Chemical and Kinematical Evolution in Nearby Dwarf Spheroidal Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Chemical and Kinematical Evolution in Nearby Dwarf Spheroidal Galaxies Chemical and Kinematical Evolution in Nearby Dwarf Spheroidal Galaxies Inauguraldissertation zur Erlangung der Wurde¨ eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakult¨at der Universit¨at Basel von Andreas Koch aus Bremen (Deutschland) Basel, 2006 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakult¨at auf Antrag von Prof. Dr. Eva K. Grebel und Dr. Mark I. Wilkinson Basel, den 19. September 2006 Prof. Dr. Hans-Jakob Wirz Dekan Thesis Abstract: Chemical and kinematical evolution in nearby dwarf spheroidal galaxies Dwarf spheroidal (dSph) galaxies are the least massive and luminous objects known to exist. These galaxies are often considered as the fossil building blocks of massive systems predicted by some cosmological models. Nonetheless, evidence has been mounting that this idea of hierarchical assembly may be too simplistic a picture, since a number of the dSphs' characteristics, such as the α-element abundance patterns, stand in contradiction to the properties of stars in the Galactic halo. Further, yet unsolved, puzzles include the missing satellite problem, the influence of feedback and reionization, and the nature of dark matter. How then do the dSphs form, to what extent do they contribute to the build-up of massive galaxies, what can we say about their dark matter content and how can one characterize their role in cosmology and galactic evolution? These systems' intriguing properties, such as the omnipresence of old stellar populations, their gas deficiency, their high velocity dispersion and flat dispersion profiles provide stringent tests of the paradigm of galaxy formation and render these systems important benchmarks for studying galactic evolution from the earliest epochs on. In particular, the proximity of the dSphs in the Local Group (LG) allows us to resolve their stellar populations and to pursue near-field cosmology on the smallest scales. In this Thesis I address several evolutionary aspects of these galaxies by concentrating on three Galactic satellites and additionally investigating the global satellite galaxy system of the Andromeda galaxy, M 31. In this context, I spectroscopically analyzed the Carina dSph, which stands out among the LG dSphs because of its unusual, episodic star formation (SF) history. Carina bears evidence of at least three prominent stellar populations. Hence, I aimed at studying the metallicity spread of such systems, investigating potential age-metallicity relations, searching for spatial gradients and exploring its evolutionary history accounting for chemical enrichment. This was achieved by obtaining medium-resolution spectroscopy of ∼1200 targets in Carina. Based on the near-infrared calcium triplet as a well established metallicity indicator, I was able to compile the metallicity distribution function (MDF) of this galaxy from a large sample of stars. Despite the wide spread in stellar ages present in Carina, originating from its episodic SF, it exhibits a remarkably narrow red giant branch (RGB). On the other hand, I found a wide spread in the metallicities, reaching from −3 dex to near-solar. Hence, I could show that age and metallicity conspire to produce old, metal poor stars at the same locus on the RGB as young, metal rich ones. This manifestation of an age-metallicity degeneracy generically explains the observed narrowness of Carina's RGB. In addition, I could also derive the age of each single red giant from isochrone fits. The resultant age distribution indicates the presence of three major peaks, with a prevailing intermediate-age population. These populations may in fact be related to Carina's three well established SF episodes. By correlating metallicities and spatial information, I could confirm a radial population gradient in the metallicities, in the sense that more metal rich stars are found towards the center of the galaxy. This phenomenon points to a deep central potential well in the dSphs, where gas is longer retained for SF and enrichment. In order to analyze the shape of the observed MDF, several simple models of chemical evolution were calculated, which support the view that the galaxy's early SF must have occurred from pre-enriched gas. Moreover, all the models in use tend to overestimate the number of metal poor stars, i.e., there is a persistent G-dwarf problem. This medium-resolution study was complemented by measurements of iron- and α-element abundance ratios from high-resolution spectra of ten stars in Carina. These elements are important tracers of SF and thus reflect the evolutionary status of any stellar system. It could be shown that the calibration of the metallicity [Fe/H] via the calcium triplet reproduces the \true" stellar iron abundance well for moderately metal-poor stars, but the calibration tends to fail towards the most metal-poor populations. Carina's [α/Fe]-ratios are well consistent with those measured in other dSphs of the LG and confirm that they are systematically lower than those in Galactic halo stars of comparable metallicities. The overall abundance patterns are not inconsistent with an episodic SF, but the accuracy and small number statistics of such measurements impedes quantifying the underlying evolution. It is, however, safe from the present data to say that also Carina inheres the typical characteristics of other dSphs in terms of a low SF efficiency and the occurrence of strong galactic winds. In an analoguous manner I determined metallicities in the remote Galactic satellite Leo II. The resulting MDF also shows a deficiency in very metal-poor stars. Furthermore it turns out to be rather asymmetric, with a rapid decline towards higher metallicities. By comparing my measurements with model predictions of LG dSphs I illustrated that Leo II's MDF bears resemblence to the UMi and Scl dSphs, albeit none of the models succeed in reproducing all features of the MDF simultaneously. By additionally determining the ages of the RGB stars in Leo II, I showed that the age-metallicity relation in this galaxy is essentially flat over a long time interval, while there is evidence for an enrichment during the last 2{4 Gyr. The overall wide spread in ages present in this dSph support earlier views that Leo II is in fact a galaxy with a prominent old and a prevalent intermediate-age population. Contrary to Carina, I could not detect any radial metallicity nor age gradient in Leo II. Another important aspect of the nature and evolution of dSphs is the study of their kinematical properties. These low-mass galaxies are believed to be the smallest cosmological structures containing dark matter. By measuring radial velocities in the remote dSph Leo I I showed that the resulting velocity dispersion profile is essentially flat out to the nominal tidal radius. The non-detection of any apparent velocity gradient across the galaxy supports the negligible role of Galactic tides in the course of its whole evolution. The application of dynamical modeling under the assumption of an isotropic velocity distribution then yielded mass and density profiles. Moreover, the behaviour of the velocity anisotropy was analysed. The resulting high mass to light ratio of Leo I is supportive of the idea that all dSphs share 7 a common dark halo mass-scale of ∼ 4 × 10 M , so that the pure velocity (dispersion) information of such a system is a direct proxy for mass. All this argues in favour of a general dark matter dominance in the dSphs and renders the hypothesis that these systems are of tidal origin less likely. Lastly, information about the origin and evolution of the dSphs can be gleaned by examining their spatial distri- bution around their host galaxies. It has often been reported that, in the Milky Way system, the dSphs are aligned along one or more great circles or polar planes. Hence, I reconstructed the three-dimensional distribution of the entire M31 satellite sample. By applying detailed statistical methods I could demonstrate that seven out of 16 satellites are located within a thin polar sheet. One reason for this planar alignment can be the break up of a common progenitor, which was orbiting M31. Also plausible is that the dSphs fell in along the filamentary dark matter structure of the cosmic web, which is underscored by the fact that the plane extends in the direction of nearby galaxy groups. All in all, my studies of the chemical and kinematical properties of a sample of nearby dSph galaxies do confirm that these are dark matter dominated systems, which are governed by highly complex chemical enrichment processes and thus warrant detailed investigations. These turn out to be invaluable for drawing a global picture of galaxy formation in a cosmological context. Zusammenfassung der Arbeit: Chemische und kinematische Entwicklung in nahen sph¨aroidalen Zwerggalaxien Sph¨aroidale Zwerggalaxien (im Engl. dwarf spheroidals, dSphs) sind die vermutlich masse¨armsten und leucht- schw¨achsten Objekte ub¨ erhaupt. Diese Galaxien werden oft als die archetypischen Bausteine massereicher Systeme angesehen, die von manchen kosmologischen Theorien vorhergesagt werden. Nichtsdestotrotz h¨aufen sich seit den letzten Jahren die Anzeichen, dass dieses Bild der hierarchischen Strukturbildung zu simpel sein k¨onnte: Demzufolge stehen einige der Eigenschaften der dSphs, wie z.B. ihre α-Elementh¨aufigkeiten im Widerspruch zu den Eigenschaften galaktischer Halosterne. Weitere noch ungel¨oste Fragen betreffen die Diskrepanz zwischen der Anzahl beobachteter und vorhergesagter Satelliten, die Rolle der Reionisation und Ruc¨ kfuhrung¨ von Gas sowie die Beschaffenheit der dunklen Materie. Wie entstehen nun die dSphs, in welchem Masse tragen sie zum Aufbau massereicher Galaxien bei, was kann man ub¨ er ihren Gehalt an dunkler Materie aussagen und welche Rolle spielen sie fur¨ die Kosmologie und Galaxienentwicklung? Die faszinierenden Eigenschaften dieser Galaxien, wie die Allgegenwart alter Sternpopulatio- nen, ihr Mangel an jeglichem Gas, sowie ihre hohen Geschwindigkeitsdispersionen und abflachenden Dispersionsprofile stellen effiziente Mittel zum Erforschen der Galaxienentstehung dar und erm¨oglichen es, die Entwicklung solcher Sy- steme von den fruhesten¨ Epochen an zu verfolgen.
Recommended publications
  • Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
    RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies.
    [Show full text]
  • Dark Matter: the Evidence from Astronomy, Astrophysics and Cosmology Matts Roos University of Helsinki [email protected]
    Dark Matter: The evidence from astronomy, astrophysics and cosmology Matts Roos University of Helsinki [email protected] Dark matter has been introduced to explain many independent gravitational effects at different astronomical scales, even at cosmological scales. This review describes more than ten such effects. It is intended for an audience with little or no knowledge of astrophysics or cosmology. ContentsContents I. Stars near the Galactic disk II. Virially bound systems III. Rotation curves of spiral galaxies IV. Small galaxy groups emitting X-rays V. Mass to luminosity ratios VI. Mass autocorrelation functions VII. Strong and weak lensing VIII. Cosmic Microwave Background IX. Baryonic acoustic oscillations X. Galaxy formation in purely baryonic matter XI. Large Scale Structures simulated XII. Dark matter from overall fits XIII. Merging galaxy clusters XIV. Conclusions II StarsStars nearnear thethe GalacticGalactic diskdisk ? J. H. Oort in 1932 analyzed vertical motions of stars near the Galactic disk and calculated the vertical acceleration of matter. ? Their density and velocity dispersion define the temperature of a ”star atmosphere” bound by a gravitational potential. ? This contradicted grossly the expectations: the density due to known stars was not sufficient: the Galaxy should rapidly be losing stars. ? This was the first indication for the possible existence of dark matter in the Galaxy. ? He determined the mass of the Milky Way: 1011 solar masses, today understood to be mainly in the halo, not in the disk. ? But dark
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2006 Permalink https://escholarship.org/uc/item/5760h9v8 Journal Space Science Reviews, 132(1) ISSN 0038-6308 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2007-09-01 DOI 10.1007/s11214-007-9224-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Space Sci Rev (2007) 132: 1–182 DOI 10.1007/s11214-007-9224-0 Astrophysics in 2006 Virginia Trimble · Markus J. Aschwanden · Carl J. Hansen Received: 11 May 2007 / Accepted: 24 May 2007 / Published online: 23 October 2007 © Springer Science+Business Media B.V. 2007 Abstract The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords Cosmology: general · Galaxies: general · ISM: general · Stars: general · Sun: general · Planets and satellites: general · Astrobiology · Star clusters · Binary stars · Clusters of galaxies · Gamma-ray bursts · Milky Way · Earth · Active galaxies · Supernovae 1 Introduction Astrophysics in 2006 modifies a long tradition by moving to a new journal, which you hold in your (real or virtual) hands. The fifteen previous articles in the series are referenced oc- casionally as Ap91 to Ap05 below and appeared in volumes 104–118 of Publications of V.
    [Show full text]
  • Astrophysics in 2006 3
    ASTROPHYSICS IN 2006 Virginia Trimble1, Markus J. Aschwanden2, and Carl J. Hansen3 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, Las Cumbres Observatory, Santa Barbara, CA: ([email protected]) 2 Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304: ([email protected]) 3 JILA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309: ([email protected]) Received ... : accepted ... Abstract. The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords: cosmology: general, galaxies: general, ISM: general, stars: general, Sun: gen- eral, planets and satellites: general, astrobiology CONTENTS 1. Introduction 6 1.1 Up 6 1.2 Down 9 1.3 Around 10 2. Solar Physics 12 2.1 The solar interior 12 2.1.1 From neutrinos to neutralinos 12 2.1.2 Global helioseismology 12 2.1.3 Local helioseismology 12 2.1.4 Tachocline structure 13 arXiv:0705.1730v1 [astro-ph] 11 May 2007 2.1.5 Dynamo models 14 2.2 Photosphere 15 2.2.1 Solar radius and rotation 15 2.2.2 Distribution of magnetic fields 15 2.2.3 Magnetic flux emergence rate 15 2.2.4 Photospheric motion of magnetic fields 16 2.2.5 Faculae production 16 2.2.6 The photospheric boundary of magnetic fields 17 2.2.7 Flare prediction from photospheric fields 17 c 2008 Springer Science + Business Media.
    [Show full text]
  • An Observational Limit on the Dwarf Galaxy Population of the Local Group
    An Observational Limit on the Dwarf Galaxy Population of the Local Group Alan B. Whiting1 Cerro Tololo Inter-American Observatory Casilla 603, La Serena, Chile [email protected] George K. T. Hau University of Durham Mike Irwin University of Cambridge Miguel Verdugo Institut f¨ur Astrophysik G¨ottingen, Germany ABSTRACT We present the results of an all-sky, deep optical survey for faint Local Group dwarf galaxies. Candidate objects were selected from the second Palomar survey (POSS-II) and ESO/SRC survey plates and follow-up observations performed to determine whether they were indeed overlooked members of the Local Group. arXiv:astro-ph/0610551v1 18 Oct 2006 Only two galaxies (Antlia and Cetus) were discovered this way out of 206 candi- dates. Based on internal and external comparisons, we estimate that our visual survey is more than 77% complete for objects larger than one arc minute in size and with a surface brightness greater than an extremely faint limit over the 72% of the sky not obstructed by the Milky Way. Our limit of sensitivity cannot be calculated exactly, but is certainly fainter than 25 magnitudes per square arc second in R, probably 25.5 and possibly approaching 26. We conclude that there are at most one or two Local Group dwarf galaxies fitting our observational cri- teria still undiscovered in the clear part of the sky, and roughly a dozen hidden behind the Milky Way. Our work places the “missing satellite problem” on a firm quantitative observational basis. We present detailed data on all our candidates, including surface brightness measurements.
    [Show full text]
  • PDF Presentatie Van Frank
    13” Frank Hol / Skyheerlen Elfje en Vixen R150S Newton in de jaren ’80 en begin ’90 vooral zon, maan, planeten en Messiers. H.T.S. – vriendin – baan – huis kopen & verbouwen trouwen – kinderen waarneemstop. Vanaf 2006 weer actief waarnemen. Focus op objecten uit de Local Group of Galaxies • 2008: Celestron C14. • 2015: 13” aluminium reisdobson. • 2017-2018-2019: 13” aluminium bino-dobson. Rocherath – SQM 21.2-21.7 13” M31 NGC206 Globulars Stofbanden Stervormings- gebieden … 13” M31 M32 NGC206 Globulars Stofbanden Stervormings- gebieden … NGC206 13” NGC205 M32 M32 is de kern van een NGC 221 galaxy die grotendeels Andromeda opgelokt is door M31. M32 is dan ook net zo X helder als de kern van M31 (met 100 miljoen sterren). Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. De helderste dwerg (vanuit onze breedte) aan de hemel: magnitude 8.1. M110 “Een elliptisch stelsel is NGC 205 dood-saai.” Andromeda Neen, kijk eens hoe mooi het stelsel aan de rand in de X donkere achtergrond verdwijnt. Een watje in de lucht! Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. Een grotere telescoop laat de randen mooi verdwijnen in de omgeving. 30’ x 25’ Burnham’s NGC185 and NGC147 “These two miniature elliptical galaxies appear to be distant Celestial companians of the Great Andromeda Galaxy M31. They are Handbook some 7 degrees north of it in the sky, and are approximately the same distance from us, about 2.2 milion light years.” Start van een lange zoektocht (die nog niet voorbij is). 13” NGC147 Twee elliptische stelsels. & NGC147 is een stuk moeilijker dan NGC185.
    [Show full text]
  • Draft181 182Chapter 10
    Chapter 10 Formation and evolution of the Local Group 480 Myr <t< 13.7 Gyr; 10 >z> 0; 30 K > T > 2.725 K The fact that the [G]alactic system is a member of a group is a very fortunate accident. Edwin Hubble, The Realm of the Nebulae Summary: The Local Group (LG) is the group of galaxies gravitationally associ- ated with the Galaxy and M 31. Galaxies within the LG have overcome the general expansion of the universe. There are approximately 75 galaxies in the LG within a 12 diameter of ∼3 Mpc having a total mass of 2-5 × 10 M⊙. A strong morphology- density relation exists in which gas-poor dwarf spheroidals (dSphs) are preferentially found closer to the Galaxy/M 31 than gas-rich dwarf irregulars (dIrrs). This is often promoted as evidence of environmental processes due to the massive Galaxy and M 31 driving the evolutionary change between dwarf galaxy types. High Veloc- ity Clouds (HVCs) are likely to be either remnant gas left over from the formation of the Galaxy, or associated with other galaxies that have been tidally disturbed by the Galaxy. Our Galaxy halo is about 12 Gyr old. A thin disk with ongoing star formation and older thick disk built by z ≥ 2 minor mergers exist. The Galaxy and M 31 will merge in 5.9 Gyr and ultimately resemble an elliptical galaxy. The LG has −1 vLG = 627 ± 22 km s with respect to the CMB. About 44% of the LG motion is due to the infall into the region of the Great Attractor, and the remaining amount of motion is due to more distant overdensities between 130 and 180 h−1 Mpc, primarily the Shapley supercluster.
    [Show full text]
  • Andromeda IX: a New Dwarf Spheroidal Satellite Of
    Andromeda IX: A New Dwarf Spheroidal Satellite of M31 Daniel B. Zucker1,10, Alexei Y. Kniazev1, Eric F. Bell1, David Mart´inez-Delgado1, Eva K. Grebel1,2, Hans-Walter Rix1, Constance M. Rockosi3, Jon A. Holtzman4, Rene A. M. Walterbos4, James Annis5, Donald G. York6, Zeljkoˇ Ivezi´c7, J. Brinkmann8, Howard Brewington8, Michael Harvanek8, Greg Hennessy9, S. J. Kleinman8, Jurek Krzesinski8, Dan Long8, Peter R. Newman8, Atsuko Nitta8, Stephanie A. Snedden8 ABSTRACT We report the discovery of a new dwarf spheroidal satellite of M31, An- dromeda IX, based on resolved stellar photometry from the Sloan Digital Sky Survey (SDSS). Using both SDSS and public archival data we have estimated its distance and other physical properties, and compared these to the properties of a previously known dwarf spheroidal companion, Andromeda V, also observed by SDSS. Andromeda IX is the lowest surface brightness galaxy found to date −2 (µV,0 ∼ 26.8 mag arcsec ), and at the distance we estimate from the position of the tip of Andromeda IX’s red giant branch, (m − M)0 ∼ 24.5 (805 kpc), Andromeda IX would also be the faintest galaxy known (MV ∼ −8.3). Subject headings: galaxies: dwarf — galaxies: individual (Andromeda V) — galaxies: individual (Andromeda IX) — galaxies: evolution — Local Group 1Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D-69117 Heidelberg, Germany; [email protected] 2Astronomisches Institut, Universit¨at Basel, Venusstrasse 7,CH-4102 Binningen, Switzerland arXiv:astro-ph/0404268v2 16 Aug 2004 3Astronomy Department, University of Washington, Box 351580, Seattle WA 98195-1580 4Department of Astronomy, New Mexico State University, 1320 Frenger Mall, Las Cruces NM 88003-8001 5Fermi National Accelerator Laboratory, P.O.
    [Show full text]
  • Proper Motions of the Satellites of M31
    Proper Motions of the Satellites of M31 Ben Hodkinson and Jakub Scholtz∗ IPPP, Durham University, DH1 3LE, UK (Dated: April 9, 2019) We predict the range of proper motions of 19 satellite galaxies of M31 that would rotationally stabilise the M31 plane of satellites consisting of 15-20 members as identified by Ibata et al. (2013). Our prediction is based purely on the current positions and line-of-sight velocities of these satellites and the assumption that the plane is not a transient feature. These predictions are therefore independent of the current debate about the formation history of this plane. We further comment on the feasibility of measuring these proper motions with future observations by the THEIA satellite mission as well as the currently planned observations by HST and JWST. I. INTRODUCTION pared to determine whether the plane is indeed a stable structure or a temporary alignment of satellites of M31. Ibata et al. [1] reported the existence of a planar sub- We do feel the need to re-iterate two points: First, the group of 15 satellites of the M31 galaxy. Of the 15 in- results of this work are independent of the debate about plane satellites, 13 are co-rotating, which suggests, but the nature of this plane: it could be a rare structure of does not show, this plane is a kinematically stable struc- the ΛCDM model or a manifestation of a deviation from ture. Moreover, the small width of the plane, roughly the ΛCDM. As long as the M31 plane is a stable feature, 13kpc, is a challenge to explain.
    [Show full text]
  • List of Publications (06/2021)
    Prof. Dr. Eva K. Grebel, Astronomisches Rechen-Institut, Zentrum f¨urAstronomie der Universit¨at Heidelberg, M¨onchhofstr. 12{14, D-69120 Heidelberg, Germany List of Publications (06/2021) A. Refereed publications (443) . 1 B. Reviews (34) . 47 C. Conference proceedings etc. (175) 50 D. Abstracts (141) . 66 E. Books (2) . 77 In publications with my students or postdocs their names are underlined when this work was completed (or partially carried out) while they held their position with me. A. Refereed Publications 1. Menon, S.H., Grasha, K., Elmegreen, B.G., Federrath, C., Krumholz, M.R., Calzetti, D., S´anchez, N., Linden, S.T., Adamo, A., Messa, M., Cook, D.O., Dale, D.A., Grebel, E.K., Fumagalli, M., Sabbi, E., Johnson, K.E., Smith, L.J., & Kennicutt, R.C. The Dependence of the Hierarchical Distribution of Star Clusters on Galactic En- vironment 2021, MNRAS, submitted 2. D´ek´any, I., Grebel, E.K., & Pojmanski, G. Metallicity estimation of RR Lyrae stars from their I-band light curves 2021, ApJ, submitted 3. Gatto, M., Ripepi, V., Bellazzini, M., Tosi, M., Cignoni, M., Tortora, C., Leccia, S., Clementini, G., Grebel, E.K., Longo, G., Marconi, M., & Musella, I. STEP Survey II: Structural Analysis of 170 star clusters in the SMC 2021, MNRAS, submitted 4. Orozco-Duarte, R., Wofford, A., Vidal-Garc´ıa, A., Bruzual, G., Charlot, S., Krumholz, M., Hannon, S., Lee, J., Wofford, T., Fumagalli, M., Dale, D., Messa, M., Grebel, E.K., Smith, L., Grasha, K., & Cook, D. Synthetic photometry of OB star clusters with stochastically sampled IMFs: anal- ysis of models and HST observations 2021, MNRAS, submitted 5.
    [Show full text]
  • Monitoring Survey of Pulsating Giant Stars in the M
    Journal of Physics: Conference Series PAPER • OPEN ACCESS Related content - MASS LOSS AND R 136A-TYPE STARS. Monitoring survey of pulsating giant stars in the M. S. Vardya - M33 IR Variable Stars Local Group galaxies: survey description, science K. B. W. McQuinn, Charles E. Woodward, goals, target selection S. P. Willner et al. - MASS LOSS FROM EVOLVED STARS Robert J. Sopka To cite this article: E Saremi et al 2017 J. Phys.: Conf. Ser. 869 012068 View the article online for updates and enhancements. This content was downloaded from IP address 160.5.148.227 on 19/10/2017 at 09:54 Frontiers in Theoretical and Applied Physics/UAE 2017 (FTAPS 2017) IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1234567890869 (2017) 012068 doi :10.1088/1742-6596/869/1/012068 Monitoring survey of pulsating giant stars in the Local Group galaxies: survey description, science goals, target selection E Saremi1,2, A Javadi2, J Th van Loon3, H Khosroshahi2, A Abedi1, J Bamber3, S A Hashemi4, F Nikzat5 and A Molaei Nezhad2 1 Physics Department, University of Birjand, Birjand 97175-615, Iran 2 School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531, Iran 3 Lennard-Jones Laboratories, Keele University, ST5 5BG, UK 4 Physics Department, Sharif University of Tecnology, Tehran 1458889694, Iran 5 Instituto de Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, 782-0436 Macul, Santiago, Chile Email: [email protected] Abstract. The population of nearby dwarf galaxies in the Local Group constitutes a complete galactic environment, perfect suited for studying the connection between stellar populations and galaxy evolution.
    [Show full text]
  • High-Velocity Clouds Around the Andromeda Galaxy and the Milky Way
    The Relics of Structure Formation High-Velocity Clouds around the Andromeda Galaxy and the Milky Way Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn vorgelegt von Tobias Westmeier aus Korbach Bonn, Februar 2007 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn. Erstgutachter und Betreuer: PD Dr. J¨urgen Kerp Zweitgutachter: Prof. Dr. Klaas S. de Boer Fachnaher Gutachter: Prof. Dr. Klaus Desch Fachangrenzender Gutachter: Prof. Dr. Andreas Bott Externe Gutachterin: Dr. Mary E. Putman Tag der Promotion: 6. Juni 2007 “Our belief in any particular natural law cannot have a safer basis than our unsuccessful critical attempts to refute it.” (Sir Karl R. Popper, “Conjectures and Refutations: The Growth of Scientific Knowledge”, 1969) Part of this work is based on observations with the 100-m radio telescope of the MPIfR (Max-Planck-Institut f¨ur Radioastronomie) at Effelsberg. The Westerbork Synthesis Radio Telescope is operated by the ASTRON (Netherlands Foundation for Research in Astronomy) with support from the Netherlands Foundation for Scientific Research (NWO). The National Radio Astronomy Observatory is a facility of the National Science Founda- tion operated under cooperative agreement by Associated Universities, Inc. Contents Abstract – Kurzfassung 11 1 Introduction 15 1.1 The discovery and definition of HVCs . 15 1.2 The distribution of HVCs across the sky . ..... 16 1.3 ThephysicalparametersofHVCs. 20 1.3.1 Radialvelocities ............................. 20 1.3.2 Distances ................................. 21 1.3.3 Metalabundances ............................ 23 1.3.4 Multi-phasestructure . 24 1.3.5 Interaction with the ambient medium .
    [Show full text]