in hydro­ results reported in the literature reaction between solar neutrinos chloric acid media using methyl for the determination of silver at low and 2°511 (present in lorandite): isobutyl ketone, butyl acetate, or concentrations in complex matrices toluene as the solvent. The proce­ using FAAS or EfAAS, we performed 20sn + V -> 205Pb + e- dure was verified by the method a complete investigation as to the Therefore, it is necessary to be of standard additions and with interference of all elements in able to exactly determine the lead standard reference samples.
    [Show full text]
  • REVISION 1 Gungerite, Tlas5sb4s13, a New Thallium
    1 REVISION 1 2 Gungerite, TlAs5Sb4S13, a new thallium sulfosalt with a complex structure 3 containing covalent As–As bonds 4 1 2§ 3 4 5 ANATOLY V. KASATKIN , JAKUB PLÁŠIL , EMIL MAKOVICKY , NIKITA V. CHUKANOV , 5 1 6 6 RADEK ŠKODA , ATALI A. AGAKHANOV AND MIKHAIL V. TSYGANKO 7 8 1 Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 9 Moscow, Russia 10 2 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic 11 3 Department of Geoscience and Resource Management, University of Copenhagen, Østervoldgade 10, DK- 12 1350, Copenhagen K, Denmark 13 4 Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Moscow 14 Region, Russia 15 5 Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech 16 Republic 17 6 40 Let Oktyabrya street 15, Kalya, Severouralsk, Sverdlovskaya Oblast’, 624474 Russia 18 19 ABSTRACT 20 Gungerite, TlAs5Sb4S13, is a new mineral from the Vorontsovskoye gold deposit in Northern 21 Urals. It occurs in limestone breccias composed of calcite and dolomite, and cemented by 22 orpiment, pyrite, realgar, stibnite, and minor baryte and quartz. It belongs to the latest phases 23 among sulfosalts (chiefly Tl–As–Sb ones) present in the ore. The empirical formula (based on 24 the sum of all atoms = 23 pfu) is Tl0.99As5.29Sb3.77S12.95. The Raman spectrum exhibits bands 25 corresponding to As–S and Sb–S stretching vibrations, and a band at 263 cm-1 which is § Email: [email protected] 1 26 assigned to As–As stretching vibrations.
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 78, pages 845-849, 1993 NEW MINERAL NAMESX JorrN L. Jmrnon CANMET, 555 Booth Street,Ottawa, Ontario KlA 0Gl, Canada EnNsr A. J. Bunxr Instituut voor Aardwetenschappen,Vrije Universiteite, De Boelelaan 1085, l08l HV, Amsterdam, The Netherlands Cannonite* The mineral occurs as white powdery massesand thin crusts with stibnite, as spheroidal knobs of feathery ag- C.J.Stanley, A.C. Roberts,D.C. Harris, A.J. Criddle,J.T. Szymariski(1992) Cannonite, BirO(OH),SO+,& rgw gegates of silky fibers, as flexible lamellar crystals at the mineral from Marysvale, Utah, USA. Mineral. Mag., former Perata stibnite mine, Tuscany, Italy, as minute 56,605-609. tabular crystals associatedwith stibnite ore at Cetine, Tuscany,Italy, and as silky fibers and plateletson stibnite The average and (range) of ten electron microprobe and stibiconite in a specimenfrom the Lucky Knock mine, analysesgave Bi 74.03(72.87-75.01), S 5.68(5.55-5.81), Tonasket, Okanogan County, Washington. The average HrO (by difference)3.32,O.,.(for sevenO atoms)16.97, of electron microprobe (all three localities) and CHN sum 100 wto/0,corresponding to BirO(OH)rSOo by anal- analyses(Lucky Knock only) gaveSbrO3 88.91, SO3 8.35, ogy with the structurally defined synthetic analogue.Oc- CaO 0.04, NarO 0.03, H,O 1.43,sum 98.76 wto/0,cor- curs as crystal aggregates(< I mm) of subhedral to eu- respondingto Sb,nrO, (SOo), orCao o,Nao o,H, ,uOoro, ide- hedral, equant to prismatic crystals (<200 prm) or as ally SbuOr(SOo).HrO.Occurs (Pereta)as transparentto irregular intergrown aggregates.Colorless, transparent, translucentcolorless crystals elongate [001], flattened(010) white streak, adamantine luster, brittle, uneven to con- to a maximum thicknessof 0.01 mm, showing{010} and choidal fracture,no cleavage,nonfluorescent, VHN,oo: minor {001}, {2T0},and (1,T2,0);white streak,adaman- 229 (183-280),H : 4, D"nr": 6.515, with Z: 4.
    [Show full text]
  • New Mineral Names
    American Mineralogist, Volume 74, pages 1399-1404,1989 NEW MINERAL NAMES. JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGl, Canada ERNST A. J. BURKE Instituut voor Aardwetenschappen, Vrije Universiteite, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands Blatterite* 814-940 (average 877). In reflected light, slightly to mod- G. Raade, M.H. Mladeck, V.K. Din, AJ. Criddle, c.J. erately bireflectant, nonpleochroic; variation in color (buff Stanley (1988) Blatterite, a new Sb-bearing Mn2+-Mn3+ to pale buff) is due to bireflectance. Anisotropy weak to member of the pinakiolite group, from Nordmark, distinct, with rotation tints in shades of grayish-brown. Sweden. Neues Jahrb. Mineral. Mon., 121-136. No twinning. Orange-red internal reflections. Reflectance data are given at intervals of 10 nm from 400 to 700 nm The empirical formula was calculated from an analysis in air and oil. Reflectance is about 11% in air. X, Y, and by ICPemission spectrometry of 2.53 mg of hand-picked Z axes correspond to a, C,and b axes, with the optic plane crystal fragments. Recalculation to conform with the gen- parallel to (001). The sign of bireflectance in air changes eral formula of the pinakiolite group yielded a MnO- from positive (400-450 nm) to negative (470-700 nm). Mn203 distribution, confirmed by a wet-chemical analy- The sign of birefringence is positive from 400 to 520 nm, sis on 960 }Lgof material. The result is MgO 13.0, Fe203 and negative from 520 to 700 nm. Dispersion r < v. 3.48, MnO 35.1, Mn203 22.2, Sb203 11.4, B203 14.4, to- Color values are also given.
    [Show full text]